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machinery of wheat mitochondria

David Choury, Jean-Claude Farré, Xavier Jordana' and Alejandro Araya*

Laboratoire de Réplication et Expression des Génomes Eucaryotes et Rétroviraux, UMR 5097, Centre National de
la Recherche Scientifique and Université Victor Segalen-Bordeaux Il 146, rue Leo Saignat 33076 Bordeaux Cedex,
France and 'Departamento de Genética Molecular y Microbiologia, Facultad de Ciencias Bioldgicas, Pontificia
Universidad Catdlica de Chile, Casilla 114-D, Santiago, Chile

Received October 6, 2005; Revised November 16, 2005; Accepted November 28, 2005

ABSTRACT

The complex gene expression mechanisms that
occur in plant mitochondria, such as RNA editing
and splicing, are not yet well understood. RNA edit-
ing in higher plant mitochondria is a highly specific
process which modifies mRNA sequences by C-to-U
conversions. It has been suggested that in some
cases this process is required for splicing. Here, we
use an experimental model based on the introduction
of DNA into isolated mitochondria by electropora-
tion to study organellar gene expression events.
Our aim was to compare processing and editing of
potato small ribosomal protein 10 gene (rps10) tran-
scripts in heterologous (wheat mitochondria) and
homologous (potato mitochondria) contexts. rps10
is a suitable model because it contains a group Il
intron, is absent in wheat mitochondria but is actively
expressed in potato mitochondria, where transcripts
are spliced and undergo five C-to-U editing events.
For this purpose, conditions for electroporating isol-
ated potato mitochondria were established. rps10
was placed under the control of either potato or
wheat cox2 promoters. We found that rps70 was
only transcribed under the control of a cognate pro-
moter. In wheat mitochondria, rps70 transcripts were
neither spliced nor edited while they are correctly
processed in potato mitochondria. Interestingly, a
wheat editing site grafted into rps70 was not recog-
nized by wheat mitochondria but was correctly edited
in potato mitochondria. Taken together, these results

suggest that editing might occur only when the
transcripts are engaged in processing and that they
would not be available to editing factors outside of a
putative RNA maturation machinery complex.

INTRODUCTION

Gene expression in plant mitochondria is a complex process
involving multiple steps such as transcription, cis- and trans-
splicing, RNA trimming and RNA editing on the way to
translation (1). RNA editing has been found in a variety of
organisms and occurs through different mechanisms such as
insertion or deletion of nucleotides, or base conversions [for
details see reference (2)]. In higher plant organelles, RNA
editing is an important post-transcriptional event characterized
by C-to-U changes via a deamination mechanism (3-5). In
Arabidopsis thaliana 456 C-to-U editing events have been
described (6). RNA editing occurs mostly in the coding
regions which alter the identity of the encoded amino acid,
but some editing events occur in highly structured regions of
introns (7,8). Like other maturation processes, RNA editing is
an essential post-transcriptional event in plant mitochondrial
gene expression (9-11) required for the synthesis of functional
proteins (12,13).

The introduction of foreign DNA into isolated mitochondria
is a novel experimental model which has provided important
information on RNA editing and RNA splicing enabling the
use of a site-directed mutagenesis approach (14,15). Using a
cognate cox2 chimeric gene construct, the cis-recognition ele-
ments required for plant mitochondria RNA editing have been
determined (16,17). Using the same approach, Staudinger and
Kempken (18) have reported that transcripts from A.thaliana

*To whom correspondence should be addressed. Tel: +33 5 57 57 17 46; Fax: +33 5 57 57 17 66; Email: Alexandre.Araya@reger.u-bordeaux2.fr
Present address: Jean-Claude Farré, Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92093 USA

© The Author 2005. Published by Oxford University Press. All rights reserved.

The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access
version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press
are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but
only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions @oxfordjournals.org



cox2, but not Sorghum bicolor atp6, are edited when the genes
are introduced into maize mitochondria.

