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Abstract. The glia-derived extracellular matrix glyco- 
protein tenascin-C (TN-C) is transiently expressed in 
the developing CNS and may mediate neuron-glia in- 
teractions. Perturbation experiments with specific mono- 
clonal antibodies suggested that TN-C functions for 
neural cells are encoded by distinct sites of the glyco- 
protein (Faissner, A., A. Scholze, and B. GOtz. 1994. 
Tenascin glycoproteins in developing neural tissues-- 
only decoration? Persp. Dev. Neurobiol. 2:53-66). To 
characterize these further, bacterially expressed recom- 
binant domains were generated and used for functional 
studies. Several short-term-binding sites for mouse 
CNS neurons could be assigned to the fibronectin type 
III (FNIII) domains. Of these, the alternatively spliced 
insert TNfnA1,2,4,B,D supported initial attachment for 
both embryonic day 18 (El8) rat and postnatal day 6 
(P6) mouse neurons. Only TNfnl-3 supported binding 

and growth of P6 mouse cerebellar neurons after 24 h, 
whereas attachment to the other domains proved re- 
versible and resulted in cell detachment or aggregation. 
In choice assays on patterned substrates, repulsive 
properties could be attributed to the EGF-type repeats 
TNegf, and to TNfnA1,2,4. Finally, neurite outgrowth 
promoting properties for E18 rat hippocampal neurons 
and P0 mouse DR G explants could be assigned to TN- 
fnB,D, TNfnD,6, and TNfn6. The epitope of mAb J1/ 
tn2 which abolishes the neurite outgrowth inducing ef- 
fect of intact TN-C could be allocated to TNfuD. These 
observations suggest that TN-C harbors distinct cell- 
binding, repulsive, and neurite outgrowth promoting 
sites for neurons. Furthermore, the properties of iso- 
form-specific TN-C domains suggest functional signifi- 
cance of the alternative splicing of TN-C glycoproteins. 

T 
HE development of the central nervous system of 
vertebrates evolves in a well-defined temporal se- 
quence of events which includes proliferation of ep- 

ithelial stem cells, migration of neuronal precursors from 
the ventricular zone to target areas, arrangement of con- 
nections, and neuronal cell death (Jacobson, 1991). Neu- 
ron-glia interactions play a crucial role in several of these 
processes. For example, immature astrocytes are believed 
to guide neuronal precursors and extending fiber projec- 
tions or to segregate forming neuronal nuclei and fiber 
tracts (Rakic, 1988; Steindler, 1993). In this context, cell 
adhesion molecules (CAMs) 1 of the immunoglobulin and 
cadherin superfamilies constitute important regulatory 
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components (Rathjen and Jessel, 1991; Brtimmendorf and 
Rathjen, 1993). On the other hand, inhibitory and/or anti- 
adhesive molecules have also been implicated in growth 
cone guidance and neural pattern formation, e.g., the NI- 
antigens, oligodendroglia-derived glycoproteins which in- 
duce growth cone collapse and interfere with the regener- 
ation of transected CNS fiber tracts (Keynes and Cook, 
1992; Schwab et al., 1993; Luo et al., 1993; Luo and Raper, 
1994; Faissner and Steindler, 1995; Dodd and Schuchardt, 
1995; Tessier-Lavigne, 1995). In addition, glycoproteins of 
the extraceUular matrix (ECM) and their receptors, the in- 
tegrins, are involved in the control of neuronal migration 
and axon elongation (Sanes, 1989; Reichardt and Toma- 
selli, 1991; Hynes and Lander, 1992; Letourneau et al., 
1994). 

Among the ECM proteins, tenascin (TN) glycoproteins 
have attracted particular attention because they embody 
both stimulatory and anti-adhesive properties for various 
cell types (Eriekson, 1993; Tucker, 1994; Faissner and 
Steindler, 1995). The TN gene family currently comprises 
three members, namely TN-C, formerly also designated 
tenascin, cytotactin or J1-200/220, TN-R, also known as re- 
strictin or janusin and TN-X (Erickson, 1993). Structur- 
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ally, TN-C exhibits a modular organization with a cys- 
teine-rich amino terminus followed by 141/2 EGF-like and 
8 fibronectin type III (FNIII) repeats in mouse. The se- 
quence is terminated by homologies to fibrinogen (fog) 13 
and ~/at the carboxy terminus. Several isoforms are cre- 
ated by insertion of alternatively spliced FNIII motives be- 
tween FNIII repeats 5 and 6 of the basic structure. TN-C 
monomers are linked to hexamers (hexabrachia) at their 
amino terminus (Erickson, 1993). 

In the CNS, TN-C is transiently expressed by immature 
astrocytes, and, in a minority of cases, by subpopulations 
of neurons, e.g., retinal ganglion cells. In some areas, 
TN-C is distributed in discrete boundaries which delineate 
emerging functional processing units, for example, in the 
barrel field of the developing somatosensory cortex, in the 
patch-matrix compartments of the nigrostriatal projection, 
or around glomeruli of the olfactory bulb (Steindler et al., 
1989a, b; Crossin et al., 1989; Steindler, 1993; Gonzalez and 
Silver, 1994). A possible role of TN-C in neuron-glia inter- 
actions had originally been inferred from the observation 
that antibodies to the glycoprotein reduce the adhesion of 
neurons to astrocyte surfaces in short-term assays (Kruse 
et al., 1985; Grumet et al., 1985). Subsequently, antibody 
perturbation experiments have shown that TN-C is in- 
volved in regulating migration of cerebellar neurons from 
the external to the internal granule cell layer of the devel- 
oping mouse (Chuong et al., 1987; Husmann et al., 1992). 
Moreover, purified TN-C promotes neurite outgrowth of 
peripheral and central nervous system neurons (Wehrle 
and Chiquet, 1990; Crossin et al., 1990; Lochter et al., 
1991; Lochter and Schachner, 1993; Taylor et al., 1993) 
and the motility of neuroblastoma cells (Halfter et al., 
1989). Recent observations suggest that neuronal re- 
sponses to the glycoprotein are partially regulated by cell 
lineage (Perez and Halfter, 1993; Taylor et al., 1993). On 
the other hand, inhibitory, anti-adhesive properties of 
TN-C have also been described. Thus, both neuronal cell 
bodies and growth cones are deflected from sharp TN-C 
boundaries on patterned substrates consisting of condu- 
cive components such as laminin-1 or poly-DL-ornithine 
which alternate with areas additionally containing the gly- 
coprotein (Faissner and Kruse, 1990; Crossin et al., 1990; 
Taylor et al., 1993). TN-C boundaries observed in some re- 
gions of the developing CNS may thus serve to conceal 
neurons. TN-C is downregulated in most regions of the 
CNS after neurohistogenesis has proceeded, but is upregu- 
lated in CNS and PNS lesions (Laywell et al., 1992; Martini 
et al., 1990; Daniloff et al., 1989; Brodkey et al., 1995; 
Irintchev et al., 1993). Polyclonal antibodies specific for 
TN-C have recently been shown to delay reinnervation of 
neuromuscular junctions after cryolesion of the peripheral 
nerve, which suggests that the glycoprotein is involved in 
the regeneration process (Langenfeld-Oster et al., 1994). 
The use of monoclonal antibodies to distinct regions of 
TN-C in bioassays in vitro suggested that the diverse ef- 
fects of the multifunctional glycoprotein are encoded by 
separate domains. Thus, influence on neuronal migration 
was allocated to FNIII domains around the proximal and 
neurite outgrowth promoting effects were assigned to 
FNIII repeats around the distal splice site (for reviews see 
Faissner et al., 1994a, 1995; Faissner and Steindler, 1995). 
Distinct binding sites for several nonneural cell types have 

been identified in the third FNIII domain (TNfn3) and the 
carboxy-terminal fibrinogen homology region TNfog us- 
ing recombinant proteins (Spring et al., 1989; Prieto et al., 
1992, 1993; Aukhil et al., 1993; Joshi et al., 1993). In con- 
trast, anti-adhesive activities for flbroblasts have been 
mapped to the EGF-type repeats (TNegf) and TNfn7-8 
(Spring et al., 1989; Prieto et al., 1992). By comparison, not 
very much is known about specific recognition sites in 
TN-C for neurons and their processes. To analyze the 
structure-function relationships of TN-C with regard to 
neuronal differentiation, recombinant proteins which span 
the coding region of TN-C were generated and used in 
bioassays in vitro. We show here that distinct sites in TN-C 
are responsible for neuron binding, the promotion of neu- 
rite outgrowth, and the repulsion of neuronal cell bodies 
and their processes. 

Materials and Methods 

Animals 
For the preparation of cell cultures from embryonic or postnatal brains, 
SD-rats or NMRI mice were used. The day a vaginal plug was found was 
designated embryonic day 0 (E0). New Zealand rabbits were used for im- 
munization experiments. All animals were kept at the local facility (Ver- 
suchstieranlage des Zentralbereiehs Theoretikum, Im Neuenheimer Feld, 
Heidelberg, Germany). 

ECM Proteins 
Human serum fibronectin (FN) and laminin-1 (LN) isolated from Engel- 
breth-Holm-Swarm mouse sarcoma cells were purchased from Boeh- 
ringer Mannheim GmbH (Mannheim, Germany) or acquired from 
GIBCO BRL (Eggenstein, Germany). TN-C from P7-P14 mouse brains 
was obtained by immunoaffinity chromatography, as described elsewhere 
(Faissner and Kruse, 1990). 

Poly- and Monoclonal Antibodies 

Fluorescein isothiocyanate (FITC)-, tetramethylrhodamine isothiocya- 
nate (TRITC)-, or peroxidase-derivatized polyclonal anti-rat, anti-rabbit, 
and anti-mouse antibodies were purchased from Dianova (Hamburg, 
Germany). Anti-T7 tag mouse monoclonal antibody (mAb) was pur- 
chased from Novagen (obtained through AGS, Heidelberg, Germany). 
mAbs J1/tnl (clone 576), J1/tn2 (clone 578), J1/tn3 (clone 630), and J1/tn5 
(clone 635) against TN-C were purified and concentrated from hybrid- 
omas growing in serum-free medium (Faissner and Kruse, 1990; Husmann 
et al., 1992). Polyclonal antibodies (pAbs) to the cell adhesion molecule 
L1 and to TN-C (KAF[9/2]) have been described elsewhere (Faissner et 
al., 1985; Faissner and Kruse, 1990). The antisera against the bacterially 
expressed proteins (see below) TNegf and TNfnA1,2,4 were raised in rab- 
bits using standard procedures. Briefly, 50-100 ~g of purified recombinant 
domains emulsified in Freund's adjuvans were injected subcutaneously at 
multiple sites into the back of white New Zealand rabbits. The animals 
were boosted at 4-wk intervals with the same amount of antigen emulsi- 
fied in incomplete Freund's adjuvans. One week after the third boost a 
first bleed was collected. 50-ml serum against TNfnA1,2,4 was adsorbed 
against 5 mg TNfn6 (see below) coupled to a Ni÷+-chelate column and the 
nonbound IgG-fraction was purified from the run-through using protein 
A affinity chromatography after standard protocols (Faissner and Kruse, 
1990). Serum against TNegf was cross-adsorbed against 5 mg TNfnl-3 (see 
below) and processed as described above. The domain specificity of the 
IgG fractions was assessed by Western blotting and ELISA using a panel 
of recombinant TN-C proteins (see below). 

Analytical Procedures 
Protein concentrations were measured using the protein assay (Bio Rad 
Laboratories, Munich, Germany) or the Micro BCA reagent (Pierce 
Chem. Co., Rockford, IL). SDS-PAGE was performed with 17.5% aeryl- 
amide gels under reducing conditions (Laemmli, 1970). Gels were stained 
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with Coomassie brilliant blue (Serva, Heidelberg, Germany). Western 
blots were carried out as described and developed with peroxidase-deriva- 
tized secondary antibodies or t2Sl-protein A (Faissner et al., 1988). For de- 
tection of HRP-coupled antibodies the ECL kit, which is based on the de- 
tection of light emission from oxidized luminol on photosensitive films 
(Amersham Buchler GmbH & Co. KG, Braunschweig, Germany), was 
used according to the supplier's instructions. 

