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Abstract
Heterogeneous ensembles are an effective approach in scenarios where the
ideal data type and/or individual predictor are unclear for a given problem.
These ensembles have shown promise for protein function prediction (PFP),
but their ability to improve PFP at a large scale is unclear. The overall goal of
this study is to critically assess this ability of a variety of heterogeneous
ensemble methods across a multitude of functional terms, proteins and
organisms. Our results show that these methods, especially Stacking using
Logistic Regression, indeed produce more accurate predictions for a variety of
Gene Ontology terms differing in size and specificity. To enable the application
of these methods to other related problems, we have publicly shared the
HPC-enabled code underlying this work as LargeGOPred (

).https://github.com/GauravPandeyLab/LargeGOPred
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Introduction
Given the large and rapidly growing gap between sequenced 
genomes and experimentally determined functional annotations 
of the constituent proteins, the automation of protein function 
prediction (PFP) using computational tools is critical1,2. How-
ever, diverse data sources, data quality issues, like noise and 
incompleteness, and a lack of consensus on the best predictor(s) 
for various types of data and functions pose serious challenges 
for PFP. Specifically, data types used by existing PFP methods  
have included amino acid sequences, protein structure information, 
gene expression profiles and protein-protein interaction networks. 
Similarly, prediction methodologies have ranged from homology- 
based sequence alignment to machine learning algorithms,  
network-based methods, and others. Several community-based 
critical assessments, especially CAFA3,4, have been organized to 
objectively measure the performance of these diverse PFP meth-
ods. A central finding from these assessments was the variable 
performance of the tested methods/predictors for different func-
tional terms from the Gene Ontology (GO)5,6 and target proteins,  
demonstrating that there is no ideal predictor of all types of  
protein function.

A potential approach for improving prediction performance in 
such a scenario of diverse data types and individual/base pre-
dictors is to build heterogeneous ensembles7. These ensembles 
harness the consensus and diversity among the base predic-
tors, and can help reduce potential overfitting and inaccuracies 
incurred by them. Unsupervised methods like majority vote and 
mean aggregation, and supervised approaches like stacking and 
ensemble selection are the most commonly used methods for  
building heterogeneous ensembles. Stacking builds such an 
ensemble by learning a function, also known as a meta-predictor, 
that optimally aggregates the outputs of the base predictors8. 
Ensemble selection methods iteratively add one or more base 
predictors to the current ensemble either greedily or to improve 
the overall diversity and performance of the ensemble9–11. These  
approaches have been successfully applied to a variety of  
prediction problems12–15.

In previous work7, we tested the efficacy of heterogeneous 
ensembles for annotating approximately 4,000 Saccharomyces 
cerevisiae proteins with GO terms. For this, we evaluated 
stacking using logistic regression as the meta-predictor and  
Caruana et al.’s ensemble selection (CES) algorithm9,10, both  
implemented in our open-source package DataSink. The imple-
mentation uses a nested cross-validation setup7 to train the 
base predictors and the ensembles independently with the aim 
of reducing overfitting16 and improving prediction perform-
ance. These experiments yielded that both CES and stacking  
performed significantly better than stochastic gradient boosting17, 
the best-performing base predictor for all the GO terms consid-
ered. This improvement was observed both in terms of the AUC 
score, as well as the F

max
 measure, which has been established  

to be more relevant for PFP evaluation3,4.

A major limitation of this previous study was the relatively 
high computational cost of constructing heterogeneous ensem-
bles, despite their high-performance computing (HPC)-ena-
bled implementations in DataSink. Due to this cost, we were 

able to test the ensembles’ performance on only three GO 
terms for proteins of only one organism (S. cerevisiae). Owing 
to the same limitation, only logistic regression was tested as  
the meta-predictor for stacking. Thus, despite the initial encour-
aging results, it remains unclear if heterogeneous ensembles 
provide the same improvement over individual base predic-
tors for a substantial part of GO as well as for a large number  
of proteins from multiple organisms.

