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Consistent withDr. Paul Terasaki’s “humoral theory of rejection” numerous studies have shown thatHLAantibodies can cause acute
and chronic antibody mediated rejection (AMR) and decreased graft survival. New evidence also supports a role for antibodies
to non-HLA antigens in AMR and allograft injury. Despite the remarkable efforts by leaders in the field who pioneered single
antigen bead technology for detection of donor specific antibodies, a considerable amount of work is still needed to better define
the antibody attributes that are associated with AMR pathology. This review highlights what is currently known about the clinical
context of pre and posttransplant antibodies, antibody characteristics that influence AMR, and the paths after donor specific
antibody production (no rejection, subclinical rejection, and clinical dysfunction with AMR).

1. Introduction

Antibodymediated rejection (AMR) is amajor contributor to
rejection risk and allograft loss in solid organ transplantation
[1, 2]. AMRdiagnostic criteriawere first established in cardiac
[3] and renal [4] transplantation and have recently been
described for pancreas [5] and lung transplantation [6] and,
although historically controversial, are proposed for liver
[7] and intestinal [8] allografts as well. AMR incidence is
approximately 10–20% in cardiac [9], 5–8% in renal [10],
4–25% in lung [11, 12], and 24% in liver [13] transplant.
Central features of AMR pathology include endothelial cell
(EC) swelling, microvascular inflammation, and intravascu-
lar CD68+ macrophages with or without complement depo-
sition. Antibodies, most notably those specific for human
leukocyte antigen (HLA), mediate effector functions that
manifest in the histopathology of AMR. HLA are the most
polymorphic genes in the human genome and as such result
in the development of alloantibodies when an exact match
is not found, as the donor allograft contains foreign HLA.
The presence of HLA donor specific antibodies (DSA) is
highly indicative of AMR [14, 15]. The advent of HLA DSA
detection methods [16–18] has led to studies identifying the
correlation of HLA DSA with more severe AMR, yet we
still are unable to fully predict how harmful or “pathogenic”

DSA will be. Further complicating matters is the recent
association of non-HLA antibodies with allograft rejection. A
greater understanding of all the factors (donor and recipient
characteristics and antibody attributes) that contribute to
rejection is needed to enhance the predictive performance
of risk assessments and better determine which patients
are at an increased risk for AMR. This review will address
the clinical context of pre- and posttransplant antibodies,
HLA and non-HLA antibody characteristics that influence
AMR, and the three outcomes (stable function, subclinical
dysfunction, and clinical dysfunction with AMR) mediated
by these antibodies.

2. HLA Antibodies

2.1. Pretransplant. Pretransplant sensitization can occur from
prior transplants, blood transfusions, pregnancy, andmecha-
nical assist devices (in heart failure) resulting in autoantibody
formation. Allosensitization affects approximately 6–9% of
cardiac transplant candidates [19, 20] and 23% of renal trans-
plant candidates prior to transplantation [21]. Patients who
are presensitized have a significantly increased risk of devel-
oping AMR within the first three years after cardiac trans-
plantation compared to those who are not sensitized [22].
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PreformedHLA antibodies were also associatedwithAMR in
kidney transplantation [23–25]. In a multicenter prospective
clinical study, kidney allograft recipients with HLA antibod-
ies were associated with an increased risk for graft failure 1
year after transplant [26]. In liver transplantation, preformed
DSA has been associated with an increased risk of AMR
[7, 27]. Roux et al. found that preformed HLA DSA was
associated with AMR, chronic dysfunction, and graft loss in
a lung transplant cohort with 2-year follow-up [28].

2.2. Posttransplant. After transplantation, 24% of renal allo-
graft recipients will develop de novo HLA DSA within ten
years [29] and approximately 25% of cardiac allograft recip-
ients will develop de novo HLA DSA within thirteen years
[30]. Nearly one-third of low risk patients (first transplant,
no DSA) develop de novo DSA by 12 years after transplant
[31]. De novo DSA development rates are 25–50% after lung
transplantation [6]. Additionally, long-term posttransplant
follow-up of renal allograft recipients revealed a significant
decline in the ten-year graft survival rate for recipients
that developed de novo antibodies to HLA [32] compared
to those that did not. Smith et al. reported that de novo
and persistent DSA postcardiac transplant were associated
with poor long-term patient survival [30]. De novo DSA in
liver transplantation is also associated with AMR [27, 33].
Many studies in lung transplant do not address the temporal
timing of DSA potentially because AMR has only recently
been recognized in lung transplantation and the presence of
circulating DSA (regardless of preformed or de novo) is a
key diagnostic standard [6]. However, multiple studies have
found an associated risk of AMR in patients withDSA in lung
transplantation [12, 34].