Construction of Expression Vectors for TN-C Domains 
The constructs encoding the eDNA of mouse TN-C have been described 
(Weller et al., 1991). cDNA inserts corresponding to TNfnl-3, TNfn4,5, 
TNfn6, TNfnD,6, TNfn7,8, and TNfbg were generated by polymerase 
chain reaction (PCR) using up- and downstream primers as documented 
in Table I. The primers were designed to match modular boundaries of 
the protein and contained restriction sites for directional cloning into the 
pTrc-His expression vector system (Invitrogen BV, NV Leek, The Neth- 
erlands). For PCR amplification, 2.5 U of replitherm (Biozym, Oldendorf, 
Germany) were used in a total volume of 100 p.l. The reaction was per- 
formed 20 times using the cycle (94°C, 1 min, 65°C, 1 min, 72°C, 2 min). 
The reaction mixture contained 5 ~1 of 20× incubation buffer (supplied by 
Biozym), 0.25 mM of each dNTP, 500 pmol of each primer and up to 500 
ng plasmid. TNegf was subcloned from clone r5'-19 (nucleotides 177- 
2156, Weller et al., 1991) into pTrcHisA using the EcoRI linker at both 
ends of the insert. TNfnA1,2,4,B,D was subcloned from clone 03'-23 (nu- 
cleotides 3368-4657, Weller et al., 1991) into pTrcHisB using the EcoRI 
sites at both ends of the insert. The AatlI  site (nucleotides 4147-4152, 
Weller et al., 1991) was used to create TNfnA1,2,4 and TNfnB,D expres- 
sion constructs. TNfnA1,2,4,B,D was digested with AatII and HindIII 
with subsequent E. coli DNA polymerase I treatment and the purified 
vector was blunt-end religated to yield the construct TNfnA1,2,4. TNfnB,D 
was generated by digesting TNfnA1,2,4,B,D with PstI and AatlI, subse- 
quent E. coli DNA polymerase treatment and blunt-end religation. The 
constructs were partially sequenced for proper reading frame and termi- 
nation using the dideoxynucleotide chain termination method with T7 
DNA polymerase (USB, Amersham, Braunschweig, Germany). The nu- 
cleotide sequence of TNfnA1,2,4 ranges from nucleotides 3368 to 4147 
(Weller et al., 1991). The resulting amino acid (aa) sequence includes po- 
sitions 1082-1340. On the eDNA level, TNfnB,D comprises the nucleotide 

sequence 4152--4657. The derived amino acid sequence of TNfnB,D en- 
compasses aa 1343-1510. The fragment TNfnD,6 was obtained by PCR 
amplification of reverse transcribed total RNA from P6 mouse cerebel- 
lum. Total RNA was isolated by the cesium chloride step gradient method 
(Chirgwin et al., 1979). First strand eDNA synthesis was performed on 
5 p.g of total RNA, primed with 100 pmol of TNfnD,6 reverse primer (see 
Table I). Reverse transcription was carried out at 52°C for 1 h, using 4 U 
of AMV-reverse transcriptase (Promega, Madison, WI) /20-~1 reaction 
volume with 1 mM dNTPs (MBI Fermentas), 5 mM MgCI2, 1 mM DTr ,  
and 10 U of RNAsin (Promega). PCR amplification was performed on the 
entire reverse transcription reaction, by adding 1 U of taq-polymerase 
(AGS), 8 Ixl of 10X reaction buffer, 100 pmol of reverse primer TNfnD,6, 
200 pmol of forward primer TNfnD,6 and MgC12 to a final concentration 
of 2 mM in a total volume of 100 p.1. Amplification was accomplished by 
repeating the cycle (95°C for 1 min, 57°C for 1 min, and 72°C for 3 min) 35 
times. The resulting fragment of 550 base pairs was digested with EcoRI 
and BamHI and cloned into pTrcHisA (Invitrogen, San Diego, CA) with 
T4-DNA-ligase (MBI Fermentas). The cloned fragment was confirmed to 
represent the FNllI-domains D and 6 of TN-C by sequencing (Sequenase 
Version 2.0, Amersham). 

Production, Purification, and Characterization of 
Recombinant Proteins 
A 20-ml overnight culture in L-broth/amp (100 p.g/ml) of bacteria (TOP 
10, Invitrogen) transformed with the expression construct was diluted 1:50 
and induced with 1 mM IPTG when the optical density (OD660) reached 
0.6. After 4 h of culture the cells were collected by centrifugation (20 rain 
at 5,000 rpm, 4°C, Sorvall GSA rotor). The cell pellet was resuspended in 
50 ml PBS (20 mM sodium phosphate, 150 mM sodium chloride, pH 7.4) 
containing 1 mg/ml lysozyme, 0.1 mM PMSF, 5 Izg/ml DNAse and 10 ~g/ 
ml RNAse, briefly sonicated and incubated at 37°C for 1 h. The sample 
was then centrifuged at 20,000 g, 4°C for 30 rain. By this treatment, TNfnl-3, 
TNfn4,5, TNfn6, and TNfn7,8 were released into the supernatant and sub- 
sequently purified on nickel-chelate columns under physiological condi- 
tions. The columns were washed with 10-bed volumes PBS, pH 5.7, and 
eluted with 2-bed volumes 0.3 M imidazole in PBS, pH 6.3. The eluates 
were extensively dialyzed against PBS. TNegf, TNfnA1,2,4,B,D, TNfnA1,2,4, 
TNfnB,D, TNfnD,6, and TNfbg were pelleted with 20,000 g after lysis and 

Table L PCR Primers for Cloning TN-C Expression Proteins 

Recombinant Forward primer (and translation) 
protein name Template* Reverse primer (sense strand, and translation)~ 

TNfnl-3 R14/2 Fwd: ACA CTC GAG ATG GAG GTG TCC CCT CCC AAA GAC C 
M E V S P P K D 

Rev: CCT GCC AAA GAG ACC TTC ATC ACA TAG AAT TCC AA 

P A K E T F I T * 

R14/2 Fwd: ACA CTC GAG ATG GGC CTG GAT GCT CCC AGG AAT CTC 

MG L D A P R N L 

Rev: GCA CGT GTG AAG GCA TCC ACG TAG GAA TTC CAA 

A R V K A S T * 
RNA ql Fwd: CG GGA TCC GAA GCT GAA CCG GAA GTT GA 

E A E P E V 

Rev: TC TCG GGG ACT CTA ATC ACA TAG AAT TCC G 

S G T L I T * 

O3'-22 Fwd: CG CTC GAG GCC ATG GGT TCT CCG AAG G 

A M G S P K 

Rev: TC TCG GGG ACT CTA ATC ACA TAG AAT TCC G 

S G T L I T * 

O3'-22 Fwd: CGG GAT CCG GCT CTG GAT GGT CCA TCT 

A L D G P S 

Rev: C CAA ACC ATC TTC ACA ACA TAG AAT TCC AA 

Q T I F T T * 
O3'-22 Fwd: CGG GAT CCG ATT GGA CTC CTG TAC CCA TTC C 

I G L L Y P F 

Rev: GGC AGG CGT AAG CGG GCA TAA GAA TTC CAA 

G R R K R A * 

TNfn4,5 

TNfnD,6 

TNfn6 

TNfn7,8 

TNtbg 

* A stop codon was introduced between the coding sequence of the reverse primer and the restriction site. 
*The eDNA templates used for PCR have been described elsewhere (Weller et al., 1991). 
~The reverse primer is listed as sense strand (with translation), but the antisense strand sequence was actually used. A 2-4 base overhang at the free 5' or 3' end of the restriction 
sites (bold and underlined) for facilitating binding of the corresponding restriction enzyme was included in the primer sequence. 
IITotal RNA of P6 mouse cerebellum was reverse transcribed and TNfnD,6 was amplified by subsequent PCR. 
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dissolved in 50 ml of 8 M urea, 0.1 M Tris-HCl, pH 8.0 containing 10 mM 
[3-mercaptoethanol. The resulting protein solution was cleared by centri- 
fugation (20,000 g, 30 re.in, 4°C) and loaded on the nickel-chelate affinity- 
column. Thereafter, recombinant proteins were washed with 10-bed vol- 
umes 8 M urea, 0.1 M Tris-HC1, pH 6.2, and eluted with 2-bed volumes 
0.3 M imidazole in 8 M urea, 0.1 M Tris-HC1, pH 7.0. For further purifica- 
tion, TNfnA1,2,4,B,D containing eluates were dialyzed against 25 mM 
Tris-HC1, 50 mM KC1, 1 mM dithioerythritol (Sigma Chem. Co., Deisen- 
hofen bei Mtinchen, Germany), 8 M urea and 10% (vol/vol) glycerol, pH 
7.9 (KDTG-buffer), and circulated over a Q-Sepharose HP 16"10 column 
(Pharmacia LKB, Freiburg, Germany). The column was washed with 15- 
bed volumes KDTG-buffer and the bound protein recovered in a linear 
KC1 gradient (150 mM---1 M in KDTG-buffer) at 350 mM KCI. The urea- 
containing eluates were renatured by dialysis against renaturation buffer 
(Rudolph et al., 1979) consisting of 200 mM L-arginine, 10 mM cystamine, 
100 mM Tris-HCl, 2 mM EDTA, pH 8.0, thereafter dialyzed against PBS 
and finally cleared by centrifugation at 20,000 g, 4°C, 30 min. The fusion 
proteins appeared up to 95% pure as estimated by densitometry of Coo- 
massie-stained SDS-PAGE gels. For storage, the recombinant proteins 
were snap-frozen in liquid nitrogen, stored at -70°C, and thawed on ice 
shortly before use to prevent functional inactivation. To examine whether 
these storage conditions favor aggregate formation, the recombinant pro- 
teins were analyzed by size exclusion chromatography. To this end, 1 mg 
of protein at a concentration of 1 mg/ml in PBS, pH 7.4, was loaded on a 
Hiload TM 16:60 column furnished with Superdex TM 200 matrix (Pharmacia 
LKB). 1.0-ml fractions were collected at a flow rate of 60 ml/h at room 
temperature in the elution volume range 40.0-95.0 ml and designated ac- 
cording to their relative Ve/V o positions (Vo: 40 ml). Protein peaks were 
localized by extinction at 280 nm and further analyzed by SDS-PAGE and 
Western blot with specific antibodies. Apparent molecular weights were 
calculated using the markers blue dextran (2 × 103 kD), alcohol dehydrog- 
enase (150 kD), BSA (66 kD), egg white albumin (45 kD), and  carbonic 
anhydrase (29 kD, all from Sigma). Some batches of recombinant proteins 
were additionally characterized by inspection of rotary shadowed prepa- 
rations with electron microscopy after established protocols (Pesheva et 
al., 1989). 

Radioactive Labeling of Proteins with NalZSI 
For radiolabeling with Na125I after the iodogen procedure (Salacinski et 
al., 1981), TN-C and the recombinant proteins TNegf, TNfnl-3, TNfn4,5, 
TNfnA1,2,4, TNfnA1,2,4,B,D, TNfnB,D, TNfnD,6, TNfn6, TNfn7,8, and 
TNfbg (20 p.g each in 100 ~Ll PBS) were preincubated with 200 p.Ci Na1251 
for 5 min at room temperature. Iodination was started by adding a poly- 
sterene bead coupled with the oxidizing reagent N-chloro-benzene- 
sulfonamide (IODO-BEADS, Pierce, BA Oud-Beijerland, The Nether- 
lands). After 15 rain incubation at room temperature the reaction was 
ended by separating the solution from the bead. Labeled protein was 
loaded onto a Sephadex G10 column (Pharmacia LKB) equilibrated with 
PBS, 0.1% wt/vol gelatine, 0.1% wt/vol azide, pH 7.4, and nonincorpo- 
rated Na125I was removed by gel filtration. Peak fractions were monitored 
by ~,-counting, pooled, and stored at 4°C. The integrity of the radioiodi- 
nated proteins was checked by SDS-PAGE on 12% or 17.5% gels and 
subsequent autoradiography. Specific activity was determined as de- 
scribed earlier (Faissner et al., 1990) and yielded for TN-C: 3.6 }~Ci/p,g of 
protein; TNegf: 3.2 izCi/i-~g; TNfnl-3:2.7 ~.Ci/~g; TNfn4,5:0.68 i~Ci/p.g; 
TNfnA1,2,4:0.36 ixCi/ixg; TNfnB,D: 1.59 IxCi/t~g; TNfnA1,2,4,B,D: 0.17 
~Ci/~g; TNfnD,6:2.38 ixCihzg; TNfn6:2.24 }~Ci/ixg; TNfn7,8:1.23 ~xCi/~g; 
and TNfbg: 0.5 ixCi/l~g. 