Interestingly, higher plant mitochondrial genomes differ
in their gene contents due to an evolutionary information
transfer from the organelle to the nucleus (19). Of particular
interest is the situation of the small ribosomal protein 10 gene
(rps10), a group II intron-bearing gene which is encoded in
Solanum tuberosum mitochondrial DNA but is absent
from the wheat mitochondrial genome (20). Higher plant mito-
chondria contain group II introns either in cis- or trans-
configuration (1) which can be folded in a characteristic
secondary structure (21). Intron removal in plant mitochon-
drial mRNAs is not well documented because such introns are
unable to self-splice. Previously, we described that electro-
porated cox2 constructs were a good model for the study of
the splicing process. Using this model, we found that editing
and splicing of cox2 transcripts were not linked in wheat
mitochondria (15).

To challenge the ability of mitochondrial gene expression
machinery to recognize genetic information which has been
lost during evolution, we decided to introduce the S.tuberosum
non-cognate rps/0 gene into wheat mitochondria. Five C
residues are changed to U in potato mitochondria rps/0 tran-
scripts by editing. Two of them have been postulated as being
necessary for acquisition of a proper secondary and/or tertiary
structure for splicing. To test this hypothesis, it was necessary
to set up the conditions for electroporation of foreign
DNA into S.tuberosum mitochondria. Here, we show that a
potato rps/0 construct is transcribed when introduced into
wheat mitochondria, but transcripts are not recognized by
the post-transcriptional processing machinery. In contrast, a
rpsl0 construct is correctly expressed and processed in cog-
nate potato mitochondria. Moreover, we present evidence that
transcript editing might be linked to overall RNA processing.
This is the first report on DNA electroporation into potato
mitochondria.

MATERIALS AND METHODS
Plasmids

All plasmids used in this study are based on the previously
described pCOXII vector (14). An Nsil restriction site was
introduced at the initiation codon of the wheat cox2 open
reading frame (ORF). Then, Nsil was used in combination
with a Spel restriction site present in the original vector
after the stop codon, to produce the chimeric vectors.
S.tuberosum cox2 gene, including a 727 bp non-coding
upstream region, was isolated by PCR from total DNA
using the primer A designed from partial sequences reported
by Ldessl et al. (22), accession no. AF096321, containing the
Kpnl restriction sequence, and primer B derived from Triticum
timopheevi cox2 (AF336134). A fragment of 2888 bp was
obtained and cloned on pGEM-T vector. The complete
sequence of the S.tuberosum cox2 was determined (accession
no. DQ18064). To generate the plasmid pCOXIISt containing
the S.tuberosum cox2 gene, a Kpnl/Spel fragment containing
the 727 bp upstream region and the complete coding region
was used to replace the wheat gene from pCOXII. As for
pCOXII, a Nsil site was inserted at the ATG start codon
and a 23 bp fragment was inserted at position —20. This
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23 bp insertion provides a specific sequence allowing isolation
of potato cox2 transcripts originating from the introduced
DNA by RT-PCR. The chimeric wheat/potato cox2 gene
was constructed by replacing 727 bp Kpnl/Nsil promoter
sequence from pCOXIISt with the 880 bp wheat upstream
region from pCOXII.

The vectors pRPS10W and the pRPS10St derivative, con-
taining wheat and potato cox2 promoters, respectively, were
constructed by inserting the 1178 bp rps/0 sequence contain-
ing two exons separated by a 777 bp intronic sequence
[(23), accession no. X74826]. The coding region was isolated
from total S.tuberosum DNA by PCR using primers D1
and D2 containing the restriction sites Nsil and Spel,
respectively. The fragment Nsil/Spel was purified and cloned
into pCOXII and pCOXIISt, replacing the respective cox2
coding regions.

Since all vectors used here were based on pCOXII, they
contain the downstream region from the wheat cob gene
(Ir-cob) (accession no. AF337547) (14). This sequence, com-
bined with the 23 bp upstream insert sequence served to dis-
tinguish, using primers la and 1b, foreign from endogenous
transcripts. All mutants were obtained using QuickChange®
Site-Directed Mutagenesis kit (Stratagene). PCR product
purifications were carried out with the Wizard® Clean-Up
System (Promega).

PCR primers used

Oligonucleotides sequences are in 5’ to 3’ orientation. (1a),
GCGGTGCAGTCATACAGATCTGC; (1b), TATCCAG-
ATTTGGTACCAAAC; (2a), GCAGTCATACAGATCTG-
CCAAAG; (2b), AGATTTGGTACCAAACCCGGG; (A),
TATAGGTACCTCTCAGGTGTCAAAGTGTGGATTT;
(B), TATAACTAGTTTAAGCTTCCCCG; (D1), TATA-
ATGCATAGACAAAGGAGAGCACTTA; (D2), TATA-
ACTAGTTCAGGAAAGGGTCAACGCAA. Restriction
sites are underlined.