The overall goal of this study is to critically assess this ability 
of heterogeneous ensembles to improve PFP at a large scale 
across a multitude of functional terms, proteins and organisms. 
For this, we adopt an HPC-enabled strategy to evaluate het-
erogeneous ensembles, built using CES and stacking with eight 
meta-prediction algorithms, for large-scale PFP. This evaluation 
is conducted over 277 GO terms, and more than 60,000  
proteins, from 19 pathogenic bacterial species. Specifically, we 
analyze the following aspects of of heterogeneous ensembles:

1.    Prediction performance compared to that of the  
best-performing individual predictor for each GO term.

2.    How this performance varies for different GO terms  
categorized by:

(a)    Number of genes annotated to each term (size).

(b)    Different depths in the GO hierarchy (levels of  
specificity).

We expect the results of this study to shed light on the  
efficacy of heterogeneous ensembles for large-scale protein 
function prediction. To enable the application of these ensem-
bles to other related problems, we have publicly shared the  
HPC-enabled code underlying this work as LargeGOPred.

Methods
Data used in the study
We extracted the amino acid sequences of 63,449 proteins 
from 19 clinically relevant bacterial pathogens, which include 
a subset of organisms from the Health and Human Services 
(HHS) list of select agents and those with current high clinical  
relevance18,19. The annotations of these proteins to GO terms 
used in this study were either inferred by a curator (evidence 
codes: ISS, ISO, ISA, ISM, IGC, IBA, IBD, IKR, IRD, RCA, 
TAS, NAS and IC) or from experiments (evidence codes: EXP, 
IDA, IPI, IMP, IGI and IEP), but not from electronic annotations  
(IEA) in the UniProt database20. We selected 277 molecular  
function (MF) and biological process (BP) GO terms with more 
than 200 annotated proteins across all the 19 bacteria. The  
constantly changing contents of the GO ontology and annota-
tions, as well as our incomplete knowledge of the latter make 
it possible for sequences not annotated to a GO term to be 
annotated in the future. Thus, to prepare more well-defined  
datasets, for each GO term, we defined proteins annotated to  
it as positive samples and any proteins that are neither anno-
tated to the GO term nor its ancestors or descendants as negative  
samples21. The resultant distributions of GO terms with regard  
to the number of proteins positively annotated to them for each 
organism and across all organisms are shown in Table 1.
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We chose normalized k-mer frequencies, extracted using the 
khmer package (2.1.1)22, as our feature set to represent the infor-
mation contained in the amino acid sequences and construct a 
feature matrix that can serve as input for LargeGOPred. K-mers 
have been used for similar purposes in several PFP studies1, 
as well as related problems like the prediction of protein  
secondary structure23 and RNA-protein interactions24. Since 
the size of the feature set (all possible k-mers) grows rapidly 
with increasing value of k, setting k to a high value may be 
impractical for large-scale PFP tasks like ours. Additionally, 
1- and 2-mers may not provide enough context information 
about the sequence. Thus, we set k = 3 since this value strikes a 
balance between the information captured by the k-mers and  
computational scalability. For each amino acid sequence, we 
extracted frequencies for all possible 8,000 3-mers at each posi-
tion of the sequence. We then normalized these frequencies 

by the length of the sequence to reduce the potential  
bias due to the variation of sequence lengths among the proteins.

All the processed data are available from https://zenodo.org/
record/1434450#.W6lU2hNKhBx (doi: 10.5281/zenodo.1434450)25.

Overview of the prediction approach
The overall approach adopted for this study is visualized and 
described in detail in Figure 1. Two key components of the 
approach, specifically the heterogeneous ensemble methods 
used and nested cross-validation, are described in the following  
subsections, as well in our previous work7. The prediction  
performance of all the predictors tested in this study, specifi-
cally the base classifiers and ensembles, was evaluated in terms 
of the F

max
 measure, which is the maximum value of F-measure26 

across all binarization thresholds, and has been recommended as a  

Table 1. Overview of the data used in this study. The ‘#Proteins’ column shows the number of proteins in the corresponding 
bacterial pathogen listed in the ‘Organism’ column. The disease(s) each of these pathogens has been implicated in are listed in the 
‘Disease(s)’ column. The ‘Distribution of GO terms’ column with 3 sub-columns shows the number of proteins annotated with GO 
terms with that range of #annotations, with the corresponding number of GO terms shown in parenthesis. The final row of the table 
shows the total number of proteins and GO terms considered in this study. Ranges of distributions of GO terms for all species are 
shown in the parenthesis of the three ‘#annotations’ sub-columns. Since each GO term is considered independently, each protein 
may be counted as annotated to multiple GO terms.