3. Non-HLA Antibodies

3.1. Pretransplant. Non-HLA antigens have been shown to
be expressed intracellularly, on the EC cell surface and to
apoptotic cells [35]. Non-HLA antibodies can occur inde-
pendently or can occur concurrently with HLA DSA within
patients, sometimes creating a synergistic effect on the allo-
graft [36]. Additionally, antibodies specific for angiotensin II
type 1 receptor (AT

1
R) can precede de novo HLA DSA [36].

AT
1
R antibodies are autoantibodies. Pretransplant AT

1
R

antibodies have been associated with AMR in kidney [37, 38]
and heart [39] transplant recipients. MICA is a polymorphic
nonclassical class I antigen that is closely linked to the HLA-
B locus and is upregulated on endothelial and epithelial cells
during cellular stress. Antibodies to MICA have been found
in the serum of renal [40] transplant recipients and were
associated with humoral rejection and graft loss. Perlecan is a
heparin sulfate proteoglycan that is cleaved by cathepsin-L to
form a C-terminal fragment called LG3, as it contains three
laminin-like globular domains. Pretransplant LG3 antibodies
have been found to be associatedwith acute vascular rejection
independent of HLA DSA in kidney transplant recipients
[41]. Patients with preformed collagen V and K𝛼-tubulin
antibodies were at an increased risk of developing HLA

DSA, and bronchiolitis obliterans syndrome (BOS) [42], a
manifestation of chronic rejection.

3.2. Posttransplant. AT
1
R antibodies are associated with

AMR in cardiac [39] and renal [43–45] transplantation.
Others have reported that concomitant HLA and AT

1
R

antibodies in renal and cardiac transplantation increased
the risk of AMR and decreased graft survival [36, 46].
Endothelin type A receptor (ETAR) antibodies have also
been reported in renal [47] and cardiac [39] transplantation.
Antibodies against AT

1
R and ETAR have also been shown to

be increased in lung allograft recipients with cystic fibrosis
[48]. Antibodies to MICA have been found in the serum of
renal [40] and cardiac [49] transplant recipients, although
conflicting evidence exists about the independent pathogenic
role of MICA in chronic rejection [50, 51]. Posttransplant
LG3 antibodies have been found in renal transplant recipients
[41, 52]. Collagen V (Col V) is an extracellular matrix
protein expressed on the lung interstitium and lung epithelial
cells. Col V antibodies have been found in sera from lung
allograft recipients diagnosed with bronchiolitis obliterans
syndrome (BOS), a manifestation of chronic rejection [53,
54]. Additionally, Col V autoantibodies are associated with
AMR and cardiac allograft vasculopathy (CAV) in cardiac
transplant recipients [55] and transplant glomerulopathy in
renal allograft recipients [56].

4. Three Paths after DSA

Patients with DSA do not represent a uniform category.
Patients are either transplanted with no allosensitization,
with HLA antibodies but no donor specific antibodies (3rd
party), or with preformed DSA. Additionally, patients with
a history of sensitization may never have circulating DSA
detected in screening protocols, even though they have
formed T and B cell alloimmune memory. Despite strong
evidence that DSA are associated with increased rejection
incidence and reduced graft survival, it is unknown why a
subset of patients with DSA does not experience poorer graft
outcomes in these studies [31, 57, 58].This creates uncertainty
about how to manage patients who exhibit DSA on routine
monitoring but have no clinical signs of graft dysfunction
or whether a preformed HLA DSA of a certain strength or
titer can be safely crossed. Extraordinarily high levels of DSA
(>10,000 MFI in our experience), especially to HLA class I
antigens, have been shown to be cytotoxic and place patients
at risk of hyperacute rejection via complement activation;
such strong DSA are typically avoided with the exception
of liver transplantation [59, 60]. Transplant recipients with
DSA can exhibit overt rejection (acute or chronic) with
clinical dysfunction, indolent dysfunction (slow decline in
graft function) with subclinical rejection on protocol biopsy,
or stable function and normal biopsy (Figure 1).

