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a b s t r a c t

Polyphenols are a class of non-essential phytonutrients, which are abundant in fruits and vegetables.
Dietary polyphenols or foods rich in polyphenols are widely recommended for metabolic health. Indeed,
polyphenols (i.e., catechins, resveratrol, and curcumin) are increasingly recognized as a regulator of lipid
metabolism in host. The mechanisms, at least in part, may be highly associated with gut microbiome.
This review mainly discussed the beneficial effects of dietary polyphenols on lipid metabolism. The
potential mechanisms of gut microbiome are focused on the effect of dietary polyphenols on gut
microbiota compositions and how gut microbiota affect polyphenol metabolism. Together, dietary
polyphenols may be a useful nutritional strategy for manipulation of lipid metabolism or obesity care.

© 2020, Chinese Association of Animal Science and Veterinary Medicine. Production and hosting
by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the
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1. Introduction

With the development of society and economy, obesity has
become an epidemic health problem worldwide (Morgen and
Sørensen, 2014; Duan et al., 2019). Obesity is a result of imbal-
anced energy intake, energy expenditure, and host lipid meta-
bolism (Adriouch et al., 2017). Various factors could alter lipid
metabolism, such as eating habits, exercise, and gut microbiota
(Amiot et al., 2016; Yin et al., 2018, 2020; Cao et al., 2019; Song
et al., 2019; Li et al., 2020). The direct evidence between gut
microbiota and lipid metabolism was demonstrated in germ-free
mice, which kept lean even when fed with a high-fat diet (Lewis
et al., 2020). Fecal microbial transplantation further confirms the
iation of Animal Science and
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role of gut microbiota in obesity development evidenced by that
the colonization of germ-free mice with an ‘obese microbiota’
accumulated more body fat than the colonization with a ‘lean
microbiota’ (Zhang et al., 2019b). Accordingly, the manipulation of
gut microbiota (dietary polyphenols, probiotics, fiber-rich diet,
and other active compounds) may be a potential novel target to
influence host lipid metabolism or treat obesity (Azad et al., 2018;
Guan et al., 2019; Wang et al., 2019; Guo et al., 2020).

Polyphenols are a large family of bioactive substances from tea,
fruits, vegetables, roots, seeds, cocoa, and wine. According to the
non-absorbing characteristic in the small intestine, 90% to 95%
dietary polyphenols reach the colon and then transform into
bioactive products by gut microbiota (Ozdal et al., 2016; Ding
et al., 2019). Accumulating evidence suggested that dietary poly-
phenols and the microbiota-generated metabolites show positive
effects on human health, including lipid metabolism (Das et al.,
2016; Joseph et al., 2016). Firstly, polyphenols influence gut
microbiota compositions in obese subjects, which further affect
the host lipid metabolism (Anhê et al., 2019). In turn, gut micro-
biota metabolize polyphenols into bioactive molecules to improve
the lipid regulatory bioavailability (Fig. 1). In this review, we will
clarify the relationship between dietary polyphenols and lipid
metabolism and discuss the potential role of gut microbiota.
uction and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This
censes/by-nc-nd/4.0/).
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Fig. 1. Gut microbiota mediates the lipid metabolic benefits of dietary polyphenol. Dietary polyphenols are metabolized by microorganisms to produce small active molecules,
which further influence gut microbes to regulate host lipid metabolism. HDL ¼ high-density lipoprotein; LDL ¼ low-density lipoprotein.
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2. Polyphenols and lipid metabolism

Polyphenols were first discovered by Nobel Prize laureate Dr.
Albert Szent-Gy€orgyi in 1937 and named vitamin P later by other
researchers (Grzybowski and Pietrzak, 2013). Vitamin P is a nones-
sential phytonutrient (mostly flavanones) and these compounds are
now classified as polyphenols, including flavonoids, stilbenes,
phenolic acids, and lignans. Flavonoids contains various bioactive
substances, i.e., anthocyanins (ACN), flavanols, flavones, flavanols,
flavanones, and isoflavone. Stilbenes, phenolic acids, and lignans are
collectively considered as non-flavonoids polyphenols (Rasines-
Perea and Teissedre, 2017; Fraga et al., 2019).