Organism Disease(s) #Proteins
Distribution of GO terms (#annotations)

0-10 (200-500) 10-100 (500-1000) >100 (>1000)

Yersinia pestis plague, black death 7375 164 (26) 7397 (218) 6773 (33)

Mycobacterium tuberculosis tuberculosis (TB) 6112 53 (12) 8850 (186) 19095 (79)

Burkholderia vietnamiensis severe respiratory disease 4889 49 (277) 0 0

Pseudomonas aeruginosa nosocomial infection 4488 44 (6) 8515 (171) 23891 (100)

Klebsiella pneumoniae nosocomial infection, pneumonia 4140 66 (277) 0 0

Escherichia coli severe abdominal cramps 4067 1 (1) 6811 (104) 53731 (172)

Vibrio cholerae cholera 3756 100 (13) 8218 (164) 27961 (100)

Salmonella typhimurium gastroenteritis 3713 64 (11) 8861 (224) 9532 (42)

Shigella dysenteriae shigellosis 3039 69 (277) 0 0

Peptoclostridium difficile pseudomembranous colitis 2925 168 (277) 0 0

Bordetella pertussis pertussis or whooping cough 2688 123 (277) 0 0

Clostridium botulinum botulism poisoning 2678 277 (64) 5609 (191) 4076 (22)

Enterococcus faecium neonatal meningitis or endocarditis 2343 0 (277) 0 0

Staphylococcus aureus severe skin infections 2142 415 (72) 5628 (184) 3863 (21)

Acinetobacter baumannii nosocomial infection 1946 0 (277) 0 0

Haemophilus influenzae bacteremia, pneumonia 1500 526 (79) 5233 (178) 3947 (20)

Neisseria gonorrhoeae sexually transmitted disease 1464 141 (270) 175 (7) 0

Streptococcus pyogenes pharyngitis, impetigo 1332 154 (277) 0 0

Helicobacter pylori peptic ulcers, gastritis, stomach 
cancer 1145 374 (272) 217 (5) 0

Total 63449 47226 (152) 51720 (71) 122225 (54)
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PFP evaluation measure by CAFA3,4. We also evaluated the  
statistical significance of the difference between the performance 
of the various predictors (described below)27. Finally, since we 
approach GO term prediction as a binary classification problem, 
the terms “predictor” and “classifier”, and their variants will  
be used interchangeably as appropriate in the rest of the paper.

Heterogeneous ensemble methods
We used 12 diverse base predictors from the Weka machine 
learning suite (3.7.10)28 (upper half of Table 2) and built 3 types 
of unsupervised and supervised heterogeneous ensembles on 
top of them. The unsupervised mean method simply takes the 
average of the predictions from base classifiers as the final  
prediction. For supervised heterogeneous ensembles, we tested 
various stacking methods and one of the most widely used  
ensemble selection methods, namely CES.

Stacking. Stacking builds a heterogeneous ensemble by learn-
ing a meta-classifier that optimally aggregates the outputs of the 
base predictors. Unlike our previous study, where only stacking 
using logistic regression as the meta-classifier was tested, we 
used 8 different meta-classifiers in this study (bottom half of 

Table 2), and statistically compared their performance over all  
the target prediction problems.

Ensemble selection and CES. Ensemble selection is a process 
to selecting a subset of all the base classifiers that are mutu-
ally complementary such that the resultant ensemble is as  
predictive as possible.

In this study, we tested Caruana et al’s ensemble selection 
(CES) algorithm for large-scale PFP9,10. CES is an iterative 
algorithm that starts with an empty ensemble, and in each itera-
tion, adds the base predictor that best improves the resultant 
ensemble’s performance, partly due to the added predictor’s 
complementarity to the current ensemble. The process contin-
ues until the ensemble’s performance doesn’t improve anymore, 
or even starts decreasing. In this work, we tested the version of 
CES in which the base predictor to be added to the ensemble  
was sampled with replacement in each iteration9.

