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Abstract

Background: Surgical procedures in small animal models of heart disease might evoke alterations in cardiac morphology
and function. The aim of this study was to reveal and quantify such potential artificial early or long term effects in vivo,
which might account for a significant bias in basic cardiovascular research, and, therefore, could potentially question the
meaning of respective studies.

Methods: Female Wistar rats (n = 6 per group) were matched for weight and assorted for sham left coronary artery ligation
or control. Cardiac morphology and function was then investigated in vivo by cine magnetic resonance imaging at 7 Tesla 1
and 8 weeks after the surgical procedure. The time course of metabolic and inflammatory blood parameters was
determined in addition.

Results: Compared to healthy controls, rats after sham surgery showed a lower body weight both 1 week (267.5610.6 vs.
317.0611.3 g, n,0.05) and 8 weeks (317.0621.1 vs. 358.7622.4 g, n,0.05) after the intervention. Left and right ventricular
morphology and function were not different in absolute measures in both groups 1 week after surgery. However, there was
a confined difference in several cardiac parameters normalized to the body weight (bw), such as myocardial mass
(2.1960.30/0.8360.13 vs. 1.8560.22/0.7060.07 mg left/right per g bw, p,0.05), or enddiastolic ventricular volume
(1.3160.36/1.2160.31 vs. 1.1460.20/1.0760.17 ml left/right per g bw, p,0.05). Vice versa, after 8 weeks, cardiac masses,
volumes, and output showed a trend for lower values in sham operated rats compared to controls in absolute measures
(782.2657.2/260.2633.2 vs. 805.9684.8/310.4648.5 mg, p,0.05 for left/right ventricular mass), but not normalized to body
weight. Matching these findings, blood testing revealed only minor inflammatory but prolonged metabolic changes after
surgery not related to cardiac disease.

Conclusion: Cardio-thoracic surgical procedures in experimental myocardial infarction cause distinct alterations upon the
global integrity of the organism, which in the long term also induce circumscribed repercussions on cardiac morphology
and function. This impact has to be considered when analyzing data from respective animal studies and transferring these
findings to conditions in patients.
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Introduction

Surgical cardiovascular procedures, such as artificial ligation of

the left anterior descendent artery (LAD) for induction of

experimental myocardial infarction [1][2], or transaortic constric-

tion in rats and mice [3], are widely used and in some cases well

established techniques in basic cardiovascular research. Until

today, thousands of studies have been published investigating

various specific pathophysiological questions in such models. In

particular, widespread use of the mentioned experimental

infarction model in rats and mice has decisively added to a deeper

understanding of many aspects in myocardial ischemic wounding

and healing [4][5][6][7]. Meanwhile, to date the pathophysiolog-

ical determinants of the surgical procedure itself - besides artificial
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coronary occlusion - have not been fully characterized, meaning

that all studies using this model have a risk to bear a bias when

trying to translate the results to the situation in incidental,

inartificial myocardial infarction in animals or humans.

Even though a reference group undergoing surgical sham

procedure is usually used in animal studies to possibly rule out a

potential bias as good as possible - meaning that these animals

undergo the same surgical procedure as those from the infarction

study group besides the final step of coronary artery ligation

[8][9][10] - there is a remaining element of uncertainty regarding

the impact of the surgical manipulations on the findings in this

model. This not only includes direct myocardial wounding by the

ligation, or indirect surgical side effects like blood loss or

inflammation, but additionally relates to damage exerted on the

pericardium which is sectioned during the surgical procedure.

Even though the pericardium is often surgically ligated after the

procedure, it is usually not possible to fully restore its integrity.

This might be a major cause of altered hemodynamics in the short

term, and potentially even cause alterations in cardiac morphology

in the long term. It is noteworthy that accordant surgical side-

effects might not even be limited to the mentioned particular

disease model of permanent myocardial infarction, as several

similar and/or modified small animal models of heart disease use

similar surgical approaches [11][12]. Despite the broad usage of

such animal models in basic and translational research and,

therefore, high indirect implications for the clinic, we are not

aware of a study comprehensively investigating the (side-)effects of

the surgical procedure in experimental myocardial infarction on

cardiac morphology and function in vivo.