4.1. Clinical Dysfunction with AMR. Evidence of clinical allo-
graft dysfunction is an important consideration in diagnosis
of symptomatic (clinical) AMR. Nearly half of patients trans-
planted with preformed DSA experienced AMR, compared



Journal of Immunology Research 3

Time
Transplant

HLA and Non-HLA antibody:

Pretransplant:
Prior transplant,
blood transfusion,
pregnancy, mechanical assist 
device (Heart)

Preformed HLA DSA or 
non-HLA Ab

Posttransplant:
Specificity, strength (MFI/titer), 
ability to bind complement, 
isotype/subclass, density, 
affinity, and glycosylation

Histology:

Dysfunction

EC swelling

Microvascular 
inflammation

Macrophage 
infiltrate

Complement 
depositionDe novo DSA or 

non-HLA Ab

Outcomes:
(1) Stable function:

(2) Subclinical AMR:

(3) Clinical dysfunction:

(a) DSA+

(b) IgG3, IgG1

(c) C1q+, C4d+

(a) DSA+

(b) IgG2, IgG4

(c) C1q±, C4d±

(i) DSA+

(ii) IgG2, IgG4

(iii) C1q−, C4d−

(i) DSA+

(ii) IgG2, IgG4

(iii) C1q−, C4d±

(i) Acute AMR

(ii) Chronic AMR

Figure 1: Factors influencing AMR. Schematic of the antibody components that influence AMR’s pathogenesis. Depicted are the antibody
factors (blue) that influence AMR pathology (shown in red). Antibody factors influencing AMR include sensitization pretransplant and
antibody attributes such as specificity, ability to bind complement, isotype/subclass, strength (MFI/titer), density, affinity, and glycosylation.
AMR histology (red) includes graft dysfunction, endothelial cell (EC) swelling, microvascular inflammation, and macrophage infiltrate and
can occur with or without complement deposition. The three outcomes after DSA include stable function, subclinical AMR and clinical
dysfunction with AMR (either acute or chronic). Stable function in the presence of DSA is typically seen in those patients with IgG2/IgG4
antibodies that do not show signs of complement binding antibodies (C1q−, C4d−). Subclinical AMR is typically seen in those patients with
IgG2/IgG4 antibodies that may show signs of complement binding antibodies (C1q−, C4d±). Clinical dysfunction with AMR can be grouped
into acute or chronic AMR. Acute AMR is typically seen in those patients with IgG3/IgG1 antibodies that are complement binding antibodies
(C1q+, C4d+). Chronic AMR is typically seen in those patients with IgG2/IgG4 antibodies that may or may not include complement binding
antibodies (C1q±, C4d±).

with less than 1% in those without pretransplant DSA [61].
Of renal transplant recipients with preformed DSA who
developed AMR, the majority were flow crossmatch positive
[61–63]. De novo DSA is often observed at the same time
as clinical dysfunction [32], and the vast majority of patients
presenting with allograft functional impairment and dnDSA
were nonadherent [32]. Thus patients are more likely to
develop AMR if their DSA is strong enough to cause a
positive flow crossmatch and more likely to experience graft
dysfunction if they were medication nonadherent. In the
long-term, patients experiencing clinical dysfunction with
AMR have the worst 5-year graft survival compared with
TCMR or no rejection [58].

4.2. Subclinical AMR. Studies evaluating protocol biopsies
have reported a high incidence of subclinical AMR that is
likely missed by monitoring strategies that biopsy only for
cause. One-year surveillance biopsies in DSA+ patients with
stable function nonetheless often revealed C4d deposition
and peritubular capillaritis [32], indicative of “smoldering”
inflammation not present in patients without DSA. Similarly,
Loupy et al. showed that 14% of clinically stable renal
transplant recipients had evidence of subclinical AMR on
one-year surveillance biopsy [57]. The majority of these
patients had performed DSA. Importantly, these studies have
demonstrated that patients with subclinical AMR (i.e., no
acute dysfunction) fare significantly worse than their DSA
negative counterparts [57], with faster decline inGFR of renal

allografts [31, 57, 61] and higher rates of CAV in cardiac
allografts [64–66]. Renal transplant recipients with sub-
clinical AMR who received treatment with plasmapheresis
unfortunately had comparable outcomes to those who were
not untreated, and both had a significant decrement in 5-year
survival compared with AMR-free controls [61]. Similarly,
half of cardiac transplants that failedmore than one year after
transplant due to chronic rejection had a history of subclinical
AMR [67]. While patients with clinically symptomatic AMR
fare worse than those with subclinical AMR, both groups
have significantly reduced 10-year outcomes compared with
stable, DSA negative patients [31].

4.3. DSA with Stable Function and No Rejection. Intriguingly,
up to half of patients with preformed DSA did not have
rejection, subclinical AMR, or otherwise, at the time of one-
year biopsy [57, 68]. Approximately 20% of stable patients
with no evidence of rejection on protocol biopsy also had
DSA. Thus, a critical, yet unanswered, question is which
patient, donor, and antibody characteristics might protect
from rejection and graft dysfunction in the presence of DSA,
a question which is addressed in part in the next section.