Mutagenesis primers (only sense primers
in 5'-3' orientation are indicated)

Single C2, C3 and C2+C3 double mutant plasmids were con-
structed with primers (C2) AAGAAGTTCTTTTGGTTA-
AAACGCC and (C3) CGCCGTGCGACTTGGAGGACA-
TAAG. Nsil-pCOXII: GGAAATCCAATGCATCTTCGTT-
CATT and Nsil-pCOXIISt: CCAAACCAAATGCATGT-
TCTAGAATG. Construct pCOXIISt containing a 23 nt
insertion in the promoter region, was carried out into two
consecutive insertions using primers: TGGGGGGAGCA-
GAGCAGTGCGGTGCAGTCACAAAGAATGAACCAA-
ACC and GCAGTGCGGTGCAGTCATACAGATCTGC-
CAAAGAATGAACCAAACC. For constructs MA and
MAB containing the wheat cox2 C259 editing site, two
consecutive insertions were carried out using primers:
GGAAGATTGGATTACTATCGAAATTGCCCTGAAT-
CA and TACTATCGAAATTATTCGGACCATGCCCT-
GAATCA. For ME6 and MEG6bD constructs, primers CCG-
CGAGGAATCAACTACTATCGAAATTATTGCCGGT-
GCTGAC and CAACTACTATCGAAATTATTCGGAC-
CATATTGCCGGTGCTGAC were used. Inserted nucle-
otides are underlined and the modified residues are
indicated in bold.




7060 Nucleic Acids Research, 2005, Vol. 33, No. 22

Mitochondria purification

S.tuberosum cv. Rosevalt tubers and T.aestivum var Fortal
seeds were used. Potato mitochondria were prepared from
2 kg of tubers in batches of 200 g with 200 ml of a homo-
genization buffer containing 0.4 M mannitol, 25 mM MOPS
(pH 7.8), 1 mM EGTA, 8 mM cysteine and 1 mg/ml fatty acid-
free BSA. Homogenization was carried out for 15 s in a
Waring blendor at full speed. Homogenate was centrifuged
in a Sorvall GSA rotor at 1500 g for 10 min at 4°C. Supernatant
was centrifuged in a GSA rotor at 12 000 g for 15 min. The
mitochondrial pellet was resuspended in 50 ml of homogen-
ization buffer and centrifuged at 1500 g. The supernatant was
centrifuged in a Sorvall SS-34 rotor at 15 000 g for 10 min, the
pellet was resuspended in 12 ml of homogenization buffer
and mitochondria were purified by centrifugation on a
sucrose gradient essentially as described for wheat embryo
mitochondria (14).

Electroporation

Electrotransfer experiments were carried out with 1 mg of
purified wheat embryo or potato tuber mitochondria in 50 pl
of 0.33 M sucrose and 1 |g of recombinant plasmid as
described (14). The electroporated mitochondria were incub-
ated for 18 h at 25°C, then recovered by centrifugation in a
Sigma N° 12024 rotor (Sigma 1K15 refrigerated centrifuge) at
15 000 g for 15 min at 4°C. In the case of potato mitochondria
the incubation mixture was supplemented with 1 mg/ml of
fatty acid-free BSA. RNA was purified with 200 ul of
TRIzol™ reagent (Gibco-BRL) according to the supplier’s
protocol.

DNAse I protection assay and DNA purification

After electroporation and centrifugation, the mitochondrial
pellet was resuspended in 100 ul of buffer [10 mM Tris—
HCI (pH 7.5), 2 mM magnesium acetate and 0.33 M sucrose]
containing 60 U of DNase I (Gibco-BRL) and incubated for 1 h
at room temperature. The DNase reaction was stopped by
adding 4 pl of 0.5 M EDTA and then heating for 10 min at
65°C. Mitochondria were incubated with 100 g of Proteinase
K (Merck) for 4 h at 37°C. One microliter of 20% SDS was
added to achieve mitochondrial lysis and the DNA was extrac-
ted with phenol/chloroform, precipitated with 0.1 vol of 3 M
Sodium Acetate (pH 5.2), 3 vol of 100% ethanol and 100 ng
of carrier yeast tRNA and left overnight at —20°C. After
centrifugation, the DNA pellet was resuspended in TE
buffer [10 mM Tris—HCI (pH 8) and 1 mM EDTA].