Enzyme-linked lmmunosorbent Assay 
Screening Procedures 
Microtest flexible assay plates (Falcon, Becton Dickinson GmbH, Heidel- 
berg, Germany) were coated overnight with 50 p.l per well of recombinant 
TN-C domains diluted to 20 Ixg/ml protein in PBS. For titration of protein 
substrates, dilutions of TN-C and derived recombinant domains ranging 
from 0.2 p.M to 0.1 nM and 5 ~M and 1 nM, respectively, were applied to 
the wells. After coating, the plates were washed five times with PBS and 
blocked for 1 h with 2 mg/ml BSA in PBS. The antibodies J1/tnl, J1/tn2, 
J1/tn3, and J1/tn5 were applied following published procedures (Faissner 
and Kruse, 1990; Hnsmann et al., 1992); subsequently, the ELISA plates 
were kept for 1 h at 37°C, washed three times with PBS, 0.05% (wt/vol) 
Tween 20 (PBS-Tween), incubated for 1 h at 37°C with HRP-derivatized 

secondary anti-rat antibodies (0.16 Izg/ml), washed three times with PBS- 
Tween and developed with 2,2'-Azino-di-[3-ethylbenzthiazoline sul- 
fonate] (ABTS). The reaction was stopped by addition of SDS to a final 
concentration of 0.2% (wt/vol). The colored reaction product was quanti- 
fied with an ELISA reader at 405 nm (Titertek multiskan, Flow Laborato- 
ries, Meckenheim, Germany). In some cases, binding of mAbs to immobi- 
lized TN-C was competed by addition of recombinant TN-C proteins. 
Standard concentrations of mAb were preincubated with various dilutions 
of recombinant proteins containing the respective antibody-binding site, 
or control proteins taken from distinct segments of TN-C, and subse- 
quently used for ELISA as described above. 

Cell Culture and lmmunocytology 
Cultures of cerebellar neurons from postnatal day 6 (P6) mice were estab- 
lished by fractionation of cell suspensions on a Percoll gradient (Pharma- 
cia) as detailed elsewhere and kept in BME 10% horse serum (HS) (Keil- 
hauer et al., 1985; Faissner and Kruse, 1990). Rat hippocampal neurons 
were prepared according to standard procedures (Banker and Cowan, 
1977) except for some modifications. In brief, hippocampi were dissected 
from brains of embryonic day 18 (El8) rat fetuses in 37°C Ca-Mg-free 
Hanks balanced salt solution (H:BSS) plus 0.6% (wt/vol) glucose and 7 mM 
Hepes, pH 7.4, treated with 0.25% trypsin for 15 rain at 37°C, washed 
three times with HBSS, and dissociated by repeated passages through a 
fire polished Pasteur pipette. The cells were cultivated in MEM containing 
the N2 supplements of Bottenstein and Sato (1979) plus ovalbumin (0.1% 
wt/vol) and pyruvate (0.1 mM). Cerebellar microexplants were prepared 
from P6 mouse cerebella according to published protocols (Fischer et al., 
1986) and maintained in modified SATO medium containing 1% (vol/vol) 
HS (Trotter et al., 1989): Analysis of the cultures using double immuno- 
fluorescence-labeling techniques with mono- and polyclonal antibodies 
followed standard procedures (Faissner and Kruse, 1990). For staining of 
E18 hippocampal neurons in microtiter plates, cultures were fixed with 
2.5% (vol/vol) glutaraldehyde in ddH20, washed once with PBS (200 ill/ 
well) for 12 min and blocked with 0.1 M glycine in PBS (100 I.d/well) for 20 
rain. This and the following steps were all carried out at room tempera- 
ture. Thereafter, neurons were permeabilized by addition of 0.2% (vol t 
vot) Triton X-100 in PBS for 90 s and washed five times with 1% (wt/vol) 
BSA in PBS (200 i~l/well, 2 min). Subsequently, a monoclonal anti-tubulin 
antibody (T-9026, Sigma) was added at 1:4,000 in 1% (wt/vol) BSA, 0.1% 
(vol/vol) Tween-20 in PBS for 30 min. After five washes with PBS contain- 
ing 1% (wt/vol) BSA, HRP-coupled secondary antibody diluted 1:5,000 in 
PBS, 1% (wt/vol) BSA was added for 30 min. Incubation was ended by 
five washes with PBS, 1% (wt/vol) BSA and the color reaction was devel- 
oped with diamino-benzidine (DAB). The reaction was blocked by wash- 
ing with ddH20 and the culture was dried for morphological inspection. 
Dorsal root ganglia from P0 or P1 mice were prepared by opening decapi- 
tated mice at their dorsal side, cutting through the spinal cord and back- 
bone with a scalpel and peeling out the cord using forceps to bend back 
the vertebrae. The ganglia were placed in HBSS on ice and tissue and 
nerve fibers sticking to the explants were removed (Seilheimer and 
Schachner, 1988). Whole ganglia were transferred into culture medium 
consisting of DMEM medium supplemented with 2 mM L-glutamine, 15 ng/ 
ml nerve growth factor (Sigma), and 2 × 10 -5 M Arabinosylcytosine 
(AraC, Sigma). The properties and culture conditions of the astroglial cell 
line neu-7 have recently been discussed (Smith-Thomas et al., 1994). 

Cell-binding Assay 
Nitrocellulose supports for cell culture were produced after established 
procedures (Lagenaur and Lemmon, 1987; Faissner and Kruse, 1990). In 
brief, 25 cm 2 of BA 85 nitrocellulose (Schleicher and Schuell, Dassel, Ger- 
many) were solnbilized in 50 ml methanol, 1-ml aliquots were dispensed 
to 3-cm plastic petri dishes (Nunc) and dried under sterile conditions. For 
adhesion assays, 5-~1 droplets containing recombinant proteins or ECM- 
molecules at 50 l~g/ml were applied overnight in triplicate to nitrocellu- 
lose-coated surfaces in a humidified atmosphere at 37~C, after established 
procedures (NSrenberg et al., 1995). Thereafter, the petri dishes were 
washed three times with PBS and blocked by incubation with 2% (wt/vol) 
heat-inactivated (5 min, 70°C) fatty acid-free bovine serum albumin 
(BSA; Boehringer Mannheim) for 1 h. Subsequently, the dishes were 
washed with HBSS, and freshly dissociated P6 cerebellar or El8 hippo- 
campal neurons were plated in their culture media (see above) at a density 
of 3 × 106 and 106 cells per dish, respectively. After 1 h or 24 h of incuba- 
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tion, the dishes containing cerebellar neurons were gently washed three 
times with PBS and the cultures fixed by flooding with PBS containing 4% 
(wt/vol) paraformaldehyde (PA). Dishes with hippocampal neurons were 
fixed by direct addition of glutaraldehyde to 2.5% (vol/vol) final concen- 
tration and washed by gentle flooding with PBS. The number of substrate- 
attached cells was determined by counting the cell bodies in nine visual 
fields (~0.3 mm 2 per visual field). For perturbation assays, mono- and 
polyclonal TN-C antibodies were incubated at various concentrations in 
PBS with the culture substrate for I h at 37°C after blocking with BSA and 
were thereafter added to the culture medium at the same concentrations. 

Repulsion Assay 
The assay for the detection of repulsive properties of TN-C or recombi- 
nant TN-C domains was carried out as described earlier (Faissner and 
Kruse, 1990). l l -mm-diam glass coverslips were washed in concentrated 
HNO3 for 3 h, rinsed in ddH20 until the pH reached 7.0, dried on sheets 
of filter paper and heat sterilized in a glass bottle. Thereafter, coverslips 
were placed into 24-well plates (Falcon) and incubated for 1-2 h in 15 ~g/ 
ml poly-oL-ornithine (PORN; Sigma) in 0.1 M Na2HBO3, pH 8.2 (borate 
buffer). After the incubation, the coverstips were washed three times with 
ddH20 and air dried. Specified concentrations of protein in 50 Ixl PBS 
were incubated overnight on the coverslips at 37°C in a humidified atmo- 
sphere containing 5% CO2. Subsequently, coverslips were washed twice 
with PBS. For creation of patterned substrates, the coverslips were cov- 
ered with 50 ~1 of HBSS and bound protein was removed by gentle scrap- 
ing with the tip of a plastic pipette. The HBSS was removed and replaced 
with the appropriate culture medium. Freshly dissociated neurons were 
plated in their respective culture media at a density of 1.5 × 105 cells per 
coverslip. The cultures were fixed with 4% (wt/vol) PA in PBS after 72 h. 
To assess repulsive substrate properties of recombinant TN-C domains for 
growing neurites, cerebellar explants instead of single cell suspensions 
(see cell culture) were plated on patterned coverslips. Cerebellar explants 
obtained from one cerebellum were seeded on four glass coverslips (15 
mm diam). The explants were cultured for 72 h and fixed with 4% (wt/vol) 
PA in PBS. 

Neurite Outgrowth Assays 
Neurite outgrowth of El8  hippocampal neurons plated on PORN-condi- 
tioned supports coated with various TN-C recombinant proteins was de- 
termined as published elsewhere (Lochter et al., 1991; Faissner et al., 
1994b). In brief, chamber slides (Nunc) were treated with 1.5 p.g/ml 
PORN in 0.1 M borate buffer, pH 8.2, for 1 h at 37°C in a humidified at- 
mosphere. ECM glycoproteins and recombinant proteins were coated at 
concentrations ranging from 10-50 Ixg/ml in 100 ILl PBS per well for 1 h or 
overnight at 37°C in the incubator. The chambers were washed twice with 
HBSS before plating E18 hippocampal neurons at 8,000 cells/cm 2. After 
24 h of culture, neurons were fixed by addition of glutaraldehyde to 2.5% 
(vol/vot), gently washed with PBS and stained for 15 min with 0.5% (wt/ 
vol) toluidine blue in 2.5% (wt/vol) Na2CO3. Alternatively, wells of 96- 
microtiter plates (Nunc) were conditioned with poly-DL-ornithine (1.5 p,g/ 
ml, 50 Ixl/well) for 1 h at 37°C and washed twice with PBS. Thereafter, fu- 
sion proteins were coated at 50 t~g/ml in PBS (50 ~l/well) overnight at 
37°C and washed twice with PBS immediately before cell plating. El8  hip- 
pocampal neurons were seeded at 7,000 cells/cm 2 (2,000 neurons/well) and 
fixed in defined culture medium with 2.5% (vol/vol) glutaraldehyde in 
ddH20 (50 ~l/well) for 15 min at room temperature. After fixation, cells 
were washed three times with PBS (200 ixl/well), stained with toluidine 
blue (50 p.l/well) for 1 h at room temperature or stained for tubulin. Wells 
were air dried after two final washes with ddH20 (200 pA/well). For quan- 
titative analysis, the fraction of cells bearing neurites was quantified by 
counting at least 200 ceils per well. The morphometric analysis of neurite 
lengths was performed with the system Quantimet 500 MC (LEICA, Ben- 
sheim, Germany) by measuring 50 randomly drawn neurons with a pro- 
cess longer than one neuronal cell body diameter. At least three inde- 
pendent experiments were analyzed. The data were evaluated using 
nonparametric statistics, as detailed recently (Faissner et al., 1994b). Dis- 
tribution of the longest neurites were compared using the nonparametric 
Mann-Whitney U-test. The mean values of sums of the longest neurites 
were compared by t-test. Stimulation of neurite outgrowth from PNS tis- 
sues was determined by growing P0/P1 mouse DRGs in tissue culture 
plastic petri dishes (3-cm diam, Nunc) coated with TN-C or recombinant 
proteins at 20 txg/ml overnight at 37°C. The substrates were blocked with 
0.5% (wt/vol) BSA for 2 h. At least 10 explants were plated per dish and 

test protein substrate. In some cases, the substrates were preincubated af- 
ter BSA treatment with mAbs against TN-C at a concentration of 60 ~g/ 
ml in PBS for an additional 2 h. Thereafter, the substrates were washed 
twice with HBSS and the mAbs were added to the culture medium at 60 
I~g/ml for the duration of the experiment (Lochter et al., 1991). After 48 h 
the D R G  cultures were fixed for 1 h by the addition of glutaraldehyde to a 
final concentration of 2.5 % (vol/vol). 