The aim of the current study was to reveal potential side-effects

of artificial thoracotomy and pericardiotomy on cardiac integrity,

using cardiac magnetic resonance imaging (MRI) to characterize

both left and right ventricular morphology and function in rats in

vivo. In addition, the time course of metabolic and inflammatory

blood markers was to be investigated. The findings of this study

are intended to further validate the appropriateness of this model

in cardiovascular research, potentially revealing limitations to past

or future studies by experimental proof - and preferably even

quantification - of possible side-effects.

Methods

Animal model
Examinations were performed in adult female Wistar rats

(Charles River, Sulzfeld, Germany) with an average age of 12

weeks. The animals were divided into two groups (sham operated

and untreated control rats, n = 6 per group), which were matched

for body weight and followed up over time. Rats in the sham

group received surgery as follows (Figure 1): Left intercostal

thoracotomy was done after intubation under inhalative anesthesia

(isoflurane); after exposure of the heart, pericardiotomy was

performed and the heart luxated out of the thorax. The left

anterior descending artery was revealed, and a suture applied

around the myocardium surrounding the vessel, leaving the knot

untied. The heart was then luxated back into the thorax, the

pericardium closed as far as possible, and the thorax closed by

suturing the several layers separately. The untreated control rats

did not undergo any surgery or treatment prior to the MRI

investigations.

Magnetic resonance investigations started one week after the

sham operation for detection of potential early side effects, and

were repeated eight weeks after sham surgery to reveal potential

late appearing side effects. The untreated rats were used as

controls at equivalent time points.

All animal work was conducted according to the relevant

national and international guidelines. The experimental protocol

was approved by the local ethics committee of the University of

Wuerzburg and the governmental animal care and use committee

(Regierung von Unterfranken).

Magnetic resonance imaging
Experiments were performed on a Bruker Biospec 70/21 using

a whole body birdcage coil (Bruker Biospin, Ettlingen, Germany)

for transmission and a circular polarized surface coil as receiver on

intubated animals under inhalation anesthesia with isoflurane.

An ECG-triggered fast gradient echo (FLASH) cine sequence

was used [13]. Flip angle was 30–40u, echo time was 1.1 ms, and

repetition time 3.2 ms. We used a field of view of 50 mm650 mm

and an image matrix of 2566256. 16–37 cine frames per heart

cycle were obtained to temporally cover the whole cardiac cycle.

16–18 contiguous ventricular short axis slices of 1 mm thickness

were acquired to spatially acquire the entire heart (Figure 2). The

total acquisition time for one cine sequence was 40–50 s

depending on heart rate. Total heart scan time was approximately

15 min for each animal.

Both ventricles were equally investigated; we chose standard

short axis ventricular multi slice image stacks for quantification of

cardiac morphological and functional parameters as most MRI

studies are left ventricular optimized.

Blood analyses
In addition to the MRI investigations, serial blood analyses were

performed in control and sham operated rats, investigating the

time course of several metabolic and inflammatory blood markers.

To this end, blood was extracted via the tail vein from the animals

at baseline and 1, 4, 7, and 14 days after sham surgery.

Quantitative analyses were then performed using enzyme-linked

immunosorbent assay (ELISA) according to the manufacturer’s

protocol. Metabolic testing included determination of the follow-

ing blood serum parameters: glucose, urea, triglycerides, and

leptin. Inflammatory testing included determination of the

following blood serum parameters: c-reactive protein (CRP),

tumor necrosis factor alpha (TNF), and interleukin 2 (IL-2).

Histology
After completion of the experiments, the rats were euthanized.

The hearts were excised, sliced, fixated, and stained using

Picrosirius Red. Histology of the whole hearts was then performed

to rule out inadvertent small myocardial infarction, which might

Figure 1. Sham surgery situs and survey arrangement. MRI was
performed 1 and 8 weeks after sham surgery.
doi:10.1371/journal.pone.0068275.g001
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have escaped detection in MRI and could potentially tamper the

morphological and functional findings.