RT-PCR

RNA (1 pg) was treated with 2 U of Amplification grade
DNase I (Promega). cDNA synthesis was performed with
200 U of Superscript II RT using 100 ng of random hexamers.
The PCR were performed with primers la and 1b using
Advantage® 2 Polymerase Mix (Clontech) as follows:
95°C, 1 min; 5 cycles at 95°C for 30 s and 68°C for 1 min;
30 cycles at 95°C for 30 s, 58°C for 30 s and 68°C for 30 s, and
finally 68°C for 1 min. Primers 2a and 2b were used for nested
PCR from 1 pl of the first PCR. No RT-PCR amplification
products were obtained with RNA from non-electroporated
mitochondria.

DNA sequencing

Sequence analyses were performed directly on the RT-PCR
product using an automatic DNA sequencing equipment with
the BigDye® Terminator Cycle Sequencing Kit (Applied
Biosystem).

RESULTS

S.tuberosum rps10 transcripts are not processed in
wheat mitochondria

The S.tuberosum rpsl0 construct under control of a wheat
cox2 promoter (Figure 1A) was incorporated into purified
wheat mitochondria by electroporation as indicated in
Materials and Methods. After electroporation and incubation
in expression medium, mitochondrial RNA was extracted and
analysed by RT-PCR. The primers used allowed detection of
the transcripts generated by the constructs introduced and
excluded any product from endogenous cox2 (or rpsi0 in
the potato system). Two bands of 1204 and 427 bp were

A rps10 Ir-cob
> -
exon | T e
A Ac3 A A
Cl C2 C4 C5
B rps10  cox2

C ca C2 C3

vaaCeac  vuuCecu  acuCaca

I\

i i

\ J '\J" ||I
Wl ( LV
A A
C4 C5 C77
cuuCaca cauCuca

cuuCeaa

W Lol I

Wl O

!

A A A

Figure 1. S.tuberosum rpsl0 gene expression in electroporated wheat
mitochondria. (A) Schematic representation of the pPRPS10W vector. Potato
rpsi0is under control of T.aestivum cox2 promoter. Horizontal arrows indicate
the position of primers 1a and 1b used for specific PCR cDNA amplification.
The same regions are present in all vectors used in this work. Vertical arrows
indicate edited residues in potato 7ps/0 RNA. (B) Agarose gel electrophoresis
of RT-PCR products. Arrows indicate the position and numbers the size (in bp)
of precursor and mature transcripts generated by rps/0 and cox2 vectors. (C)
Panels C1 to CS5 represent the electropherograms of rps/0 cDNA sequences in
the regions normally edited in potato mitochondria. Panel C77 concerns one of
the editing sites analysed in the T.aestivum cox2 transcript in a control experi-
ment performed with pCOXII. Arrowheads signal editing target residues. In
RT-PCR experiments, controls without the reverse transcription step were
systematically performed and are indicated as RT(—) in all figures.




Figure 2. Gene expression analysis of C2 and C3 single and double rps/0
mutants introduced into wheat mitochondria. Mutants were obtained by chan-
ging to T two C residues that are edited in potato mitochondria (23). These
mutants and the control rps/0 construct (pRPS10W) were introduced into
wheat mitochondria and analysed as described in Figure 1. The expected
positions and sizes (in bp) of precursors and mature transcripts are shown for
rps10 and cox2.

expected from precursor and mature 7ps/0 mRNAs, respect-
ively. Only precursor rps/0 molecules were detected
(Figure 1B). As a control, a cognate cox2 construct (16)
was used. In this case, the 2048 and 827 bp RT-PCR bands
representing the precursor and spliced cox2 products, respect-
ively were observed (Figure 1B). In all cases, the PCR bands
actually represent transcription products since when PCR was
performed without the RT step we observed no amplification
products.