Determination of Substrate Coating Efficiency 
Microtiter plates (96 wells, Nunc) were coated with nitrocellulose (solubi- 
lized in methanol) or polyornithine (1.5 i~g/ml in 0.1 M borate buffer, pH 
8.2) and incubated with recombinant proteins. ELISAs were carried out 
with an mAb (0.01-0.1 Ixg/ml) specific for the TT-tag of the fusion proteins 
(50 I~1 per well) used at several concentrations (0.1-50 i~g/ml) and goat- 
anti-mouse-HRP secondary antibodies (0.2 p,g/ml). ELISAs were devel- 
oped with ABTS and soluble color reaction products were quantified at 
OD405. To quantify the amounts of protein adsorbed to the various sub- 
strates used for cell culture or ELISA procedures, coating solutions were 
replenished with the corresponding 125I-labeled proteins as radioactive 
tracers. 2 x 104 cpm (9 nCi) of radioactive TN-C or recombinant protein 
corresponding to 1-5 ng of protein (depending on the specific activity) 
were added to the coating solution and substrates were created as de- 
scribed earlier. Subsequently, substrates were washed and bound radioac- 
tivity was detached by incubation with 0.1 N NaOH, 1% wt/vol SDS for 20 
min at room temperature. Both the unbound radioactivity after the coat- 
ing step and the bound radioactivity were measured by "y-counting. The 
percent-fraction, the molarity, and, where appropriate, the density of ad- 
sorbed protein were calculated for the different recombinant proteins and 
substrates used in this study. In some cases, proteins with tracers were 
subjected to doubling dilution series and the dependence of coating effi- 
ciency from the protein concentration was determined. 

Figure 1. D o m a i n  s t ruc tu re  of  TN-C.  T N - C  consis ts  of  a serial  ar- 
r a n g e m e n t  o f  a m i n o - t e r m i n a l  E G F - t y p e  r epea t s  fo l lowed by 
FNI I I  r epea t s  and  ca rboxy- t e rmina l  h o m o l o g i e s  to f ib r inogen  13 
and  ~/. (A)  Severa l  i so fo rms  have  b e e n  desc r ibed  for T N - C  which  
are  g e n e r a t e d  by a l te rna t ive  splicing o f  vary ing  n u m b e r s  of  re- 
pea t s  (shaded boxes) b e t w e e n  FNI I I  d o m a i n s  5 and  6. T h e  largest  
i so fo rm desc r ibed  in m o u s e  f ibroblas ts  is s h o w n  (Wel le r  et  al., 
1991). T h e  m e a n i n g  o f  the  geomet r i ca l  s y m b o l s  is indicated.  (B) 
T h e  l ibrary of  r e c o m b i n a n t  d o m a i n s  o f  T N - C  c loned  in to  the  
pTrc -Hi s  vec tors  is i l lustrated.  T h e  n o m e n c l a t u r e  n o t ed  at the  
ca rboxy  t e r m i n u s  fol lows a r ecen t  sugges t ion  (Au k h i l  et  al., 
1993). T h e  s e q u e n c e  R V D  is de s igna t ed  in the  th i rd  FNI I I  do-  
m a i n  TNfn3  to e m p h a s i z e  tha t  the  R G D  mot ive  p r e s e n t  at this  
pos i t ion  in ch icken  and  h u m a n  T N - C  has  b e e n  subs t i t u t ed  in  t h e  
m o u s e  gene.  
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Results 

Construction of a Library of Recombinant 
TN-C Domains 

To advance the understanding of the structure-function 
relationships of TN-C for neural cell types expression vec- 
tors which contain defined domains were constructed on 
the basis of available eDNA clones for mouse TN-C (Fig. 1 
A; Weller et al., 1991). eDNA segments, amplified by PCR 
or based on natural restriction sites (Table I), were cloned 
into a polyhistidine-tagged expression vector. The nomen- 
clature of the resulting expression proteins follows earlier 
suggestions of the literature (see Aukhil et al., 1993, Fig. 1 
B). After induction and lysis of transformed bacteria 
TNfnl-3, -fn4,5, -fn6, and -fn7,8 were soluble in PBS. 
These recombinant proteins were purified in a single step 
by affinity chromatography on Ni2+-chelate ProBond TM 

resin (Fig. 2 A). After this schedule, the purification of the 
soluble expression proteins yielded between 5 mg/1 (TNfn6) 
and up to 25 mg/1 of bacterial culture (TNfnl-3). In contrast 
to these domains, TNegf, TNfnA1,2,4,B,D, TNfnA1,2,4, 
TNfnB,D, TNfnD,6, and TNfbg required 8.0 M urea for 
solubilization and were enriched as described above, with 
the exception that urea-containing buffers were used 
throughout the procedure. TNfnD,6 was purified to the 
same degree as the other fusion proteins and comigrated 
with TNfn4,5 or TNfn7,8 in SDS-PAGE (not shown). In 
some cases, an additional step was necessary to remove 

contaminating proteins. Thus, TNfnA1,2,4,B,D was fur- 
ther purified by anion exchange chromatography in the 
presence of 8.0 M urea. Fractions were monitored by SDS- 
PAGE and those containing the recombinant protein were 
pooled (Fig. 2 B). Proteins which had been processed in 
the presence of urea were renatured by dialysis against 
cystamine-supplemented buffer and, finally, against PBS. 
All recombinant proteins stayed in solution and only mi- 
nor degradation could occasionally be observed (Fig. 2 C). 
Degradation bands represented <5% of the recombinant 
protein as judged by densitometry of Coomassie-stained 
gels or Western blots. These components were derived 
from the fusion constructs because they were specifically 
recognized by the anti-T7 tag mAb which reacts with an 
l l - amino  acid motif contained in the T7 phage capsid that 
follows the polyhistidine stretch of the expression vector 
(not shown). When available, the structural relationship to 
TN-C was further confirmed with adequate mAbs, as 
shown for J1/tnl (Figs. 2 B and 4 A). TNfbg behaved dif- 
ferently from these proteins in that it partially formed pre- 
cipitating aggregates in physiological salt solutions which 
had to be removed by centrifugation before use in bioas- 
says (see below). To estimate the degree of aggregation, 
the recombinant proteins were examined by gel filtration 
in physiological salt buffer. The proteins migrated at their 
appropriate, predicted apparent Mr positions, as deduced 
from monitoring the collected fractions by OD280, SDS- 
PAGE and Western blot with appropriate antibodies (Fig. 3). 
The conclusion that the recombinant proteins consisted of 

Figure 2. Purification of recombinant 
TN-C domains. An example of purifi- 
cation under physiological conditions 
is given in A. After induction and lysis 
of bacteria, pellet and supernatant 
were separated by centfifugation. The 
final lane displays the enrichment of 
TNInl-3 obtained by one-step affinity 
chromatography on Ni2+-chelate resin. 
B shows further purification of 
TNfnA1,2,4,B,D by anion-exchange 
chromatography in the presence of 
urea. SDS-PAGE under reducing con- 
ditions of fractions monitored by 
ODes0 is shown. The pooled fractions 
contain a minor degradation band 
which is specifically recognized by 
mAb J1/tnl (Fig. 4 A). A survey of re- 
combinant TN-C domains is shown in 
C. In all cases, SDS-PAGE was per- 
formed in 17.5% gels which were 
stained with Coomassie brilliant blue. 
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Figure 3. Characterization of recombinant TN-C proteins by gel 
filtration. To assess the degree of protein aggregation, TNfnl-3 
was analyzed by size exclusion chromatography. (A) As shown by 
OD280 measurement (left ordinate), the majority of the protein 
was recovered as a single peak. The ratios of elution (VE) vs ex- 
clusion volume (V0) are indicated on the abscissa. Mr markers 
(right ordinate) were alcohol dehydrogenase (150 kD), BSA 
(66 kD), egg white albumin (45 kD), and carbonic anhydrase 
(29 kD). (B) Fractions obtained in A were resolved by SDS- 
PAGE on 17.5% gels and the identity of the protein was con- 
firmed by Western blotting with polyclonal pTN antibodies. An 
autoradiogram of a blot developed with 125I-protein A is shown. 
The lower molecular weight bands represent degradation prod- 
ucts which elute at later positions because they are also recog- 
nized by mAb T7 which is specific for a protein motif encoded by 
the expression vector. (C) Recovered TNfnl-3 protein was in- 
spected by electron microscopy of a rotary-shadowed sample. No 
obvious aggregates were visible in the homogeneous preparation. 
Comparable results with regard to gel filtration, Western blot, 
and rotary shadowing electron microscopy were obtained for all 
recombinant proteins containing FNIII-repeats. Bar, (C) 50 nm. 

homogeneous, singular proteins comprising TN-C do- 
mains was further supported by electron microscopy of ro- 
tary shadowed preparations which yielded results compa- 
rable to those published in the literature (Aukhil et al., 
1993), e.g., rodlike shapes for FNIII-repeats and a globular 
appearance of TNfbg (Fig. 3, and not shown). 

Mapping the Epitopes o f  mAbs Specific for  TN-C 

The integrity of the fusion proteins was confirmed by im- 
munochemical studies with a panel of defined mAbs to 

mouse TN-C. Some of these are known to interfere with 
functional properties of the intact glycoprotein (Lochter et 
al., 1991; Husmann et al., 1992). The epitopes of these 
mAbs were mapped by ELISA techniques which expose 
the recombinant domains in a nondenatured way. In all 
cases the mAbs attached to their binding sites, which ren- 
ders misfolding of the corresponding recombinant pro- 
teins unlikely. These experiments confirmed and refined 
conclusions which were obtained earlier on the basis of 
electron microscopy of rotary shadowed mAb/TN-C com- 
plexes (Lochter et al., 1991; Husmann et al., 1992). In par- 
ticular, the epitope for mAb J1/tnl was located on 
TNfnA1,2,4, that is on the alternatively spliced region of 
the glycoprotein. This finding was confirmed by Western 
blot (Fig. 4 A). J1/tn2 bound to TNfnB,D and TNfnD,6 
but not to TNfn6 using ELISA techniques (Fig. 4 B). 
Therefore, the epitope for J1/tn2 has been allocated to 
TNfnD. J1/tn3 bound to TNegf and J1/tn5 to TNfn4,5 us- 
ing ELISA techniques, as predicted (not shown). Western 
blots carried out with the library of recombinant proteins 
confirmed these attributions. Only in case of J1/tn2 an ad- 
ditional, although weak reaction with TNfn6 could occa- 
sionally be disclosed (not shown). In these experiments, 
TNegf seemed partially degraded in some cases, because 
several bands immunoreactive with J1/tn3 were detected 
in lower molecular weight regions (not shown). As nega- 
tive control, lysates of E. coli transformed with pTrc-HisA 
without cDNA insert were used. In a second series of ex- 
periments, the recombinant proteins were immunologi- 
cally compared to native TN-C isolated from postnatal 
mouse brains. To this end, TN-C and recombinant do- 
mains were adsorbed onto microtiter plates at various con- 
centrations and probed by ELISA. When compared at 
equal coating molarities, both intact TN-C and domains 
which are recognized by specific mAbs yielded compara- 
ble OD-values, while control recombinant proteins which 
did not harbor the mAb epitopes resulted in background 
signals (Fig. 4 C). These values reflected equal numbers of 
mAb binding sites because the molar amounts of protein 
bound to the wells of the assay plates were in the same 
range at equivalent signal intensities (Fig. 4 D). These re- 
sults suggest that four available mAbs to distinct epitopes 
recognized their respective recombinant proteins with the 
same affinity as intact TN-C, and, therefore, the prepara- 
tions of recombinant domains contained similar fractions 
with correctly folded antigenic sites than the native glyco- 
protein. For these reasons, it seems plausible to assume 
that the relative activities of the proteins are comparable. 