Nested cross-validation
Cross validation (CV) is a frequently used methodology 
for training and testing classifiers and other predictors29.  

Figure 1. Overview of the prediction approach. We first extracted normalized 3-mer frequencies from the amino acid sequences as features. 
Training data for 12 types of base classifiers (upper half of Table 2) were randomly under-sampled into 10 bags containing equal numbers 
of positive and negative samples to address class imbalance and to introduce diversity among base classifiers, even among those of the 
same type. The predictions from these bags were averaged for each base classifier and collected to train the heterogeneous ensembles 
using three types of methods, namely mean aggregation, 8 stacking meta-classifiers (bottom half of Table 2), and Caruana et al.’s ensemble 
selection (CES). Separate test data were used to evaluate the heterogeneous ensembles. The entire process was conducted within a nested 
cross-validation setup (described below) executed for each target GO term separately.
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However, in the case of learning supervised ensembles like ours 
that involve two rounds of training (first the base classifiers and 
then the ensembles), using standard cross-validation may lead 
to overfitting of the ensemble. Thus, as explained in our previ-
ous work7, we devised a nested cross-validation procedure to 
be used for training and testing supervised ensembles. In this  
procedure, the entire dataset was split into outer training and test  
CV splits and each outer training split was further divided 
into inner CV folds. Base classifiers were trained on the 
inner training split and used to predict on the corresponding 
inner test split. Predictions made by the base classifiers were  
collected across all inner testing folds and used as the base  
data to train the heterogeneous ensembles. The outer test 
splits were then used to evaluate the performance of the trained 
ensembles. The nested cross-validation strategy ensures that the 
base classifiers and ensembles are trained on separate subsets  
of the data set, thus reducing the chances of bias and overfitting.

We addressed the potentially high computational costs by  
parallelizing all the independent units of the nested CV process, 
namely the training and testing of base and ensemble predic-
tors over all the inner and outer CV splits. These units were 
then executed on separate processors in a large HPC cluster, 
with the outputs of inner CV folds flowing into the outer ones 
as described in our earlier work7. We have made this HPC- 
enabled implementation of the heterogeneous ensemble PFP  
process publicly available as LargeGOPred.

Statistical comparison of PFP performance
In this study, we compared multiple heterogeneous ensem-
bles and base classifiers on their ability to predict annotations 
to a large number of GO terms. In such situations, it is  
critical to assess the statistical significance of these numerous 
comparisons to derive reliable conclusions. For this, we used 
Friedman’s and Nemenyi’s tests and visualized their results in  
easily interpretable critical difference (CD) diagrams27. Friedman’s 
test ranks all the tested classifiers over all datasets (here, 
GO terms) and tests if the mean ranks of all classifiers are  
statistically equivalent, while Nemenyi’s test performs the  
equivalent of multiple hypothesis correction for these com-
parisons. We used the scmamp (0.3.2)31 R package to perform  
these tests and visualize their results as CD diagrams.

Results
Overall PFP performance
We first evaluated if and to what extent heterogeneous ensem-
bles enable the prediction of protein function as compared 
to individual predictors. Figure 2 shows the results of this 
evaluation in terms of the difference of the performance of a  
variety of ensembles from that of the best base classifier for 
each GO term, with the terms themselves categorized by their 
sizes. Although there is substantial variability in the values of  
∆F

max
 across ensemble methods and GO term categories, some 

trends can still be observed. First, the values of ∆F
max

 across 
ensembles increase as the sizes of the GO terms considered also 

Table 2. Base classifiers used to construct all the heterogeneous ensemble 
methods tested in this study (upper half), and meta-classifiers used to 
construct stacking-based ensembles (lower half). The base and meta-classifiers 
were adopted from Weka28 and scikit-learn30 respectively.