Previously, five C residues, two in exon 1, one in the intron
and two in exon 2 have been reported to be changed to U by
editing in potato mitochondria (23). To determine if the non-
cognate transcript could be recognized by the wheat RNA
editing machinery, the 1204 bp RT-PCR product was
sequenced. While wheat cox2 editing sites were correctly
edited in control as expected (Figure 1C, only site C77 is
shown), all five editable residues in potato rps/0 transcript
remain unchanged. cox2 C77 editing sites are identical in
potato and wheat.

Failure of rps10 transcript splicing in wheat
mitochondria is not linked to the absence of editing

It has been suggested that residues C2 and C3 participate in the
secondary structure of the intron necessary for splicing (23). A
possible explanation to the failure observed in precursor rpsi0
splicing could be that the absence of edition of C2 and C3
prevent the intron from organizing itself in a catalytically
competent conformation. To test this hypothesis, single C2
and C3 mutants and a C2+C3 double mutant were constructed
by changing the C residues to T. Neither single nor double
mutants were able to undergo splicing (Figure 2).

Electroporation of S.tuberosum mitochondria

Since two important post-transcriptional processes, RNA
editing and splicing, were inoperative when S.tuberosum
rpsl0 was expressed in wheat mitochondria, we decided to
verify whether the negative results were inherent to the rps/0
chimeric constructs or due to the lack of trans-recognition
elements in wheat mitochondria. For this purpose, it was
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Figure 3. DNAse I protection experiments. Purified potato tuber mitochondria
were electroporated in the presence of 1 pg of pCOXIISt plasmid at electric
field strengths ranging from 0 to 20 kV/cm. To eliminate the non-internalized
vector, mitochondria were treated with DNAse I. DNA was extracted and the
target sequence was revealed by PCR using primers la and 1b. Panel A, agarose
gel electrophoresis of PCR products. Panel B, the ethidium bromide UV fluor-
escence signal from the gel electrophoresis experiment in panel A was recorded
with a CCD video camera and plotted as arbitrary units using the NIH Image
software.

necessary to set up an electroporation protocol adapted to
S.tuberosum mitochondria. Purified organelles were prepared
from potato tubers as indicated in Materials and Methods.
Electric pulses in the range between 8 and 20 kV were per-
formed. Internalization of exogenous DNA was measured by
DNAse protection assays (14). Potato mitochondria show
a broad range response with a maximum around 13 kV
(Figure 3). This voltage setting was therefore used for further
experiments.

S.tuberosum mitochondria does not recognize
the wheat cox2 promoter

To ascertain the ability of electroporated mitochondria to per-
form expression of the exogenous gene construct, we used a
plasmid containing the potato cox2 gene controlled either by
T.aestivum or S.tuberosum promoters. As shown in Figure 4,
the construct containing the wheat or potato promoters was
transcribed only in cognate mitochondria. In potato, the
mature product is barely detectable. In contrast to wheat mito-
chondria, the 821 nt mature transcript was only detected when
the electroporated potato mitochondria were incubated in the
presence of fatty acid-free BSA.

A cognate rpsI10 construct is correctly expressed,
edited and processed in potato mitochondria

The construct expressing potato rps/0 under the control
of potato cox2 promoter was introduced into S.tuberosum
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Figure 4. Gene expression analysis of S.tuberosum cox2 under the control of T .aestivum (Te) and S.tuberosum (St) promoters. RT-PCR products were analysed by
agarose gel electrophoresis and revealed with ethidium bromide stain. Panel A, electroporation of potato mitochondria. Panel B, electroporation of wheat

mitochondria.
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Figure 5. Processing and editing of S.tuberosum rpsi0 transcripts in cognate
mitochondria. (A) Agarose gel electrophoresis of RT-PCR products of elec-
troporated potato mitochondria. The sizes of precursor and spliced products are
indicated. (B) Sequence analysis of the regions containing the C1, C2, C4 and
CS5 editing sites in mature transcripts. Site C3, present in the intron, is lost after
splicing. Arrowheads indicate the target residue. In sequences, N indicates a
mixture of C and U residues corresponding to unedited and edited transcripts,
respectively.

isolated mitochondria. After incubation, the precursor and
mature transcripts were amplified by RT-PCR (Figure 5A)
and sequenced. As shown in Figure 5B, the four editing
sites C1, C2, C4 and C5, described previously in endogenous
transcripts, were found edited in mature mRNA. The
presence of spliced molecules containing unedited residues
(Figure 5B) indicates that rps/0 transcripts could be spliced
before editing. To confirm this observation, the PCR product
was cloned and sequenced. One half of the individual clones
were found edited at sites C1 and C2; 65% were edited at site
C4 and 25% were edited at site C5.