5. Mechanisms of Antibody Mediated
Graft Injury

5.1. HLA Antibodies. Antibodies mediate allograft injury and
contribute to graft pathology through three main types of
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effector functions: EC activation, complement activation, and
leukocyte interaction/activation. Alterations in these effector
functions modulate rejection severity. Antibody characteris-
tics, such as titer, isotype/subclass, glycosylation, and affinity,
can influence these effector functions. The interface between
the allograft and its recipient is the thin layer of donor EC
lining the walls of the blood vessels supplying nutrients to the
allograft. Gene profiling studies of renal [69–71] and cardiac
biopsies [72] undergoing AMR identified EC activation as
a significant contributor to graft pathology. Crosslinking of
HLA expressed on the surface of EC by DSA triggers a series
of intracellular signaling events and activation of immune
responses, which are manifested in the histopathological
findings in AMR pathology [73]. DSA binding to HLA
induces EC activation, resulting in P-selectin expression and
mammalian target of rapamycin (mTOR) dependent cellu-
lar migration, proliferation, and protein synthesis [74–77].
Positive staining of phosphorylatedmTOR signaling proteins
including S6 kinase and S6 ribosomal protein in the capillary
EC of endomyocardial biopsies strongly correlated with diag-
nosis of AMR [78, 79]. EC activation facilitates chemokine
expression leading to leukocyte recruitment to inflammatory
sites [80]. In addition, increased EC and smooth muscle
proliferation results in a thickening of the tunica intima [81],
a hallmark of chronic AMR in all solid organ transplant
patients [3]. Antibody titer affects EC signal transduction
and subsequent EC activation, as increasing quantities of
HLA antibody result in augmented FGFR expression and
cellular proliferation [82], whereas decreased antibody titer
results in upregulation of prosurvival genes and antiapoptotic
proteins in EC [83]. An additional antibody-independent
factor that influences HLA-mediated signaling is the density
of HLAmolecule expression on the EC surface. HLA antigen
expression on graft endothelium is increased during allograft
rejection in response to IFN𝛾 and induces CIITA activation
and subsequentHLAClass II expression [84–87].The density
ofHLAon the surface of ECdirectly affects the degree ofDSA
binding to the graft and downstream effector functions.

Although complement deposition is no longer necessary
for AMR diagnosis, complement binding DSA increases a
patient’s risk for kidney allograft loss five years after trans-
plant [88] and complement binding antibodies were more
predictive, than HLA DSA alone, of an increased risk for
AMR and decreased graft survival in cardiac transplant ten
years after transplant [89]. Antibody isotype and subclass play
a significant role in induction of the classical complement
pathway, with IgM, IgG3, and IgG1 having the highest degree
of complement activation [90]. Antibody affinity mediated
by IgG hexamers has been shown to be more efficient than
isolated IgG molecules at activating the complement cascade
[91]. Complement binding is also increased when there is
an increase in the amount of antibody bound to cells [92,
93]. High panel reactive antibodies (PRA) are associated
with increased complement activation [92]. Lastly, polymor-
phisms within the complement genetic locus could poten-
tially affect the degree of complement activation [94, 95],
whereas differential expression of complement regulatory
proteins by the donor tissue could also affect the response of
endothelium to complement components [96]. With respect

to the downstream effects of complement activation, Jane-
wit et al. demonstrated that complement activation and
deposition on EC resulted in noncanonical NF𝜅B activation
[97] whereas Cravedi et al. highlighted a role for complement
activation in promotion of aTh1 response during alloimmune
reactions [98]. Taken together, this information highlights
the potential contributions of DSA on complement activation
and promotion of alloimmunity.