Data analysis
Data analysis was done using an operator-interactive threshold

technique (IDL 5.2 Software). Visual analysis was used to

determine the endsystolic and enddiastolic frame for every slice.

Ventricular slice areas were then manually encircled in the

respective frames, and ventricular volumes per slice then

calculated by multiplication of determined area and slice thickness

(Figure 3). Finally, total volumes were determined as the sum of all

slice volumes. Left and right ventricular masses were calculated as

myocardial volume multiplied by the myocardial specific gravity

(1.05 g/cm3). For comparison of sham operated vs. untreated

control animals the following cardiac parameters were included in

the analysis: Left and right ventricular myocardial masses (LVM

and RVM), enddiastolic and endsystolic wall thickness (EDWT

and ESWT), enddiastolic and endsystolic volumes (EDV and

ESV), absolute and percental systolic wall thickening (SWT,

SWT%), stroke volume (SV), ejection fraction (EF), and cardiac

output (CO).

Stroke volume was calculated as the difference between end-

diastolic and end-systolic volumes after summing all slice volumes.

For calculation of cardiac output, stroke volume was multiplied by

heart rate. Ejection fraction was calculated by division of stroke

volume and enddiastolic volume. Comparison of endsystolic and

enddiastolic ventricular masses was used as a parameter to validate

the preciseness of the measurements and postprocessing. Wall

thickness and systolic wall thickening were examined as follows:

Three representative midventricular slices were chosen and left

and right ventricular wall thickness then measured manually in

enddiastolic and endsystolic frames. The right ventricular wall

thickness and thickening was measured only in the lateral part of

the wall, while the left ventricular myocardial thickness was

measured in an anterior, lateral, posterior, and septal segment for

each slice. Mean wall thickening (SWT in total and %) was

calculated for each slice, then overall mean wall thickening was

calculated over the three slices. In addition to the SWT

determination, the cine loops were visually analyzed to detect

not only wall thinning and akinesia, but also potential dyskinesia.

Data analysis was performed by two persons and identical

equipment throughout the whole study to reduce intraobserver

and interobserver variability. To follow convention, papillary

muscles were not included in myocardial masses.

Statistical analysis
SPSS Statistics 19 (IBM, Ehningen, Germany) was used for

statistical analyses. All data are given in mean 6 standard

deviation (SD). In calculated data, error was computed by

Gaussian propagation of uncertainty and taken as the random

error if it was larger than standard deviation. A two-tailed students

t-test for paired group comparison was applied. P,0.05 was

considered statistically significant.

Results

Six animals were included in each group. Mean body weight at

baseline was 29667.4 (sham) and 30166.3 g (control). Sham

surgery was performed successfully in all animals for the sham

group without apparent acute complications.

One week after sham surgery, rats in the sham group showed a

marked decrease in body weight (268610.6 vs. 317611.3 g,

p,0.05) accounting for a weight loss of 228.267.4 g, compared

to an increase in body weight of +16.367.9 g in the control group

Figure 2. Representative full cycle of a cardiac short-axis cine-MRI with 20 frames.
doi:10.1371/journal.pone.0068275.g002
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(Figure 4). Heart rate during MRI was similar in both groups

(279627 vs. 283626 bpm, p = n.s.). No difference in left or right

ventricular wall thickness (1.9560.5/1.060.28 for sham vs.

1.9060.14/0.960.07 mm, p = n.s., in enddiastole for LV/RV

and sham vs. control), or myocardial masses (587.0660.7/

220.6636.6 vs. 587.8673.5/222.1629.0 mg, p = n.s., Figure 5)