A cognate editing site in a non-native context is not
recognized by wheat mitochondria but is recognized
in heterologous mitochondria

To test whether wheat mitochondria are able to edit a cognate
site. when placed in the context of a potato transcript, we
introduced the C259 —16/+6 region from wheat cox2 into
potato rps/0 exon 1 or intron (Figure 6A, construct MA

A
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Figure 6. Analysis of RNA editing in C259 insertion mutants. (A) Diagram of
potato rps/0 mutants bearing an inserted wheat editing site. The positions where
the 23 nt editing site was inserted and the promoters used are indicated. CM is a
wheat cox2 mutant containing the C259 editing site inserted at position 113 in
cox2 exon 2 (17) (B) Gene expression analysis of rps/0 wild-type, insertion
mutants and wheat CM control after electroporation of wheat mitochondria.
(C) Gene expression analysis of rps/0 wild-type and insertion mutants after
electroporation of potato mitochondria. (D) Sequence analysis of the inserted
C259 region in RT-PCR products from MA and ME6 vectors electroporated in
wheat mitochondria. To compare editing status of the inserted C259 site at the
same maturation stage, only the sequence from CM precursor transcript is
shown. (E) Sequence analysis of RT-PCR products of MADb transcript from
potato electroporated mitochondria.

and MEG6, respectively). As reported previously, the 23 nt
region forming the C259 editing site from wheat cox2 was
efficiently edited when grafted into a different context in a
wheat transcript (17). Wild-type rpsi0 (pRPS10W) and the



MA and ME6 mutants were expressed in wheat mitochondria
but no splicing was observed (Figure 6B). Unexpectedly,
wheat mitochondria appear to be unable to edit the cognate
C259 site when the —16/4-6 region is located on a potato rps/0
precursor. The control CM construct, containing the C259 site
grafted in a different context but in its own cox2 gene, was
expressed, spliced and edited as expected [(17), Figure 6B and
D]. To compare the editing status of RNAs at the same stage of
processing, the editing status of the inserted C259 site in pre-
cursor cox2 transcripts is shown (Figure 6D). The analogous
MAD and MEG6b constructs, containing the S.tuberosum cox2
promoter and the C259 region inserted into rps/0 exon 1 and
intron were used to electroporate potato mitochondria. As
shown in Figure 6C, MAb and MEG6b were expressed and
spliced at the same level as the control in the homologous
context, indicating that insertion does not affect the splicing
process. Interestingly, while C259 insertion was not recog-
nized in wheat mitochondria (Figure 6D), the potato RNA
editing machinery edited the inserted C259 region
(Figure 6E). The C259 region inserted in the rps/0 intron
(construct ME6b) was also edited, although at a very low
level, showing that editing may precede intron removal
(not shown).

DISCUSSION

Plant mitochondria undergo complex expression mechanisms
which are poorly understood. Most studies are based on ana-
lysis of in vivo mature or intermediate gene products giving
clues on possible mechanisms and suggesting pathways oper-
ating in gene expression. Direct tests using in vitro approaches
have been fruitful (4,5,24), but are hampered by the difficulty
of obtaining active mitochondrial extracts. Previously, we
devised an experimental model based on electroporation of
isolated mitochondria that allows us to test gene expression of
wild-type and mutant genes. This approach has been very
useful in elucidating the process of RNA maturation in
plant mitochondria, in particular splicing and editing
(14,15). The aim of this work was to analyse different gene
expression events when a foreign gene was expressed in a
heterologous context. rps/0 was chosen precisely because
this genetic information is lacking in wheat mitochondria
but is active in potato mitochondria (20,23,25). Moreover,
rps10 transcripts undergo five C-to-U editing events in potato
mitochondria and rps/0 contains an intron, thus facilitating the
analysis of post-transcriptional processing.