Base classifiers

Classifier name Weka class name

Naive Bayes (NB) weka.predictors.bayes.NaiveBayes
Logistic Regression (LR) weka.predictors.functions.Logistic

Stochastic Gradient Descent (SGD) weka.predictors.functions.SGD
Voted Perceptron (VP) weka.predictors.functions.VotedPerceptron

AdaBoost (AB) weka.predictors.meta.AdaBoostM1
Decision Tree (DT) weka.predictors.trees.J48
Logit Boost (LB) weka.predictors.meta.LogitBoost

Random Tree (RT) weka.predictors.trees.RandomTree
Random Forest (RF) weka.predictors.trees.RandomForest

RIPPER weka.predictors.rules.JRip
PART weka.predictors.rules.PART

K-nearest Neighbors (KNN) weka.predictors.lazy.IBk
Meta-classifiers

Meta-classifier Scikit-learn class name

Naive Bayes (NB) sklearn.naive_bayes.GaussianNB
AdaBoost (AB) sklearn.ensemble.AdaBoostpredictor

Decision Tree (DT) sklearn.tree.DecisionTreepredictor
LogitBoost (LB) sklearn.ensemble.GradientBoostingpredictor

K-nearest Neighbors (KNN) sklearn.neighbors.KNeighborspredictor
Logistic Regression (LR) sklearn.linear_model.LogisticRegression

Stochastic Gradient Descent (SGD) sklearn.linear_model.SGDpredictor
Random Forest (RF) sklearn.ensemble.RandomForestpredictor
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increase. This is illustrated by the fact that zero, one (Stack-
ing with Logistic Regression) and four (CES and Stacking  
with Logistic Regression, Random Forest and Naive Bayes) 
ensembles produce ∆F

max
>0 for every GO term tested in the 

small, medium and large categories (from left (a) to right (c) in 
Figure 2). This trend is expected, since the availability of more 
positively annotated genes in the larger GO terms enhances 
the ability of the ensembles, especially the supervised ones, 
to improve PFP performance. Due to the same reason of more 
training data, the variability of PFP performance for the large 
terms, represented by the widths of the boxes and whiskers, is  
smaller, illustrating increased robustness of the ensembles.

To analyze these results in further detail and derive reliable 
conclusions from them, we used Friedman’s and Nemenyi’s 
tests to statistically assess the ∆F

max
 values shown in Figure 2.  

Figure 3 shows the results of these tests visualized as Critical 
Difference (CD) diagrams for the three categories of GO terms 
shown in Figure 2A–C, as well as all of them taken together 
(Figure 2D). These results show that several heterogeneous 
ensemble methods, such as LR.S, NB.S, Mean, RF.S, CES and  
SGD.S, performed better than the respective best base  
classifier in terms of their average rank27. In contrast, KNN.S 
and DT.S performed worse than the best base classifier for  
each category of GO terms considered.

A consistent observation from Figure 3 is that Stacking using 
Logistic Regression (LR.S) performed the best among all the 
tested predictors (leftmost entry in the CD diagrams) regardless 
of the GO term category considered. It performed statistically 
equivalently with NB.S and CES for the small (Figure 3A) and 
large (Figure 3C) GO terms respectively, statistically confirm-
ing the observations made from Figure 2. In particular, LR.S  
exclusively performed the best among all the predictors over all 
the GO terms examined, consistent with its good performance 
over a limited number of GO terms in our previous work7. 
Thus, we further analyzed the performance of this predictor  
across the hierarchical structure of the Gene Ontology.

Performance of Stacking using Logistic Regression (LR.S) 
across the GO hierarchy
GO terms are not a flat set of labels, but are rather organized in  
hierarchical ontologies structured as directed acyclic graphs 
(DAGs)5,6. Terms vary in their depth, or level, with deeper terms 
representing more specific functions as compared to those 
at shallower levels. Using the definition of the level of a GO 
term as the length of the shortest path to it from the root of the 
hierarchy, implemented in the GOATOOLS python package 
(0.8.4)32, we observed that the levels of the terms in our dataset 
varied between 1 and 8 (Figure 4(A)). In terms of the number of 
genes annotated, as expected, most of the annotations are to the  