Adhesion and Growth o f  C N S  Neurons on 
Recombinant Domains 

To identify potential binding sites for neurons, the recom- 
binant TN-C domains were used in short (1 h) or medium 
term (24 h) adhesion assays using normal gravity (1 g). To 
this end, TN-C and the derived recombinant proteins were 
adsorbed to translucent nitrocellulose (Lagenaur and 
Lemmon, 1987; Faissner and Kruse, 1990). For screening 
purposes, a standard coating concentration of 50 txg/ml 
was chosen, which resulted in similar protein contents, but 
different molar concentrations in the culture substrate in 
dependence of the protein mass (Table II). This should 
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Figure 4. Epitope mapping of mAbs 
specific for mouse TN-C. The library of 
recombinant TN-C domains was used 
to map the binding sites of defined 
mAbs to TN-C. Assignments were 
based on ELISA and Western blots. 
(A) Whole cell lysate of bacteria trans- 
formed with the poly-histidine expres- 
sion vector without insert (50 p.g) was 
loaded in the first lane as negative con- 
trol. 1 p.g recombinant protein per lane 
as indicated were resolved by SDS- 
PAGE and the corresponding Western 
blot was developed with mAb J1/tnl. 
Note that only TNfnA1,2,4 and 
TNfnA1,2,4,B,D are reactive, which lo- 
cates the epitope to the amino-termi- 
nal part of the alternatively spliced 
domains. The minor bands are degra- 
dation products of the recombinant 
protein because they reacted specifi- 
cally with J1/tnl and the mAb T7 to 
the T7 tag, but not with mAb J1/tn2 
(A, and not shown). (B) The recombi- 
nant proteins were coated to PVP 
plates and ELISA was carried out with 
J1/tn2. Note that TNfnA1,2,4, B,D, 
TNfnB,D, TNfnD,6, but not TNfn6 are 
immunoreactive, which places the 
epitope to the alternatively spliced FN 
III repeat D. (C) To titrate the mAb- 
binding sites of the recombinant do- 
mains, the proteins were coated at vari- 
ous concentrations as indicated. The 
mAbs J1/tnl (open circles), J1/tn2 
(open triangles), and J1/tn5 (open 
squares) yielded similar dose response 
curves on their epitopes TNfnA1,2,4, 
TNfnD,6, and TNfn4,5, respectively. 
The mAbs did not react with the con- 
trol protein TNfnl-3, as shown for J1/ 
tn5 (filled squares) only, for the sake of 
clarity. Note that specific signals are 
still obtained at 0.01 I~M coating con- 
centration. (D) The amount of protein 

bound to the wells was determined by using 125I-labeled tracer proteins and plotted against the OD-values obtained in the ELISA. Note 
that TNegf (open circles) and TN-C (open squares) result in similar binding curves for mAb J1/tn3, suggesting that equivalent OD val- 
ues reflect equal numbers of mAb-binding sites. No signal was observed on the control TNfnl-3 (open triangles). Analogous results 
were obtained for the proteins used in C. Values in C and D were determined in triplicate and three experiments were carried out with 
similar results. Standard deviations were <10% of the corresponding OD values (not shown). 

not  be critical for the results of the cell culture assays, be- 
cause earl ier  studies had a l ready documented  that  recom- 
binant  TN-C prote ins  yield maximal  cell biological  re- 
sponses at significantly lower coating concentrat ions,  e.g., 
10-15 p~g/ml, or  less (Joshi et al., 1993; Aukhi l  et al., 1993). 
In view of the possible differences in the dependence  of  
deve lopmenta l  stage and/or  l ineage, E l 8  h ippocampal  
were compared  to P6 cerebellar  neurons. Af te r  1 h, hippo-  
campal  neurons were substantial ly enriched on the recom- 
binant  prote ins  which span the al ternat ively spliced re- 
gion, and these domains  were also adhesive after 24 h (Fig. 
5 A).  The binding was more  p ronounced  than on laminin, 
which by itself showed weak,  al though statistically signifi- 
cant  cellular a t tachment  within 1 h. The  slight differences 
between the recombinant  proteins  spanning the al terna-  

tive splice site might reflect variances of their  respective 
coating efficiencies (Table  II). Yet,  h ippocampal  neurons 
did not  form monolayers  on these substrates.  Instead,  indi- 
vidual  cell bodies  assembled to small  clusters which were 
in terconnected by fasciculating fibers (Fig. 6). Similar net- 
works of small h ippocampal  neuron aggregates also 
emerged  on TN-C,  TNfnl -3 ,  TNfn6, TNfn7,8, and TNfbg 
after  24 h of incubation,  which documents  that  the cells are 
able to respond  to these proteins.  In all of these cases, ad- 
herence to the substrates was weak and aggregates could 
be dis lodged by thorough washing. In this series of experi-  
ments, only TNfn4,5 behaved  exceptional ly because it was 
not  adhesive at all. In contrast,  h ippocampal  neurons de- 
ve loped a monolayer  on the control  substrate  laminin-1 
within 24 h, as expected (Fig. 6). TN-C is known to medi-  
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Figure 5. Short-term binding of CNS neurons to TN-C domains. 
E l8  hippocampal (A, 500 cells/mm 2) and P6 cerebellar (B, 1,500 
ceUs/mm 2) neurons were plated on spots of laminin-1, TN-C, and 
TN-C-derived recombinant proteins adsorbed to nitrocellulose 
(5 Ixl of protein per spot, 50 t~g/ml), incubated for 60 min at 37°C, 
gently washed, and fixed. The columns give the number of cells 
per mm 2 binding to the proteins, three spots per protein were 
evaluated and at least three independent experiments were car- 
ded out. Note that distinct proteins contain short-term cell-bind- 
ing sites, and these differ for hippocampal and cerebellar neu- 
rons, which suggests lineage-dependent interaction modes. Overall, 
the attachment of hippocampat proved weaker than the one of 

ate the attachment of cerebellar neurons to astrocyte sur- 
faces in short-term assays (Kruse et al., 1985; Faissner et 
al., 1988). Within 1 h of incubation, attachment of P6 cere- 
beUar neurons was observed on TNfnl-3, TNfnA12,4, TN- 
fnB~D, TNflaA1,2,4,B,D, TNfn6, and TNfla7,8. These neurons 
adhered only weakly, or not at all to TNegf, TNfn4,5, TN- 
fbg, or intact TN-C (Figs. 5 B and 7). Interestingly, the pic- 
ture was different after 24 h of incubation in that a devel- 
oping monolayer culture was visible on TNfnl-3, while the 
other recombinant proteins did not support further neu- 
ronal growth. Instead, the ceils detached from the protein 
spots or formed weakly adherent aggregates, in some cases 
in particular, on TNfnA1,2,4 and TNfnA1,2,4,B,D (Figs. 5 
and 7). As expected, laminin-1 proved an excellent sub- 
strate for cerebellar neurons both after 1 and 24 h of incu- 
bation (Figs. 5 and 7). In contrast, the astrocytic cell line 
neu-7 preferentially adhered to TNfnl-3 and TNfbg, which 
indicates lineage-dependent cellular binding specificities 
for TN-C (not shown). Interestingly, the distinct responses 
of El8  hippocampal and P6 cerebellar neurons to different 
components of the library of recombinant domains cannot 
be explained by varying concentrations of protein on the 
culture substrate, as evidenced by systematic analysis of 
coating efficiencies using radiolabeled tracers (Table ,II). 
In particular, proteins of similar mass adsorbed to compa- 
rable extents to nitrocellulose or plastic carriers, as ex- 
pected, yet exerted different effects on cell binding and 
growth, e.g., TNfnB,D as compared to TNfn4,5 and 
TNfn7,8 (Table II; Fig. 5). Therefore, the behavior of 
these neurons on the different culture substrates might re- 
fleet distinct cell interactions with recognition sites, pre- 
sumably via selective receptors. This notion was rein- 
forced by systematic perturbation studies with specific 
mono- and polyclonal antibodies. Thus, the mAbs J1/tnl 
and J1/tn2 specifically interfered with the attachment of 
cerebellar neurons to the proteins containing their epi- 
topes, which are TNfnA1,2,4 and TNfnA1,2,4,B,D, and 
TNfnB,D and TNfnA1,2,4,B,D, respectively, at concentra- 
tions as low as 10 I~g/ml (Table III). The polyclonal anti- 
body pTN (batch KAF9(2); Faissner and Kruse, I990) 
reduced cell binding to the recombinant proteins it recog- 
nizes according to ELISA and Western blot in a concen- 
tration-dependent manner (Table III, and not shown) and 
polyclonal antibodies generated against TNfnA1,2,4 were 
most efficient in suppressing attachment to their antigen 
(Table III). These results support the view that the recom- 
binant proteins are correctly folded and expose specific 
recognition sites for cerebellar neurons. Summarizing at 
this point, TN-C contains cell-binding sites for both hip- 
pocampal and cerebellar neurons. On the other hand, the 

cerebellar neurons. This, in conjunction with lower plating densi- 
ties, resulted in experimental variance with high standard devia- 
tions. Statistical analysis using the Mann-Whitney U-test con- 
firms, however, that binding of E18 hippocampal neurons to 
TNfnA1,2,4 (P < 0.005), TNfnB,D (P < 0.005), TNfnA1,2,4,B,D 
(P < 0.005), TNfbg (P < 0.05), and laminin-1 (P < 0.005) was signif- 
icantly different from attachment to TN-C. The protein concen- 
trations in the spots are detailed in Table II and do not account 
for the distinct binding properties. For example, TNfn4,5 (4.40 
pmol/cm 2) does not exhibit cell attachment, although its molar 
concentration in the substrate is twice that of TNfn7,8 (2.03 pmol/ 
cm2), which displays short-term binding of cerebellar neurons (B). 
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Figure 6. Growth of E18 hip- 
pocampal neurons on TN-C 
domains. Phase contrast mi- 
crographs of hippocampal neu- 
rons maintained for 24 h on 
nitrocellulose coated with lami- 
nin-1, TN-C, TNfn4,5, and 
TNfnA1,2,4. Hippocampal neu- 
rons differentiate on laminin-1 
and form interconnected ag- 
gregates on TN-C (0.94 pmol/ 
cm 2, Table II) and TNfnA1,2,4 
(5.8 pmol/cm2). Note that no 
process outgrowth is observed 
on TNfn4,5 (4.4 pmol/cm2). For 
comparison with other pro- 
teins see Table II. Bar, 50 Ixm. 

intact glycoprotein proves a bad culture substrate for these 
cell types. This apparent contradiction probably results 
from the presence of anti-adhesive sites which override 
the conducive properties, as described below. 

Identification of Domains Repulsive for Neuronal Cells 

Although TN-C contains cell-binding sites, the glycopro- 
tein exerts anti-spreading, repulsive effects on most cell 
types (Chiquet-Ehrismann, 1991). With the aim to un- 
cover domains which might underlie these anti-adhesive 
effects, the recombinant domains were applied in a pat- 
terned fashion to poly-ornithine (PORN)-conditioned 
coverslips. The composition of the substrate as compared 
to the position of cell bodies was visualized by indirect im- 
munofluorescence using a mAb against the T7 tag of the 
fusion proteins. Cerebellar neurons were plated at high 
density and their distribution monitored after various culture 
periods. Under these conditions, P6 cerebellar neurons 
avoided areas which contained TN-C, TNegf, TNfnA1, 
2,4,B,D, or TNfnA1,2,4 and arranged in stripes on the ad- 
jacent PORN-conditioned, protein-free parts of the cover- 
slips (Fig. 8). When neurons grew on surfaces coated with 
these recombinant proteins, they formed aggregates inter- 
connected by fasciculating neurites. These effects could al- 
ready be observed after 12-24 h, and did not change over 

the following culture period, as described earlier for intact 
TN-C (Faissner and Kruse, 1990). In contrast, patterned 
substrates consisting of PORN/fibronectin, -/BSA, -/TNfnl- 
3, -/TNfn4,5, -/TNfnB,D, -/TNfn6, -/TNfn7,8, and -/TNfbg 
did not significantly influence culture morphology. Inter- 
estingly, analogous observations were collected when El8  
hippocampal instead of P6 cerebellar neurons were used. 
Differing from the results obtained with cerebellar neu- 
rons, however, TNfn4,5 also exhibited weak repulsive ef- 
fects towards hippocampal neurons (Table IV). These ex- 
periments suggest that TNegf and the upstream half of the 
alternatively spliced region of TN-C, e.g., TNfnA1,2,4, en- 
code repulsive sites for central nervous system neurons. 
To assess whether this holds also true for growing neurites, 
cerebellar explants instead of single cell suspensions were 
used. These permit us to monitor the development of an 
impressive neuritic halo and of both astrocytic and neu- 
ronal emigration on supportive substrates (Ktinemund et 
al., 1988). On patterned substrates, fibers were specifically 
deflected by TN-C, TNegf, and TNfnA1,2,4, whereas the 
other recombinant proteins were not effective (Fig. 8). 
Neurites which crossed the boundaries showed a more fas- 
ciculated morphology than neurites growing on PORN 
alone. Deflection of neurites at step gradients between 
PORN and TN-C or the repulsive recombinant domains 
was apparent as soon as neurites grew to sufficient lengths 
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Figure 7. Attachment of P6 cerebeUar neurons on TN-C-domains. Phase contrast micrographs of cerebellar neurons maintained for i h 
or 24 h on nitrocellulose coated with TN-C, TNfnl-3, TNfnA1,2,4, and TNfn7,8 (50 ixg/ml). Neurons were plated as detailed in legend to 
Fig. 5. Note that cerebellar neurons do not adhere to TN-C (0.94 pmol/cm 2, Table II), form a monolayer on TNfnl-3 (1.76 pmol/cm2), 
elaborate dusters on TNfnA1,2,4 (5.80 pmol/cm2), and totally detach from TNfn7,8 (2.03 pmol/cm 2) within 24 h. Concentration differ- 
ences do not account for the distinct properties of adsorbed proteins. In particular, TNfnl-3 supports medium term culture, although its 
molar concentration on the substrate is lower than the one for TNfnA1,2,4 and TNfn7,8. For comparison with other proteins see Table 
II. Bar, 50 jxm. 
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Table II. Coating Efficiency of Recombinant Proteins and TN-C on Cell Culture Substrates 