could be found. Equally, enddiastolic ventricular volumes

(358.2696.6/323.1682.0 vs. 361.0669.2/339.1656.9 ml, p =

n.s., Figure 6), endsystolic ventricular volumes (79.8622.7/

85.9617.9 vs. 85.6620.3/81.0616.5 ml, p = n.s.), stroke volumes

(278.4699.2/237.1668.3 vs. 275.4650.8/252.1646.6 ml, p =

n.s.), ejection fraction (7864/7364 vs. 7662/7363%, p = n.s.),

and cardiac output (78.6628.7/66.6621.8 vs. 78.2617.5/

71.6615.7 ml/min, p = n.s., Figure 7) were not different in both

groups. Normalized to the body weight, ventricular masses and

enddiastolic volumes were significantly higher in the sham

operated compared to the control group (2.1960.30/0.8360.13

vs. 1.8560.22/0.7060.07 mg myocardium per g body weight,

p,0.05, and 1.3160.36/1.2160.31 vs. 1.1460.20/1.0760.17 ml

ventricular volume per g body weight, p,0.05) 1 week after

surgery. Meanwhile, cardiac output normalized to the body weight

was not statistically different in both groups (0.2960.11/

0.2560.06 vs. 0.2560.05/0.2360.05 ml per min and g body

weight, p = n.s.).

Eight weeks after sham surgery, rats in both groups showed a

(further) increase in body weight compared to week 1 with a trend

for a higher increase in the sham animals (+49.5621.7 vs.

+41.7626.4 g, p = n.s.), even though the resulting mean body

weight still remained significantly lower in the sham operated

group compared to the control group (317621.1 vs. 259633.4 g,

p,0.05) (Figure 4). Compared to rats in the sham operated group,

animals in the control group showed a slightly higher heart rate

(306630 vs. 355629 bpm, p,0.05). At this time point, absolute

values of left and right ventricular masses showed a tendency for

lower values in sham operated vs. control animals (782.2657.2/

260.2633.2 vs. 805.9684.8/310.4648.5 mg, p,0.05 for RV

mass), while the respective indices, normalized to body weight,

were not different (2.4760.24/0.8260.12 vs. 2.2560.32/

0.8660.16 mg myocardium per g body weight, p = n.s.). Equally,

compared to sham operated animals, enddiastolic ventricular

volumes were slightly higher in the control group (480.9646.7/

386.5698.7 vs. 551.1665.3/461.7681.2 ml, p,0.05), while no

significant difference in the normalized values could be seen

(1.5260.18/1.2160.32 vs. 1.5560.23/1.2960.26 ml ventricular

volume per g body weight, p = n.s.). Cardiac output normalized to

the body weight was also not statistically different in both groups,

even though there was a trend for higher respective values in the

control group compared to the shams (0.3660.07/0.2960.11 vs.

0.4060.09/0.3460.10 ml per min and g body weight, p = n.s.). A

complete overview of the MRI results is given in Table 1 for the

left ventricular and Table 2 for the right ventricular data.

Histology after completion of the MR measurements showed no

significant areas of myocardial infarction (defined as scar areas

covering .10% of the left ventricular myocardium) in any of the

sham operated animals.

Blood analyses using ELISA did not show any significant

alterations in CRP, TNF, or IL-2 in the short or long term after

sham surgery. Analyses of metabolic blood parameters showed

normal glucose, but a significant decrease in urea and triglycerides

1 and 4 days after sham surgery, recovering to normal levels 7 days

after surgery (Figure 8). Along with these findings, blood leptin

Figure 3. Illustration of left and right ventricular volumetry and determination of wall thickness and systolic function.
doi:10.1371/journal.pone.0068275.g003

Figure 4. Body weight at baseline, 1 week and 8 weeks after
sham surgery in both groups (mean ± SD). * indicates significant
differences (p,0.05) between the respective groups.
doi:10.1371/journal.pone.0068275.g004
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Figure 5. Left and right ventricular myocardial mass and myocardial mass index 1 week and 8 weeks after sham surgery (mean ±
SD). * indicates significant differences (p,0.05) between the respective groups.
doi:10.1371/journal.pone.0068275.g005

Figure 6. Left and right ventricular enddiastolic volume and enddiastolic volume index normalized to body weight 1 week and 8
weeks after sham surgery (mean ± SD). * indicates significant differences (p,0.05) between the respective groups.
doi:10.1371/journal.pone.0068275.g006
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levels were also diminished in the short, but not long term

(Figure 8).