To best evaluate the expression of 7ps/0 in the non-cognate
mitochondria, it was necessary to set up electroporation con-
ditions for introducing foreign DNA into S.tuberosum mito-
chondria. Potato tuber mitochondria were able to incorporate
DNA essentially under the same conditions described for
wheat embryo organelles (14), except that the optimal voltage
range was larger. A major difference to wheat was that isolated
potato mitochondria were viable for 3—4 h as measured by
oxygen consumption (data not shown). Thus, to observe tran-
script maturation after electroporation the incubation mixture
needed to be supplemented with fatty acid-free BSA (see
Figure 4). This behaviour probably reflects the uncoupling
of oxidative phosphorylation by fatty acids during incubation
of potato mitochondria (26). In fact, previously we found that
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proper gene expression in isolated mitochondria requires a
functional organelle able to generate ATP from ADP and
succinate (14).

An interesting observation was that neither the wheat nor
the potato cox2 promoters were recognized in a heterologous
context (Figure 4A and B). This situation might by explained
by the fact that potato and wheat promoter sequences have
no recognizable homologous motifs. Plant mitochondria pro-
moters are characterized by a conserved core CRTA sequence
with differences in the extent and the composition of
sequences around the consensus motif (27,28). While the
transcription initiation site in wheat mitochondria is located
at position —170 (29), the potato promoter has not yet been
described. Transcription may be initiated at numerous sites
suggesting a relaxed promoter recognition by the transcription
machinery (28). However, the lack of crossed recognition of
cox2 promoters in wheat and potato is not a general situation
since the A.thaliana cox2 gene is expressed and spliced when
introduced into maize mitochondria, indicating that the
Arabidopsis gene shares some signals with maize cox2 pro-
moter that are sufficient for transcription (18). The sites
required for transcript initiation have been recently described
in A.thaliana mitochondrial genes (28). Three regions were
described as important for transcription initiation. We found
no such homologous sequences in the potato cox2 upstream
region indicating that the two dicot promoters do not have the
same origin. This in turn may reflect the natural history of this
particular mitochondrial gene evolving in its own context. It
should be mentioned that the presence of a conserved sequence
is not sufficient for expression since a region that acts as
promoter in Arabidopsis, potato and Oenothera is inactive
in vivo in pea (30). Further studies will be required to under-
stand the transcriptional events in plant mitochondria. Elec-
troporation of foreign DNA into isolated mitochondria
provides an interesting functional model, complementary to
in vitro transcription assay, for answering these questions.

The potato rpsI0 gene controlled by a T.aestivum promoter
(Figure 1A) was transcribed as a 1204 nt precursor in wheat
mitochondria, but no traces of mature RNA were observed.
Moreover, the five C residues reported as RNA editing targets
in vivo (23) remain unchanged, indicating that rps/0
transcript was not recognized by the wheat splicing and
editing machinery. A control using the cognate cox2 construct
demonstrates that electroporated organelles were competent
for splicing and editing (Figure 1B and C).

Some editing events occur in highly structured domains of
introns. Because in some cases, editing corrects A-C mispair-
ing improving conformation of the intron, it has been proposed
that the C-to-U change might be necessary for efficient spli-
cing (8,9,23,31). Based on the canonical structure of group II
mitochondrial introns (21), two editing sites, C2 located at the
Intron Binding Site 2 (IBS2) and C3 located in the intron, nine
residues downstream from the end of exon 1 in S.tuberosum
rps10 are of particular interest. It has been predicted that both
edited residues participate in base-pair interactions in the
putative secondary structure. Of particular interest is the
site C3 located in intron domain I (23). This position may
be crucial for splicing as inferred from mutants of a yeast
mitochondrial intron (32). We addressed this question by
introducing rps/0 mutant genes presenting C2, C3 or both
positions in the edited form into mitochondria. As shown in
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Figure 2, transcription was as efficient as for the cognate cox2
construct but neither wild-type rps/0 nor the C-U mutants
underwent splicing. These results clearly demonstrate that
C2 and C3 editing is not sufficient for splicing of rps/0 pre-
cursor in wheat mitochondria and lead us to conclude that
splicing failure is probably linked to the lack of trans-
recognition elements. One may speculate that these trans-
acting factors, for instance nuclear-encoded maturases, were
lost after rpsI0 was transferred to the nucleus in monocots
(20,25). The C-to-U mutants were also tested in potato
mitochondria; no significant differences were detected in
splicing efficiency when compared to the unedited construct
(D. Choury, unpublished data). It should be noted that the lack
of splicing in wheat mitochondria is not a general feature of
potato introns, since the potato cox2 intron is removed effi-
ciently (Figure 4B). This is consistent with the hypothesis that
potato and wheat mitochondria have similar trans-acting fac-
tors for cox2 intron removal.