Figure 2. Boxplots denoting the distributions of the heterogeneous ensembles’ PFP performance compared to that of the best base 
classifier for each GO term. The Y-axis shows all heterogeneous ensembles tested, specifically mean (aggregation), Caruana et al.’s 
ensemble selection (CES) and 8 stacking methods using different meta-classifiers named here. The X-axis denotes the difference between 
the Fmax of each heterogeneous ensemble and the best base classifier for each GO term (∆Fmax), which are categorized into (a) 152 small, 
(b) 71 medium and (c) 54 large GO terms with 200-500, 500-1000 and over 1000 annotated sequences in our dataset (Table 1). The broken 
vertical red line in each subplot represents ∆Fmax=0.
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Figure 3. Critical Difference (CD) diagrams showing the results of a statistical comparison of the performance of all the heterogeneous 
ensemble methods shown in Figure 2 and the best base classifier for each GO term, conducted using Friedman and Nemenyi’s 
tests27. In these diagrams, PFP methods, represented by vertical+horizontal lines, are displayed from left to right in terms of the average rank 
obtained by their resultant models for each GO term included. The groups of methods producing statistically equivalent performance are 
connected by horizontal lines. (A)–(C) show the CD diagrams for the three categories of GO terms shown in Figure 2, while (D) shows the 
one for all the 277 GO terms considered in this study. The scmamp R package31 was used to perform the Friedman and Nemenyi’s tests and 
plot the CD diagrams. Meta-classifiers used within stacking are denoted by their commonly used acronyms, e.g. LR for Logistic Regression, 
appended with “.S”.
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shallower GO terms and only a small number to the deeper ones 
(Figure 4(B)).

We analyzed the ability of LR.S to predict annotations to 
these terms, measured in terms of F

max
, at different levels  

(Figure 4(C)). The performance is reasonably high at level 
1, but decreases gradually until level 6 due to fewer annota-
tions available for training the base classifiers and ensembles  
(Figure 4(B)). The performance improves slightly at levels 7 and 
8, likely due to the increased specificity of the corresponding  
terms and thus better signal in the corresponding training data.

Finally, we analyzed how LR.S’s performance compared with 
that of the best classifier for the tested GO terms at differ-
ent levels of the hierarchy. For this, we calculated and plotted 
in Figure 4(D) the same ∆F

max
 measure shown in Figure 2, 

this time categorized by levels. The results in Figure 4(D) 
show that ∆F

max
 increases overall for GO terms at increasingly  

deeper levels in the hierarchy. The increases are statistically  
significant (Wilcoxon rank-sign test p-value<0.05) at levels 
1–7, although not significant (p-value=0.17) for only two terms 
at level 8 (Figure 4(A)). These results indicate the benefit het-
erogeneous ensembles, specifically LR.S, can provide for deeper 
GO terms with fewer annotations where individual predictors  
may not be effective.

Discussion
Owing to the diversity of available data types and computational 
methodologies, a variety of methods have been proposed for 
protein function prediction (PFP)1,2. CAFA3,4 and other large-
scale assessment efforts demonstrated that there is no ideal 
method for predicting different types of functions. In this paper, 

Figure 4. Performance of Logistic Regression (LR.S) for terms at different levels of the GO hierarchy. (A) and (B) show the distributions of 
the number of GO terms and the number of genes annotated to these terms at different levels respectively. (C) and (D) show the distributions of 
LR.S’s Fmax scores and their differences from the corresponding scores of the best classifier (∆Fmax) for these GO terms at the various levels.
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we have demonstrated a potential approach to address this prob-
lem, namely assimilating individual methods/predictors into  
heterogeneous ensembles that may be more robust, generalizable  
and predictive across functions. Although we had provided 
preliminary results supporting this approach in our previous 
work7, those results were limited to predicting annota-
tions to only three GO terms. In this paper, we report the first  
comprehensive and large-scale assessment of protein function  
prediction using heterogeneous ensembles. Specifically, using 
a data set of over 60,000 bacterial proteins annotated to almost 
300 GO terms, we assessed how the mean aggregation, CES and  
stacking using multiple meta-classifiers performed for PFP.

Several of the tested heterogeneous ensembles performed  
better than the best base/individual predictor for many of the GO 
terms examined. In particular, the performance improvements  
obtained by heterogeneous ensembles generally increased 
with more annotations available for a given GO term, i.e. its 
size, which can be expected due to the larger amount of more  
positive data available for training the base predictors and  
ensembles.