Discussion

Small animal models of cardiac diseases have been extensively

used in basic cardiovascular research to investigate the patho-

physiology of various medical conditions and subsequent potential

therapeutic approaches. Artificial myocardial infarction by surgi-

cal ligation of the left descending coronary artery is a particularly

popular disease model [1][2], with thousands of studies performed

until then using this specific method or similar variants. However,

the use of such artificial disease models is afflicted with a

substantial risk of biases. First, certain preconditions and

requirements, which are often obligatory for natural development

of certain diseases, might be missing in such artificial disease

models. This includes certain genetic conditions, behavioral

aspects such as nicotine consumption or exercise frequency, but

also underlying or co-morbidities specifically accompanying a

naturally developed disease. Second, artificial procedures under-

taken to provoke a pathological condition strived for might cause

specific side-effects that might directly influence the appearance or

development of a disease. The existence of one or more of these

biases might question the results and meaning of such studies,

which is why a comprehensive understanding of such potential

side effects is desirable.

The current study aimed at a deeper understanding of the

artificially induced pathophysiological aspects and/or side-effects

in the above mentioned small animal model of myocardial

infarction induced by surgical ligation of a coronary artery

excluding the specific effects of coronary artery occlusion itself.

Execution of this particular procedure not only means a

disturbance of global integrity of the organism e.g. by blood loss

or development of a subsequent inflammatory response due to the

surgery. Because the surgical procedure includes a direct,

mechanical intervention at the (epi-)myocardium, the heart’s

integrity might be distinctly disturbed, e.g. by intramyocardial

bleeding or the secondary effects of pericardiotomy/pericardect-

omy. It might be reasonable to suggest that the latter might

substantially alter cardiac hemodynamics particularly regarding

filling of the right ventricle. In order to investigate and quantify

such potential effects we used high field MRI to characterize

development of cardiac morphology and function in vivo over

time after the surgical procedure.

MRI offers exceptional options for exact characterization not

only of the left, but also the right ventricle, and therefore is suitable

to detect even small alterations which might remain undetected by

other imaging modalities like e.g. echocardiography [14]. Mainly

due to its non-invasiveness and excellent soft tissue contrast along

with high spatial and temporal resolution, cardiac MRI has been

established as the gold standard to exactly measure cardiac

functional and morphologic parameters over the last years.

Therefore, it is not surprising that an increasing number of

myocardial infarction-related studies in small animal models

[15][16][17], including several studies of our own research group

[4][8], have used MRI for in vivo evaluation of myocardial

morphology and function in the past and present.

Based on the results of the current study, a main effect of the

sham operation was an acute slight decrease of the animals’ body

weight, presumably as a direct consequence of the surgical

Figure 7. Left and right ventricular cardiac output and cardiac index normalized to body weight 1 week and 8 weeks after sham
surgery (mean ± SD). * indicates significant differences (p,0.05) between the respective groups.
doi:10.1371/journal.pone.0068275.g007
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Table 1. Results overview, left ventricle.

LV Sham 1 week 1, ± SD n = 6 Control 1 week 1, ± SD n = 6 Sham 8 week 8, ± SD n = 6 Control 8 week 8, ± SD n = 6