Carrier 

Protein concentration 50 Ixg/ml 50/,tg/ml 20 txg/ml 

Coating efficiency I~g/cm 2 pmol/cm 2 p.g/cm 2 pmol/cm 2 p,g/cm 2 pmol/cm 2 

Nitrocellulose Tissue culture plastic (Nunc TC) 

% % % 

Protein 
TN-C 7.51 _+ 3.59 0.22 __ 0.11 0.94_+ 0.45 3,03 ± 1.23 0.24 _ 0.10 0.99 ± 0.40 4 . i l  ± 0.91 0.13 -- 0.03 0.53 -- 0.12 
TNegf  2.99 ± 1.97 0.09 ___ 0.06 1 . 2 4 -  0.82 3.12 - 0.58 0.24 ± 0.05 3.52 ± 0.65 5 . 5 0 -  1.13 0.17 ± 0.04 2.48 ± 0.51 
TNfnl -3  1.86 _+ 0.92 0.06 ± 0.03 1.76 ± 0.87 1.83 -+ 0.44 0.14 _+ 0.03 4.68 ± 1.13 3.04 +_ 0.90 0.09 + 0.03 3.10 ± 0.92 
TNfn4,5 3.56 -+ 0.67 0.11 -- 0.02 4.40 __ 0.83 0.69 ± 0.14 0.05 ± 0.01 2.50 -+ 0.50 1.64 ± 0,77 0.05 + 0.02 2.38 -- 1.12 
TNfnA1,2,4 6.07 ± 0.61 0.18 ± 0.02 5.80 - 0.58 3.34 -+ 0.31 0.26 ± 0.02 8.76 ± 0,82 6.24 ± 1.15 0.20 -+ 0.04 6.54 -+ 1.21 
TNfnB,D 2.78 ± 0.43 0.04 __ 0.01 2.00 __ 0.31 1.46 --- 0.25 0.11 _+ 0.02 5.64 -4- 0.96 6.04 -+ 6.48 0.19 ± 0.20 9.34 -+ 10.02 
TNfnA1,2,4,B,D 5.12 +_ 1.83 0.08 ± 0.03 1.60 ± 0.57 2.51 - 1.80 0.20 ± 0.14 4.21 _ 3.02 5.89 ± 1.05 0.18 - 0.03 3.96 ± 0.71 
TNfnD,6 3.68 + 2.10 0.11 ± 0.06 4.40 ± 2.50 1.08 + 0,27 0.08 ± 0.02 3.92 ± 0.99 1.65 ± 0.49 0.05 ± 0.02 2.40 - 0.71 
TNfn6 4.50 + 1.46 0.13 ± 0.04 8.44 ± 2.74 1.96 ± 0.32 0.15 + 0.02 12.36 ± 2.00 3.91 ± 1.13 0.12 ± 0.04 9.86 ± 2.85 
TNfn7,8 1.74 --- 0.87 0.05 --- 0.02 2.03 ± 1.00 0.40 ± 0.27 0.03 ± 0.02 1.47 ± 0.99 0.99 --- 0.87 0.03 ± 0.03 1.47 ± 1.29 
TNfbg 10.93 ± 4.84 0.33 --- 0.15 11,10 ± 4.92 1.99-+ 1.41 0.16 ± 0.11 5.91 ± 4.20 4.35 ± 2.31 0.14-+ 0.07 5.17--- 2.74 

TN-C and recombinant domains were coated as indicated with nSl-laheled tracer protein. The percent-fraction of bound protein was determined (1 st column) and consequent sub- 
strate concentrations were calculated in p~g/cm 2 (2nd column) and pmol/cm 2 (3rd column). Molarities were calculated for TN-C monomers assuming an apparent molecular mass 
of 240 kD. At least three singular measurements were performed per protein and values obtained in three independent experiments were pooled and used for the determination of 
standard deviations. Note that the percent-fractions of protein bound to the substrate appear lower on plastic than on nitrocellulose, although comparable substrate concentrations 
were reached. This reflects the fact that larger volumes, and hence absolute amounts of protein, were incubated in the wells of microtiter plates as compared to the nitrocellulose 
surface. No differences were found when the cell culture plastic was pretreated with poly-DL-omithine (1.5 p,g/ml) before the application of protein solutions. The substrate con- 
centrations obtained with the present design compare well with earlier reports for laminin-1 and fibronectin. Thus, fibronectin coated at 50 p~g/ml resulted in 740 ng/em 2 on poly- 
styrene (Calof and Lander, 1991), and laminin- I yielded 79 and 295 ng/cm 2 on polystyrene when coated at 5 and 50 p,g/ml, respectively (Calof and Lander, 1991), and 1,000 ng/ 
cm 2 on tissue culture plastic when applied at 10 p,g/ml (Buetmer and Pittman, 1991). Saturation of cell-binding effects was observed in these studies with coating concentrations of 
15 v.g/ml, comparable to results reported for TN-C (Aukhil et al., 1991), 

to be confronted with the choice situation, which is after 
24 h. The emerging outgrowth pattern was not modified 
even when the culture period was extended over more 
than 72 h, which suggests that substrate conditioning by 
components released from cerebellar explants is not a crit- 
ical factor in this assay. Repulsion of both neuronal cell 
bodies and their neurites was dependent on the coating 
concentration, with good results obtained at 50 ixg/ml. The 
quantitation of coating efficiencies shows that repulsive- 
ness is not merely a reflection of molar densities of pro- 
teins on the culture substrate. For example, TNegf is re- 
pulsive for cell bodies and growth cones, in contrast to 
TNfn6, although the latter is exposed at a much higher 
molarity (Table IV). Yet, despite their repulsive qualities 
TN-C or derived recombinant domains did not inhibit fi- 
ber formation when P6 cerebellar microexplants were 
maintained on homogeneous substrates composed of 
PORN coated with these proteins. Rather, neurite growth 
was similar on all the proteins tested. This is consistent 
with earlier observations that homogeneous TN-C sub- 
strates enhance neurite outgrowth by most CNS neurons, 
although the glycoprotein displays repulsive effects on 
outgrowing neurites in choice situations (summarized by 
Faissner et al., 1994a). 

Neurite Outgrowth Promoting Domains in TN-C 

It had been concluded from perturbation studies with 
mAbs that neurite outgrowth promoting properties of TN-C 
exposed as homogeneous substrate are encoded by do- 
main(s) different from the one(s) involved in neurite de- 
flection in choice situations (Faissner and Kruse, 1990; 
Lochter et al., 1991). To examine this hypothesis, neurite 
outgrowth assays were performed with TN-C and the li- 
brary of derived recombinant domains. E18 hippocampal 
neurons were grown on substrates containing recombinant 

proteins or TN-C coated onto poly-DL-ornithine in cham- 
ber slides (Lochter et al., 1991). Under these conditions, 
TNfnA1,2,4,B,D, TNfnB,D, and TNfn6 increased the frac- 
tion of process bearing cells within a 24-h assay period 
(Fig. 9). This would locate a neurite outgrowth promoting 
domain around the distal splice site of TN-C, confirming 
predictions derived from in vitro perturbation assays with 
mAb J1/tn2 (Lochter et al., 1991). Consistent with this 
conclusion, TNfnB,D and TNfn6 stimulated total neurite 
lengths of hippocampal neurons (Fig. 10, Table V). In view 
of former reports describing neurite outgrowth promoting 
properties of TN-C for peripheral neurons, P0/P1 mouse 
dorsal root ganglia (DRG) were explanted onto TN-C or 
the library of recombinant domains adsorbed to tissue cul- 
ture plastic. TN-C was as efficient as laminin-1 in support- 
ing fiber growth from DRG-explants and several domains, 
e.g., TNfnB,D, TNfnD,6, and TNfn6 supported the estab- 
lishment of a vigorous halo of neurites (Fig. 11). The for- 
mation of a neuritic halo was observed in 10 of 11 explants 
on laminin-1 and in 6 of 9 samples on TNfnD,6 in this case. 
The neurite outgrowth promoting effect of TNfnD,6 was 
reduced by addition of mAb J1/tn2 to the culture system, 
with only 2 of 11 explants showing neurite outgrowth, 
whereas mAb J1/tnl could essentially not block the effects 
seen with TNfnD,6 (9 of 11). The same outcome was ob- 
tained in three independent experiments. We conclude 
from these observations that the FNIII domains bordering 
the distal splice site of TN-C encode a neurite outgrowth 
promoting site for central and peripheral neurons. 

Discuss ion  

Generation of  a Library of  Recombinant Mouse 
TN-C Domains 

TN-C has been implicated in several key events of neuro- 
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Table IlL Inhibition (%) of Short-Term Cerebellar Neuron Binding by Antibodies to TN-C 

Concentration of mAb Jl/tnl (ixg/ml) 10 50 100 

Protein 

LN-1 5.13 ± 0.24 (ns) 7.69 ± 0.14 (ns) 4.96 -+ 0.12 (ns) 
TNfnA1,2,4 -36 .80  ± 13.83 (ns) -47 .40  ± 6.92 (*) -35 .40  ± 5.26 (*) 
TNfnB,D -16.81 +- 3.20 (ns) -16 .95 -+ 3.27 (ns) -11 .30  ± 2.35 (ns) 
TNfnA1,2,4B,D -42 .73  ± 8.16 (*) -51 .14  -+ 14.20 (*) -63 .40  ± 16,03 (*) 

Concentration of  mAb J l/tn2 (l~g/ml) 10 50 100 

Protein 

LN-1 -1 .85  ± 0.12 (ns) -5 .31  ± 0.47 (ns) 0.92 ± 0.05 (ns) 
TNfnA1,2,4 8.49 ± 2.74 (ns) 14.39 ± 2.56 (ns) 0.71 ± 0.17 (ns) 
TNfnB,D -70 .20  ± 22.12 (*) -83 .05  ± 21.56 (*) -83 .47  _ 17.64 (*) 
TNfnA1,2,4B,D -32 .82  --- 3.05 (*) -40 .12  ± 4.49 (*) -54 .70  ± 15.17 (*) 

Concentration of pTN-C (p~g/ml) 50 250 500 

Protein 

LN-1 16.17 ± 2.85 (ns) 15.00 ± 1.20 (ns) 13.10 ± 4.20 (ns) 
TNfnl-3 26.13 ± 7.35 (ns) -83 .93  ± 42.83 (*) -90 .33 ± 51.32 (*) 
TNfnA1,2,4 -15 .13  ± 4.24 (ns) -47 .98  ± 6.24 (*) -47 .10  ± 9.12 (*) 
TNfnB,D -14 .00  ± 13.20 (ns) 38.00 ± 13.99 (ns) 37.33 ± 13.94 (ns) 
TNfnA1,2,4,B,D 3.51 ± 1.32 (ns) 5.70 ± 0.45 (ns) -26 .32  ± 3.67 (*) 
TNfn6 -45 .52  ± 5.87 (ns) -73 .88  ± 33.90 (*) -96.08 ± 31.30 (*) 
TNfn7,8 38.63 ± 12.92 (ns) -27 .34  ± 15.32 (ns) -91.46 + 57.70 (*) 

Concentration of pTNfnA1,2,4 (Ixg/ml) 50 250 500 

Protein 
LN-1 7.05 ± 0.45 (ns) 2.61 ± 0.47 (ns) 11.23 ± 1.35 (ns) 
TNfnl-3 -32 .45  ± 8.36 (*) -25 .33  ± 1.44 (*) -49 ,33  _ 6.11 (*) 
TNfnA1,2,4 -92 .82  --- 4.64 (*) -97.41 ± 60.70 (*) -93 .90  ± 5.52 (*) 
TNfnA1,2,4,B,D -69 .09  ± 33.54 (*) -93 .30  ± 30.50 (*) -93 .54  ± 14.08 (*) 