Leukocyte recruitment and activation are a common his-
tological feature of AMR.Macrophage infiltration is observed
in heart [3] and renal [99]AMRandpredicts aworse outcome
[100]. Neutrophil recruitment is seen in lung transplantation
and intragraft natural killer (NK) cells have been identified
bymolecularmicroscopy techniques in renal [71] and cardiac
biopsies [72] diagnosed with AMR. IgG subclass dictates
Fc receptor binding affinity [101, 102], thereby influencing
leukocyte recruitment. Several studies have attempted to
characterize the repertoire of DSA immunoglobulin sub-
classes in transplant recipients and correlate them with allo-
graft outcomes. Their results have suggested that IgG3 DSA
are a driver of acute AMR [103, 104], while IgG4 correlates
more closely with subclinical AMR [105] and chronic rejec-
tion [106, 107].Moreover, different terminalmoieties in the Fc
glycan of IgG have been demonstrated to change the inflam-
matory nature of antibodies. Sialylated IgG promotes a more
tolerant environment, whereas glycans with terminal galac-
tose residues are affiliated with a proinflammatory response
[108]. Altered P-selectin expression allows for an increase
in leukocyte recruitment [77 depending on subclass, by
engaging Fc𝛾Rs, 109], a common histological feature across
solid organ transplant [3, 6, 109]. DSA also facilitatedNK cell-
mediated antibody-dependent cellular cytotoxicity (ADCC)
in an IFN𝛾 and cell-contact dependent manner [110]. Col-
lectively, the effector functions of DSA, while multifactorial
themselves, are even more complex and multilayered when
antibody characteristics are altered.

5.2. Non-HLA Antibodies. There is less mechanistic data for
non-HLA antibodies in the pathogenesis of AMR. However,
non-HLA antibodies can also mediate EC activation and
complement activation and leukocyte interaction/activation.
Non-HLA antibodies that activate EC can increase the
expression of HLA class I and II and have been shown to
develop independently or in conjunction with HLA DSA
[36, 111]. AT

1
R antibodies mediate endothelial cell activation

and vasoconstriction by binding to the second extracellular
loop of the AT

1
R protein and act as an angiotensin II agonist

promoting downstream activation of AP-1 and NF-𝜅B [112].
AT

1
R and ETAR antibodies frequently occur together in

patient sera [111]; but there are no studies linking their
pathologic mechanism. DSA bound to EC are also capable
of activating the classical complement pathway, resulting
in detection of C4d deposition along the capillary walls
within allograft biopsies [113–115]. C4d deposition in graft
histology has only been detected in a subset of patients with
AT

1
R antibodies suggesting that the mechanism of injury

for AT
1
R antibodies is not the complement pathway [43,

44, 112]. However, other non-HLA antibodies such as MICA
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can activate complement [116]. Evidence suggests that Col V
antibodies increase IL-17 and IFN𝛾 secretingT cells [117]. LG3
antibodies promote the migration of smooth muscle cells or
mesenchymal stem cells to cause vascular injury [118].

Experimental models and clinical experience demon-
strate that anti-donor HLA and non-HLA antibodies exhibit
pathogenic functions through multiple mechanisms that
likely have extensive crosstalk. AMR manifests as a broad
spectrum both histologically and symptomatically. Across
solid organs, the microvasculature is the principal target
of antibody mediated injury. A single uniform approach
to prevent graft injury and loss in the setting of donor
specific antibodies will probably not be effective for all
patients, and personalized therapies tailored to address
unique patient and donor features will be needed to pro-
tect from AMR and chronic rejection. Non-HLA anti-
bodies have also been associated with TCMR in renal
transplantation [119] suggesting additional mechanisms of
action that promote distinct graft pathology phenotypes
compared to HLA DSA. While these histopathological fea-
tures are diagnostically useful, they are an in situ read-
out of the downstream effects of DSA-mediated effector
functions. Recent work is uncovering additional mechanisms
by which DSA can mediate immune activation. Further
studies are needed to delineate the crosstalk between HLA
and non-HLA antibodies and their synergistic effect on graft
injury and to assess their incidence across different organ
types.

6. Conclusions and Future Directions

Collectively, data on antibody pathogenicity defined by the
antibody specificity, isotype, and ability to activate EC and
complement can lead to different effector functions that
mediate different pathological outcomes. Further studies
to clarify which HLA and non-HLA antibody attributes
(strength, subclasses, glycosylation, and affinity) contribute
to subclinical, acute, and chronic AMR would be use-
ful in order to identify biomarkers of different outcomes.
Employment of newer techniques, such as the “molecular
microscope,” can provide additional insight into the active
transcriptome in the graft tissue, allowing a measurement of
the local inflammation and the transcriptome signature for
AMR [68]. Clinical research to determine how effective these
parameters are at risk stratifying patients is needed. Enhanced
understanding of the HLA and non-HLA mechanisms in
allograft injury is needed to help identify additional therapeu-
tic targets and further understand the potential synergistic
relationship between them. Allograft rejection can occur
throughout the lifetime of a transplanted organ and as such
further understanding of the sensitization and pathologic
mechanisms is needed to better risk stratify patients and
achieve the goal of increasing long-term survival.
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