Body mass (g) 267.5* 10.6 317.0* 11.3 317.0* 21.1 358.7* 33.4

HR (1/min) 279 27 283 26 306* 30 355* 29

LVM (mg) 587.0 60.7 587.8 73.5 782.2 57.2 805.9 84.8

EDWT (mm) 1.95 0.54 1.90 0.14 1.82 0.06 1.92 0.17

ESWT (mm) 3.26 0.62 3.35 0.22 3.35 0.22 3.40 0.32

EDV (ml) 358.2 96.6 361.0 69.2 480.9* 46.7 551.1* 65.3

ESV (ml) 79.8 22.7 85.6 20.3 116.3* 42.9 143.8* 31.7

SWT (mm) 1.31 0.21 1.44 0.12 1.53 0.19 1.48 0.18

SWT (%) 71 19 76 6 84 9 77 7

SV (ml) 278.4 99.2 275.4 50.8 364.7 63.4 407.3 72.6

CO (ml/min) 78.6 28.7 78.2 17.5 111.7* 22.2 143.9* 28.7

EF (%) 78 4 76 2 76 3 74 3

LVM/EDV (g/ml) 1.75 0.49 1.65 0.15 1.63 0.41 1.47 0.44

LVMI (mg/g) 2.19* 0.30 1.85* 0.22 2.47 0.24 2.25 0.32

EDVI (ml/g) 1.31* 0.36 1.14* 0.20 1.52 0.18 1.55 0.23

ESVI (ml/g) 0.31 0.09 0.27 0.06 0.36 0.14 0.40 0.90

SVI (ml/g) 1.04 0.37 0.87 0.15 1.16 0.21 1.15 0.23

CI (ml/min/g) 0.29 0.11 0.25 0.05 0.36 0.07 0.40 0.09

All results are given as mean6SD. LV: left ventricle, HR: heart rate, LVM: left ventricular myocardial mass, EDWT: enddiastolic wall thickness, ESWT: endsystolic wall
thickness, EDV: enddiastolic volume, ESV: endsystolic volume, SWT: systolic wall thickening, SV: stroke volume, CO: cardiac output, EF: ejection fraction, and (C)I: (cardiac)
index (per gram body weight).
*indicates significant differences (p,0.05) between the respective groups.
doi:10.1371/journal.pone.0068275.t001

Table 2. Results overview, right ventricle.

RV Sham 1 week 1, ± SD n = 6 Control 1 week 1, ± SD n = 6 Sham 8 week 8, ± SD n = 6 Control 8 week 8, ± SD n = 6

Body mass (g) 267.5* 10,6 317.0* 11,3 317.0* 21.1 358.7* 33.4

HR (1/min) 279 27 283 26 306* 30 355* 29

RVM (mg) 220.6 36.6 222.1 29.0 260.2* 33.2 310.4* 48.5

EDWT (mm) 1.00 0.28 0.90 0.07 1.00 0.04 0.94 0.06

ESWT (mm) 1.68 0.52 1.55 0.16 1.57 0.17 1.48 0.19

EDV (ml) 323.1 82.0 339.1 56.9 386.5* 98.7 461.7* 81.2

ESV (ml) 85.9 17.9 81.0 16.5 87.9* 36.6 115.8* 44.5

SWT (mm) 0.68 0.29 0.66 0.12 0.57 0.14 0.54 0.16

SWT (%) 68 20 73 12 56 12 58 17

SV (ml) 237.1 68.3 252.1 46.6 298.6 105.0 356.8 92.6

CO (ml/min) 66.6 21.8 71.6 15.7 91.6* 33.4 122.0* 34.4

EF (%) 73 4 73 3 77 8 75 7

RVM/EDV (g/ml) 0.70 0.20 0.67 0.07 0.70 0.42 0.68 0.36

RVMI (mg/g) 0.83* 0.13 0.70* 0.07 0.82 0.12 0.86 0.16

EDVI (ml/g) 1.21* 0.31 1.07* 0.17 1.21 0.32 1.29 0.26

ESVI (ml/g) 0.32 0.14 0.26 0.05 0.27 0.12 0.32 0.13

SVI (ml/g) 0.89 0.24 0.81 0.13 0.94 0.34 0.97 0.27

CI (ml/min/g) 0.25 0.06 0.23 0.05 0.29 0.11 0.34 0.10

All results are given as mean6SD. RV: right ventricle, HR: heart rate, RVM: right ventricular myocardial mass, EDWT: enddiastolic wall thickness, ESWT: endsystolic wall
thickness, EDV: enddiastolic volume, ESV: endsystolic volume, SWT: systolic wall thickening, SV: stroke volume, CO: cardiac output, EF: ejection fraction, and (C)I: (cardiac)
index (per gram body weight).
*indicates significant differences (p,0.05) between the respective groups.
doi:10.1371/journal.pone.0068275.t002
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procedure. Following the acute phase, weight gain in these rats