Short-term (60 min)-binding assays of P6 cerebellar neurons were performed as described in legend to Fig. 5 with proteins exhibiting nonambiguous cell-binding sites. Mono- and 
polyclonal antibodies were preincubated with the protein spots for 60 min and added to the culture medium during the assay at the concentrations indicated. Numbers of neurons 
attached to the spots were determined in triplicate and the percent inhibition (I) of neuron binding in the presence (Ntest) and absence (N¢o,tro0 of antibodies was determined as I = 
(Nt~st-Nco~t~,)/Nco~t~l × 100. Negative values indicate the degree of inhibition of cell attachment in percent as compared to the control. Note that mAbs Jl/tnl and Jl/tn2 inhibit 
cell binding to the proteins which contain their respective epitopes, but not to the neighboring domains. Thus, Jl/tn2 supresses attachment to TNfnB,D, but not to TNfnA1,2,4, and 
only partially reduces the binding to the alternatively spliced segment which contains both components, pTN-C interferes with binding of cerebetlar neurons to all recombinant 
proteins tested, except for TNfnB,D, which is also not recognized in Western blot and ELISA (not shown). Three independent experiments were carded out and statistically evalu- 
ated with the Mann-Whitney U-test. The molarities of proteins adsorbed to the nitrocellulose carder are detailed in Table II. (*) 0.01 < P < 0.05; ns, nonsignificant. 

histogenesis such as neuron migration and neurite out- 
growth, and also anti-adhesive properties for neuronal cell 
bodies and growth cones have been attributed to the gly- 
coprotein. These diverse functions may be mediated by 
separate domains (for reviews see Faissner and Steindler, 
1995; Faissner et al., 1995). To probe the proposed struc- 
ture-function relationships of TN-C for CNS and PNS 
neurons, a library of recombinant mouse TN-C domains 
was generated and used in several in vitro bioassays. We 
show here that cell binding, anti-adhesive, and neurite out- 
growth promoting sites for neurons are located in distinct 
regions of TN-C. Several of the recombinant domains 
could be purified in physiological salt buffers, while others 
required additional urea for solubilization. The resulting 
proteins were further characterized by electron micros- 
copy of rotary-shadowed preparations, size exclusion chro- 
matography, SDS-PAGE, Western blot, and ELISA using 
defined mono- and polyclonal antibodies and exhibited 
the expected properties (Aukhil et al., 1993). As compared 
to the FNIII  domains, TNegf was produced at lower levels 
and showed partial degradation. Others have described fu- 
sion of these EGF-type repeats to glutathione-S-trans- 
ferase (GST; Prieto et al., 1992), and electron microscopy 
pictures of EGF-type repeats linked to ~-galactosidase 
displayed bulky globules and emanating thin rods compa- 

rable in length and thickness to those in intact TN-C 
(Spring et al., 1989). Renaturation of the eukaryotic EGF- 
type repeats was, however, effective to some extent be- 
cause mAb J1/tn3, which reacts with this motive (Hus- 
mann et al., 1992), bound to the recombinant protein with 
the same efficiency as intact TN-C. 

Identification of  Cell-binding Sites for  
Neurons on TN-C 

Polyclonal antibodies to TN-C had been found to reduce 
the binding of neurons to astrocyte surfaces in short-term 
adhesion assays (Kruse et al., 1985; Grumet  et al., 1985; 
Faissner et al., 1988). Yet, subsequent studies did not re- 
veal TN-C as efficient substrate for neuron culture (for re- 
views see Faissner et al., 1994a; Tucker, 1994; Faissner and 
Steindler, 1995). In this regard, neurons resemble various 
nonneural cell types which exhibit initial attachment to in- 
tact TN-C and fail to spread thereafter. To investigate cell 
recognition sites for neurons in TN-C, short-term assays 
on recombinant fragments derived from mouse TN-C 
were carried out. Substantial binding of P6 cerebellar neu- 
rons could be detected on all recombinant fragments, ex- 
cept for TNegf, TNfn4,5, and TNfbg. Adhesion appears to 
be specific since not all recombinant domains yielded the 
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Figure 8. Repulsion of cerebellar neurons and their processes by TN-C domains. P6 cerebeUar neurons (A-C) or microexplants (D-l) 
were cultivated on patterned substrates consisting of poly-DL-ornithine and TNfnA1,2,4 (A-C), TNfnl-3 (D-F), and TNegf (G-l). Cul- 
tures were fixed after 72 h and stained with polyclonal antibodies to the cell adhesion molecule L1 and anti-rabbit FITC (B, E, and H) 
or stained with monoclonal antibody to the NH2 terminus of the fusion proteins and anti-mouse TRITC (C, F, and/). Note that dissoci- 
ated cerebellar neurons avoid TNfnA1,2,4 to some extent and form clusters. The explants attach to TNfnl-3 and avoid areas coated with 
TNegf. Emigration of granule cells occurs on TNful-3 and outgrowing neurites cross areas coated with TNfnl-3, but are deflected by 
TNegf. The amounts of protein coated to the culture substrates are detailed in Table IV. Bars: (A-C) 140 ixm; (D-/) 70 ixm. 

same results and because the interactions could be blocked 
by specific antibodies. E l 8  hippocampal neurons showed a 
similar behavior, although binding to the substrate ap- 
peared overall weaker. Within 24 h small neuronal aggre- 
gates interconnected by fasciculating fibers formed which 
could be detached from the culture by mild shearing 
forces. In contrast, cerebellar neurons grew and differenti- 
ated on TNfnl-3  within 24 h, yet not  as pronounced as on 
the control substrate laminin-1. The cell-binding site in 
TNfnl-3 was even more attractive for the neu-7 glioma 
cell line. In this context, it is interesting that a cell-binding 
site which is recognized by the integrin c~vl33 has been re- 
ported in TNfn3 for U251MG glioma cells (Prieto et al., 
1993), fetal bovine endothelial cells, and cell lines derived 
therefrom (Joshi et al., 1993). In human and chicken TN-C, 
this cell-binding site is dependent  on the R G D  sequence, a 
motif which has not been identified in the mouse glycopro- 
tein (Weller et al., 1991). Yet, a mutation of the R G D  se- 
quence to a R A D  or RVD,  the motifs expressed in mouse 

TNfn3, did not abolish the adhesive sites for glioma cells in 
TNfn3 (Prieto et al., 1993). Whether  integrins are involved 
in the binding of  cerebellar granule cells or hippocampal 
neurons to TNfnl-3 is currently not known. Interestingly, P6 
cerebellar neurons detached from the domains TNfnA1,2,4, 
TNfnA1,2,4,B,D, TNfnB,D,  TNfn6, and TNfn7,8 within 
1 d of culture. Several reasons are conceivable for this pro- 
cess. Thus, the hypothesized receptors for these domains 
could be downregulated or degraded during the culture 
period, the domains could be modified, e.g., by proteolysis 
or, finally, anti-adhesive events could be launched in the 
responsive neuron which would lead to cell rounding and 
release from the substrate. The latter possibility might 
hold true for TNfnA1,2,4,B,D and TNfnA1,2,4, as detailed 
below. No significant at tachment of cerebellar neurons to 
TNfbg could be found. The carboxy-terminal globular do- 
main is believed to harbor a cell-binding site for fibro- 
blasts, primary glia, U251MG glioma, and endothelial cells 
(Friedlander et al., 1988; Prieto et al., 1992; Aukhil  et al., 
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Table IV. Repulsion of Neuronal Cell Bodies and Processes by TN-C Domains 

E18 hippocampal P6 cerebellar P6 cerebellar Coating efficiency 

Substrate Neurons Neurons Explants i~g/cm 2 pmol/cm 2 

% 

B S A  - - - N D  

T N - C  + + +  + + +  + + +  28 --- 18 0 .74  ± 0 .48 3.1 -+ 1.99 

T N e g f  + + +  + + +  + + +  12 +_ 8 0 .32  --- 0.21 4 .4  ± 2 .93  

T N f n l - 3  - - - 12 +_ 2 0 .32  - 0 .05 9 .4  ± 1.57 

T N f n 4 , 5  ( + )  - - 17 - 3 0 .45 ± 0 .08 18.0 ± 3 .18 

T N f n A 1 , 2 , 4  + + +  + + +  + + +  23 ± 12 0.61 - 0 .32 19.7 ± 10.28 

T N f n B , D  - - - 18 ± 11 0 .47 _+ 0 .29 23.3 - 14.24 

T N f n A 1 , 2 , 4 , B , D  + + +  + + +  + + +  18 --_ 15 0 .47 ± 0 .39 9 .4  ± 7.83 

T N f n 6  - - - 18 ± 8 0 .47 _+ 0.21 29 .4  _+ 13.07 

T N f n 7 , 8  - - - 12 _+ 5 0 .32  - 0 .13 13.8 + 5.75 

T N f b g  - - - 18 _+ 13 0 .47 _ 0 .34  15.8 ± 11.41 

Repulsion of  hippocampal and cerebellar neurons and outgrowing processes by TN-C domains. Suspensions of E 18 hippocampal and P6 cerebellar neurons or microexplants were 
cultured on patterned substrates consisting of poly-DL-omithine-conditioned glass (20 izg/ml) alternating with areas additionally containing TN-C or recombinant domains (Faiss- 
ner and Kruse, 1990). The protein coating concentration for each protein was 50 p.g/ml. Cultures were fixed after 48 or 72 h and monitored for repulsive effects. Representative ex- 
amples are shown in Fig. 8 and analogous results were obtained in at least three independent experiments for each distinct protein and culture type. The coating concentrations 
were determined by adding 125 l-labeled TN-C or derived recombinant proteins as tracers to the coating solutions. The percent-fraction of adsorbed protein ( ls t  column) was used 
to calculate the substrate concentrations in p~g/cm 2 (2nd column) or pmol/cm 2 (3rd column). At least three coverslips were measured per protein and three independent experiments 
were carried out. Molarities were calculated for TN-C monomers assuming an apparent molecular mass of 240 kD. Note that the repulsive properties do not correlate with the mo- 
lar concentrations on the substrate, e.g., TN-C is repulsive at 3.1 pmol/cm 2, whereas TNfnl-3  or TNfn6 do not exert repulsive effects at 3- and 10-fold higher molar densities, re- 
spectively. 

1993; Joshi et al., 1993). Comparable to these studies, neu-7 
cells and hippocampal neurons adhered to some extent on 
TNfbg, but kept a round morphology and did not differen- 
tiate further. 

A Search for Anti-Adhesive Domains 

Although TN-C contains cell-binding sites, the glycopro- 
tein displays anti-adhesive properties for many cell types 
including neurons and it had been proposed that addi- 
tional, independent sites are responsible for antagonistic 
effects (Chiquet-Ehrismann, 1991; Tucker, 1994; Faissner 
and Steindler, 1995). In support of this assumption, al- 
ready the first study characterizing bacterially expressed 
segments concluded that anti-adhesive properties for L929 
cells can be allocated to TNegf, while a cell-binding site 
was attributed to the carboxy-terminal end of TN-C 
(Spring et al., 1989). Subsequent investigations reinforced 
this notion for several cell types including N2A neuroblas- 
toma cells (Prieto et al., 1992). Our data are consistent 
with these findings in that TNegf showed clear repulsive 
effects for P6 cerebellar and E18 hippocampal neurons on 
patterned substrates where the recombinant protein as 
coated on poly-DL-ornithine alternates with the bare poly- 
cation (Faissner and Kruse, 1990). Interestingly, anti- 
adhesive properties of EGF-type repeats were detected 
regardless of the expression vector system, e.g., 13-galac- 
tosidase- (Spring et al., 1989), GST- (Prieto et al., 1992), 
or, in the present study, poly-histidine-containing fusion 
proteins. Another anti-adhesive area for NIH-3T3 fibro- 
blasts had been reported in TNfn7-8 (Prieto et al., 1992). 
Yet, neurons proved indifferent to this protein, which 
could indicate lineage-dependent differences. In contrast, 
the alternatively spliced insert TNfnA1,2,4,B,D showed 
pronounced anti-adhesive qualities for both cerebellar and 
hippocampal neurons in choice situations and fostered ag- 
gregation of these ceils when used as plain substrate. Like- 
wise, this recombinant protein and TNegf deflected fibers 