A possible link between intron removal and editing has been
proposed for splicing of nadle and nad5IIl trans-introns
where domain six may require editing to be structured in a
catalytic competent secondary conformation (8). In rice, fail-
ure of RNA maturation and editing has been correlated with
cytoplasmic male sterile phenotype. In this model, the absence
of the nuclear gene Rf-1 affects B-atp6 RNA cleavage and
editing (33). In organello studies have shown that S.bicolor
atp6-1 gene was transcribed but not edited when introduced
into maize mitochondria (18). However, partially edited
molecules were detected in sorghum-maize atp6 chimeric
transcripts when they included the maize atp6 5'-untranslated
sequence, suggesting that the 5’ non-coding region provides a
structural motif or binding site for a transcript-specific editing
factor (34). Unfortunately, no data on atp6 processing was
reported to determine whether this region is directly involved
in editing or some other maturation event.

Since wheat mitochondria do not have rps/0 encoded in the
mitochondrial genome (20), it was interesting to test whether
wheat mitochondria were able to recognize editing sites which
had been lost during evolution. In other words, whether the
mitochondrial frans-recognition elements are specific for each
site or whether they are operating on a subset of editing sites.
This question is important since to date the factors responsible
for RNA editing in plant mitochondria remain unknown.
Solving this issue may provide clues to uncover such factors.
As described above, the rps/0 transcript was not processed in
wheat but it was correctly spliced in cognate mitochondria
(Figure 5A). Indeed, the mature transcript had identical
exonl and exon2 junction as found in endogenous rpsi0
mRNA (data not shown). More importantly, all editing
sites, C1, C2, C4 and C5 were significantly converted to Us
(Figure 5B). The fact that the four editing sites were found
either edited or unedited in spliced rps/0 mRNA is an indica-
tion that editing does not precede splicing as was previously
found for cox2 in wheat (15).

It may be argued that the absence of splicing precluded
editing. This possibility can be discarded since potato rps/0
precursor mRNA was found to be edited in vivo (23). These
data clearly show that splicing is not required for rpsi0O
editing, similar to previous findings for cox2 mRNA and
also in cox2 mutant derivatives unable to remove the intron
(15). This led us to postulate that the inability of wheat

mitochondria to recognize rps/0 editing sites is likely due
to the fact that wheat mitochondria have lost the editing
trans-recognition elements which become dispensable after
transfer of rps/0 to the nucleus. To test this possibility,
rps10 chimeric plasmids containing editing site C259 from
wheat cox2 inserted either in exonl or the intron were con-
structed. Site C259 is formed by 23 nt corresponding to the
—16/+6 sequence embedding the target C. Previously we
found that this small region could be recognized by the
RNA editing machinery when placed outside of its natural
context (16,17). The wheat C259 editing site in the chimeric
construct was correctly edited by potato mitochondria. This
result is not unexpected since the corresponding region in
endogenous potato cox2 mRNA, which presents two differ-
ences at positions —3 (C instead of A) and —7 (G instead of A),
is edited. Furthermore, these positions were not crucial for
editing of C259 (17). Surprisingly, the C259 editing site graf-
ted in rps/0 was not recognized by the wheat editing
machinery. We cannot exclude the possibility that editing
efficiency in precursor molecules is very low and so is
undetectable when sequencing RT-PCR products representing
a pool of transcripts. However, analysis of the same region in
cox2 precursors indicates that this was not the case since sig-
nificant C-to-U conversion was observed (Figure 6D). These
observations lead us to postulate that editing is occurring only
when the transcript is engaged in post-transcriptional pro-
cessing, suggesting that rps/0 transcripts are not available
to editing factors independently of the RNA maturation
machinery. The fact that the wheat editing site C259 inserted
in chimeric 7ps/0 transcripts was not recognized by wheat
mitochondria is a strong argument for this hypothesis. One
might speculate that in plant mitochondria, transcripts have to
be engaged in a kind of multiprotein processing complex. A
failure to be recognized at some early stage will lead to their
accumulation as unmodified precursors.
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