was apparently not further diminished, but these rats rather caught

up part of this decrease in body weight loss compared to the

control animals. However, at week 8, there was still a significant

remaining difference comparing the total body weight in both

groups. According to the current findings from blood analyses, it

is unlikely that inflammatory processes account for significant

alterations in the short or long term: quantitative ELISA showed

only minor, non-significant alterations in CRP, TNF, or IL-2

after sham surgery. Metabolic blood parameters, however,

confirmed distinct metabolic alterations due to sham surgery,

including a significant drop in urea and triglycerides from 1 till

4 days post-surgery. In addition, serum leptin levels - which are

suggested to play a major role in regulation of food intake, but

have also been shown to be reversely influenced by behavioral

and metabolic changes in food intake [18] - were also found to

be diminished in the acute phase after sham surgery. These

findings suggest a major impact of metabolic alterations on body

integrity after sham surgery, which should be investigated

further in the future.

It can also be concluded from the results of the study that the

acute, direct side-effects of the surgical procedure on cardiac

morphology and function are negligible one week after the

intervention. There was no acute substantial alteration in

myocardial mass, wall thickness, ventricular volumes, or function

in comparison to the control animals, neither for the left nor right

ventricle. In addition to the global functional cardiac parameters,

visual analysis of the cine cycles also showed no regional

impairment of cardiac function in the sham operated animals. It

can be concluded from the results of the study, that the integrity of

the pericardium has only a small effect on both left and right

ventricular morphology and function. Right ventricular function

was impaired neither at week 1 nor at week 8 after surgery. The

only apparent effect seen in the rats after the intervention was a

tendency for higher right ventricular wall thickness at least in some

of the animals, even though not statistically significant comparing

the entire groups. This increase in the myocardial wall thickness

might in fact be an incorrect labeling, as even using MRI it is not

always possible to discriminate the right ventricular myocardium

from the pericardium. Therefore, rather than effects on the

myocardium itself, pericardial swelling or hemorrhage might be

primarily responsible for this (limited) effect seen in the MRI,

which was less pronounced 8 weeks after surgery.

In contrast to the acute phase after sham surgery, which led to

no significant alterations in cardiac morphology or function in

absolute measures, but some measureable differences of cardiac

parameters in relation to the respective body weight, there were

some differences in cardiac parameters between both groups in

absolute measures at week 8 after sham surgery, but no longer

normalized to the animal body weight. This implicates physiolog-

ical secondary long term customization of the cardiac morphology

and function on the aroused alterations in body weight, rather

than suggesting a pathological cause. A marked difference between

both groups in the long term was a substantially higher heart rate

in the control animals compared to the sham animals, and also

compared to both groups at the early time point. From the results

of the study, the reasons for this increase in heart rate in the

respective group compared to all other groups are unclear. It could

be speculated though, that the main reason for this increase might

simply be the higher body weight, which might imply less cooling

of the animal under anesthesia and subsequently lead to a higher

body temperature with higher heart rate during the MR

investigation. The accompanying trend for an increased cardiac

index in these animals might be explained equivalently as a direct

result of the higher heart rate, since stroke volume index

normalized to the body weight was identical in both groups at

week 8.

Conclusion

Surgical procedures undertaken to evoke artificial myocardial

infarction by ligation of a branch of the coronary arteries induce a

transient general impairment of the body integrity, apart from the

local effects on the connective tissue mainly apparent by a slight

Figure 8. Time course of various metabolic blood parameters (glucose, urea, triglycerides, and leptin) after sham surgery.
doi:10.1371/journal.pone.0068275.g008
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decrease in body weight in the short term. Despite pericardiotomy

and circumscribed intramural wounding through the procedure

for coronary ligation, there are only minimal acute effects on left

and right ventricular morphology and function. Correlation of

many cardiac parameters with body weight can, however, show

alterations compared to healthy controls. In the long term, the

transient impairment in body weight is partly regained, with

cardiac morphology gradually adapting according to the develop-

ment of the organism similar to healthy individuals. These findings

should be taken into account when evaluating results from basic

cardiovascular research in small animal models of cardiac disease,

particularly if the results from studies including thoracic surgery

are directly compared to those from studies that do not include

thoracic surgery.
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