extending from P6 cerebellar explants on patterned sub- 
strates, suggesting that repulsion also affects growth cones. 
The repulsive properties of the alternatively spliced seg- 
ment could be further circumscribed to TNfnA1,2,4. Thus, 
the initial attachment to TNfnA1,2,4,B,D and the anti- 
adhesive properties of these FNIII repeats apparent after 
longer periods could reflect a sequential interaction with 
cell binding, and, subsequently, repulsive domains which 
would result in inhibition of spreading through cellular re- 
sponses which are controlled by unknown second messen- 
gers (Faissner, 1993; Faissner et al., 1994a, 1995). In this 
perspective, the insertion of supplementary anti-adhesive 
FNIII repeats could serve the fine tuning of the repulsive 
properties of TN-C. One functional implication might be 
the creation of an environment favorable to cellular move- 
ment by promoting both attachment and detachment from 
neighboring cells and the surrounding matrix. This hy- 
pothesis is supported by our finding that mAb J1/tnl 
which retards cerebellar granule cell migration (Husmann 
et al., 1992) maps to the repulsive domains TNfnA1,2,4. 
Along these lines, the expression of high molecular weight 
TN-C isoforms peaks during phases of cell and growth 
cone motility; for example, in the mouse cerebellum where 
the ratio of high to low Mr TN-C shifts from 5:1 to 1:3 dur- 
ing postnatal development (Bartsch et al., 1992); or in the 
developing cornea, which is invaded by migrating neural 
crest cells (Kaplony et al., 1991). This interpretation is 
consistent with earlier studies which reported that the al- 
ternatively spliced FNIII-motives of human TN-C induce 
anti-spreading in bovine aortic endothelial cells, presum- 
ably by inducing downregulation of focal contact sites 
(Murphy-Ullrich et al., 1991). This recombinant TN-C 
fragment also prevents the adhesion of uterine epithelial 
cells to Matrigel (Julian et al., 1994). In addition, indirect 
evidence supports the concept that the alternatively spliced 
FNIII sequence in TN-C harbors anti-adhesive site(s). 
Thus, maximal attachment of N2A neuroblastoma cells 
was achieved at lower amounts of TNfnl-6 including the 
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Figure 9. Neurite outgrowth stimulation of hippocampal neurons 
on TN-C domains. E18 hippocampal neurons were seeded at low 
density in tissue culture plastic chamber slides on PORN sub- 
strates coated with different TN-C domains (50 txg/ml). The pro- 
portion of cells with neurites was determined as a fraction of at 
least 200 cells per well selected at random and given in percent. 
At least 1,200 neurons in total were analyzed in three indepen- 
dent experiments for each substrate. Percentage of increase P of 
the fraction of process bearing cells on test proteins (Ftest) as com- 
pared to the poly-ornithine control (Fcm) was determined as P = 
( F t e s t  - -  Fctrt)/Fctrt x 100. Mean values ± SD are shown. The alter- 
natively spliced FNIII repeats TNfnB,D and TNfnA1,2,4,B,D, 
and TNfn6 increase the fraction of process bearing neurons. Note 
that TNfnl-3 does not enhance this parameter although its sub- 
strate concentration (4.68 pmol/cm 2) is comparable to the one of 
TNfnB,D (5.64 pmol/cm 2) or TNfnA1,2,4,B,D (4.21 pmol/cm2). 
For concentrations of proteins adsorbed to the culture substrates 
see Table II. Results were statistically analyzed with the Mann- 
Whitney U-test and the symbols mean: * 0.05 > P > 0.01 and 
• ** 0.005 > P > 0,001. The values obtained for TNfnl-3 and 
TNfn6 confirm earlier observations (Faissner et al., 1995). 

a l ternat ively spliced segment  (FN2) as compared  to 
TNfn l -6  without  that  par t  of  TN-C (FN1), but  f ibroblasts 
growing on a mixed substrate  of f ibronect in plus FN2 were 
significantly more  aggregated  than on f ibronect in com- 
bined with any o ther  f ragment  (Prieto et al., 1992). 

Neurite Outgrowth Promoting Domains in TN-C 

Promot ion  of  neuri te  outgrowth by homogeneous  T N - C -  
containing substrates had been  descr ibed for chicken E3 
spinal cord and E7-8 D R G  explants  (Wehr le  and Chiquet,  
1990; Wehr le -Ha l le r  and Chiquet,  1993). Similarly, TN-C 
promotes  outgrowth from dissociated E18 h ippocampal  
and P6 cerebel lar  neurons  (Lochter  et al., 1991; Husmann  
et  al., 1992). Based  on in vitro per turba t ion  assays with 
m A b  J1/tn2, a neuri te  outgrowth promot ing  domain  was 
assigned to the distal  splice site of TN-C, which is TNfnD 
or TNfn6 (Lochter  et al., 1991). Our  studies with recombi-  
nant  domains  clearly suppor t  this conclusion. Thus, the 
fraction of process bearing E18 hippocampal neurons and the 
lengths of their longest process were increased on TNfnB,D, 
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Figure 10. Length distribution of hippocampal neurites on TN-C 
domains. El8 hippocampal neurons were grown in tissue culture 
plastic chamber slides on PORN coated at 50 ~g/ml with 
TNfnB,D (A and B) and PORN plus TNfn7,8 (C and D) for 24 h, 
fixed, and stained for tubulin. The lengths of the longest process 
of 50 hippocampal neurons were plotted for different substrates, 
as indicated. According to the Mann-Whitney U-test, the length 
distributions of the longest processes on PORN and on PORN/ 
TNfn7,8 (1.47 pmol/cm 2, Table II) did not significantly differ from 
one another, while the length distribution on PORN/TNfnB,D 
(5.64 pmol/cm 2) exhibited a clear bias towards higher values (P < 
0.001). As further control, TNfnA1,2,4 (8.76 pmol/cm 2) did not 
result in increased neurite lengths (not shown). Bars in A, 40 o.m; 
in B, 80 I~m. 
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Figure 11. Dorsal root ganglia explants on homogenous TN-C domain substrates. DRG explants from P0/1 mice were cultured for 48 h 
on tissue culture plastic dishes coated with TN-C (A), TNfnD,6 (B and C), laminin-1 (D), and TNfnB,D (E, all at 20 ixg/ml). Neurite out- 
growth of DRG explants is supported on TN-C (A, 0.53 pmol/cm 2, Table II). Note that the neurite outgrowth promoting activity of TN- 
fnD,6 (2,4 pmot/cm 2) is not affected by mAb JI/tnl (B), but is totally blocked by mAb J1/tn2 (60 ixg/ml in the culture medium, C). A-C 
are dark-field micrographs. Laminin-1 fosters the formation of a vigorous halo of neurites from DRG-explants (D, phase contrast). TN- 
fnB,D (9.34 pmol/cm 2) is also a supportive substrate for DRG neurites (E, phase contrast). At least !0 explants were seeded per well 
and protein substrate, and three independent experiments were carried out with analogous results. Bars (A-C) 300 I~m; (D and E) 100 txm. 

TNfnD,6, and TNfn6 after 24 h. The fact that hippocampal 
neurons did not bind to TNfn6, and only moderately to 
TNfnB,D in the short-term cell-binding assay, might re- 
flect that the hypothesized receptor(s) for this domain is 
not or only weakly expressed on the cell body shortly after 

Table V. Quantitative Analysis of the Longest Neurites 

Longest neurites Percent increase 
Substrate of 50 cells SD SE (as compared to control) 

/zm ~ /.un 

PORN (control) 2431 254 147 - 

TNegf  4046 92 53 67.5 _+ 15.2 (**) 

TNfnB,D 4047 306 176 66.8 --- 4.9 (**) 

TNfnD,6 3581 252 145 47.6 --- 5.6 (**) 

TNfn6 3250 287 166 35.3 -+ 24.8 (*) 

TNfn7,8 2846 333 192 17.7 --- 16.5 (ns) 

TN-C 4100 359 208 70.1 -- 26.9 (**) 

LN-1 3352 244 172 45.9 --- 1.3 (*) 

Hippocampal neurons were cultured under distinct conditions as detailed in legend to 
Fig. 10 and morphometrically analyzed as specified in Materials and Methods. 50 pro- 
cess-bearing neurons per individual well were collected at random and the length of 
the longest neurite was determined for each single cell. Since neurite lengths were not 
normally distributed the values for individual neurites of a well were summed. 300 
neurons from three independent experiments were sampled. The average values and 
corresponding standard deviations of the single sums were calculated. The signifi- 
cance of the differences between the mean values of sums of the longest neurite was 
estimated with the t-test and is indicated next to the percent increase with the symbols 
meaning (**): P < 0.005, (*): 0.01 < P < 0.05, and (ns): nonsignificant. Percentages 
were calculated as percent increase = (l-t~ - L¢o~t~o~)/L~u~ x 100. For substrate 
concentrations of the different proteins, see Table II. Abbreviations are PORN, poly- 
omithine; LN, laminin; SD, standard deviation; SE, standard error of the mean. 

plating and begins to operate once the growth cone forms 
and moves over the culture substrate. Interestingly, mAb 
J1/tn2 which blocks neurite outgrowth promotion proper- 
ties of TN-C maps to TNfnD, Because TNfn6 promotes 
neurite outgrowth by itself, the blocking activity of J1/tn2 
on intact TN-C probably occurs in part through steric hin- 
drance of domains neighboring its binding site. In addition 
to the FNIII  domains, TNegf enhanced neurite lengths to 
some extent, an effect which might be linked to its anti-adhe- 
sive properties. It has been proposed that release of cell- 
substrate adhesion forces favors axogenesis and that anti- 
adhesive properties of TN-C might underlie the increase 
of neuronal polarity induced by this glycoprotein (Cha- 
mak and Prochiantz, 1989; Rousselet et al., 1990; Lochter 
and Schachner, 1993). However, TNfnB,D, TNfnD,6, and 
TNfn6 did not display anti-adhesive properties in repul- 
sion assays or choice situations for neuronal cell bodies 
and growth cones. Therefore, neurite outgrowth promo- 
tion effected by these proteins probably occurs through 
another route than the one implicated in the activity of the 
EGF-type repeats. The neuronal Ig-superfamily member  
F3/F11/contactin has been found to bind to TNfn5,6 (Zisch 
et al., 1992; Vaughan et al., 1994). It is presently not known 
whether this adhesion molecule is involved in the promo- 
tion of neurite outgrowth by TN-C. This seems unlikely 
because F l l  does not react with TN-C isoforms which con- 
tain alternatively spliced FNIII  domains and thus would 
not interact with TNfnB,D or TNfnD,6, domains which 
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clearly stimulate neurite outgrowth in our assays. Whether 
the integrin a8131, which has recently been implicated in 
promotion of neurite outgrowth of chicken motoneurons 
by TN-C (Varnum-Finney et al., 1995), binds to these pro- 
teins remains to be seen. It has to be kept in mind, though, 
that TN-C does not promote neurite outgrowth of every 
neuron. Lineage dependence is indicated by the fact that 
retinal neurons do not grow any neurite on a homoge- 
neous TN-C-containing surface (Perez and Halfter, 1993; 
Taylor et al., 1993). Furthermore, as discussed above, most 
neurites tested so far are deflected at sharp boundaries of 
TN-C alternating with a conducive substrate (Faissner and 
Kruse, 1990; Crossin et al., 1990; Taylor et al., 1993; Krull 
et al., 1994a,b). 

Conclusions 

The present study has substantiated and confirmed the 
structure-function model of TN-C for CNS neurons pro- 
posed earlier (Faissner, 1993; Faissner et al., 1994a, 1995). 
Short-term assays have revealed several interaction sites 
which are recognized with low affinity by CNS neurons. 
One of these, TNfnl-3, supports growth and differentia- 
tion of cerebellar neurons in medium term culture. With 
regard to anti-adhesive effects, two independent areas 
could be circumscribed, TNegf and the alternatively spliced 
FNIII domains TNfnA1,2,4, which could synergize to pro- 
duce overall repulsive effects of TN-C on CNS neurons. 
Finally, neurite outgrowth-promoting properties could be 
assigned to the region covered by TNfnD,6. Notably, the 
downstream alternatively spliced FNIII repeats TNfnB,D 
by themselves promoted neurite outgrowth. Thus, our ob- 
servations emphasize that the developmental regulation of 
alternative splicing is functionally significant, consistent 
with the preferential expression of the high Mr TN-C iso- 
forms during phases of increased cell migration and neu- 
rite growth (Crossin et al., 1989; Steindler et al., 1989a,b; 
Husmann et al., 1992; Bartsch et al., 1992). Several recep- 
tors have been described for TN-C some of which, e.g., F3/ 
Fll/contactin, the integrin a81M, neurocan and phos- 
phacan, are expressed in neural tissues (Zisch et al., 1992; 
Maurel et al., 1994; Barnea et al., 1994; Grumet et al., 
1994; Varnum-Finney et al., 1995). Interestingly, phos- 
phacan is a member of the tyrosine-phosphate-phosphatase 
(PTP) family of membrane components. This opens an av- 
enue to study whether TN-C affects second messenger cas- 
cades. 
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