A rigorous statistical comparison of all the heterogeneous 
ensembles and best base predictors tested over different catego-
ries of GO terms based on their sizes reaffirmed the effective 
performance of ensembles for PFP. In particular, Stacking using 
Logistic Regression (LR.S) was consistently the best-performing 
ensemble method across all the GO term categories, a finding 
consistent with our earlier work7. The effectiveness of LR.S 
can be attributed to the simplicity of the logistic regression  
function, which can help control overfitting at the meta-learning 
level during stacking. This effectiveness was also reflected in 
our observation that LR.S’s is increasingly more accurately  
predictive for GO terms deeper in the hierarchy, for which the 
small number of annotations available may adversely affect  
individual predictors. Overall, our study and results demonstrate 
the potential of heterogeneous ensembles to advance protein 
function prediction on top of the progress in individual  
predictors already being reported in CAFA3,4 and other exercises.

A key feature of our work was the effective utilization of high-
performance computing (HPC) to enable efficient large-scale 
PFP. Specifically, using a large number processors in a sizeable 
HPC cluster, we successfully built and evaluated heterogene-
ous ensembles for over 60,000 bacterial proteins annotated to 
almost 300 GO terms in under 48 hours. While this increase  
in efficiency is already appreciable, it can be improved further by 
utilizing more parallelized formulations of the process, such as 
using parallel implementations of base classification methods33 
instead of the serial versions used in this work.

Although the results of our study are encouraging, they were 
derived using data from only 19 pathogenic species due to 
our group’s general interest in PFP to better understand and  
predict annotated and unannotated pathogenicity in the context 
of clinically relevant bacteria. The inclusion of a larger number 
of and more diverse species, both prokaryotic and eukaryotic, in 
this evaluation can help assess how well our methods generalize 
to other species. The same can be said for including other types  

of data as well, such as the gene expression profiles used in our 
previous work7.

We also only used normalized k-mer frequencies derived from 
amino acid sequences to represent proteins. This could be 
extended to test other representations such as short linear motifs 
(SLiMs)34, hidden Markov models (HMMs)35 and learned protein 
embeddings36. Moreover, regardless of the representation, 
another potential issue is that highly conserved and thus  
similar sequences across the 19 species tested in this study might 
be separated into both the training and test sets, which may 
result in an overestimation of prediction performance. Though  
UniProt controls for within species redundancy, it does not 
remove redundancy between species, an issue also true for 
our dataset. To address this issue, non-redundant versions  
of UniProt, such as UniRef100 or UniRef9020, could be used 
to design more representative training and test sets. How-
ever, since the same prediction and evaluation process is used 
throughout our study, this issue should not adversely affect the 
fairness of the comparison between the performance of base  
predictors and heterogeneous ensembles.

Finally, in this study, we considered GO terms as independ-
ent units of protein function, but they are actually related 
because of their organization in the hierarchical structure of 
GO. Information from ancestors and closely related siblings 
in the hierarchy may provide useful information for protein 
function prediction, including through heterogeneous ensem-
bles. Previous work has utilized this information for advancing 
individual and ensemble PFP algorithms37–39, and similar  
ideas can be used to improve heterogeneous ensembles as well.
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This paper investigates the potential of heterogeneous ensembles for protein function prediction by
quantitatively comparing several classical base classifiers and ensembles on them. This investigative
study is interesting, innovative and informative for future study on protein function prediction. This
manuscript is clearly presented, well designed and organized. This investigation can be further improved
in the following aspects:

The used data are only Amino Acid sequences, will the results and conclusions be changed when
other types of data are used and integrated? The heterogeneous ensembles are intended for
heterogeneous data types.

The considered GO terms (annotated to 200-300 proteins) are quite small, compared with the
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2.  

3.  

4.  

The considered GO terms (annotated to 200-300 proteins) are quite small, compared with the
large GO terms space, more specific GO terms (annotated to <200 and >=10 proteins) should be
tested. PFP is an imbalanced function prediction problem.
Smin is another more stringent evaluation metric in CAFA, and it refers to GO hierarchy when
measuring the performance. This metric should be additionally used to quantify the performance of
PFP.
There are some classifier ensemble based PFP solutions omitted. They should be cited and
acknowledged.
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