Dietary polyphenols are generally recommended for clinical
benefits (Macready et al., 2014), such as metabolic disorders.
Growing evidence indicated that polyphenols are involved in lipid
metabolism andmay prevent obesity development (Adriouch et al.,
2017). For example, administration with polyphenol-rich plant
extract improved plasma lipid levels and endotoxaemia, macro-
phage recruitment infiltration to adipose tissues, and adipose
accumulation of cholesterol and cholesterol oxides in obese ani-
mals (Aires et al., 2019). In clinic trails, significant inverse correla-
tions were observed between dietary polyphenols and body
weight, body mass index, waist circumference, and waist-to-height
ratio by a 5-year follow-up (Guo et al., 2017). In another random-
ized, double-blind, placebo-controlled clinical trial, dietary poly-
phenols might reduce cardiovascular disease risk and
atherosclerosis via lowering triglyceride levels (Ishida et al., 2018).
To conclude, a polyphenol-rich intake may lead to a heathy life
through regulating lipid metabolism and reducing obesity risk.

2.1. Flavonoids and lipid metabolism

Flavonoids are a class of more than 6,000 phenolic compounds
widely found in fruits, vegetables, nuts, tea, grains, cocoa, and other
plants. Recently, numerous animal and human clinical trials have
confirmed the lipid regulatory role of flavonoids and their pre-
ventive effects in metabolic diseases (Mulvihill et al., 2016;
Rupasinghe et al., 2016; Casanova et al., 2019; Zhang et al., 2019a).
In the mice model, dietary baicalin, a major flavonoid in Scutellaria
baicalensis, accelerated lipid oxidation and prevented diet-induced
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obesity (Dai et al., 2018). The intraperitoneal injection of licochal-
cone A also showed an improvement of lipid metabolism (tri-
glycerides, low-density lipoprotein, and free fatty acids) in high-fat
diet-induced obesity and the mechanism might be associated with
NAD-dependent deacetylase sirtuin-1 (SIRT1)/50 AMP-activated
protein kinase (AMPK) pathway in obese mice (Liou et al., 2018,
2019). Oxidative stress and inflammation have been widely iden-
tified in obese subjects, and antioxidant or anti-inflammatory
therapeutic strategies of flavonoids are suggested to treat obesity.
For example, dietary flavonoids increased the activity of serum
antioxidant enzymes and downregulated pro-inflammatory in-
dexes, which might further improve host lipid metabolism (Wu
et al., 2018).

2.2. Stilbenes and lipid metabolism

Resveratrol (RSV) is a major kind of stilbene and has been
extensively studied for its anti-obesity, metabolic, and glucose ho-
meostasis effects (Le�on et al., 2017; Ardid-Ruiz et al., 2018; Sun et al.,
2018; Andrade et al., 2019; Gimeno-Mallench et al., 2019;
Muhammadi and Shafiq, 2019; Springer and Moco, 2019; Yue et al.,
2019). Furthermore, the interaction between gut microbiota and
resveratrol has recently attracted much interest in the research
community because of its potential role in preventing obesity
(Chaplin et al., 2018; Zhou et al., 2019a). Dietary resveratrol modified
gut microbiota compositions (resveratrol-microorganisms) and
reversed the abundances of Lactococcus, Clostridium XI, Oscillibacter,
and Hydrogenoanaerobacterium in obese mice (Jung et al., 2016). In
addition, resveratrol reduced the level of gut microbiota-derived
metabolite trimethylamine-N-oxide (TMAO, an early biomarker of
adipose dysfunction) by remodeling the intestinal microbiota (Chen
et al., 2016; Barrea et al., 2018). Accordingly, the transplantation of
resveratrol-microorganisms into high-fat diet-fed mice promoted
the development of beige adipocytes in white adipose tissue and
improved lipid metabolism (Wang et al., 2020).

2.3. Phenolic acids and lipid metabolism

Phenolic acids, mainly found in grains, wine, some berries, and
nuts, also play a beneficial role in regulating lipid metabolism (Tajik
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et al., 2017; Naveed et al., 2018). Oral phenolic acid reversed the
increase in body weight and improved lipid metabolism (i.e., tri-
glycerides, cholesterol, high density lipoprotein, low density lipo-
protein, and very low-density lipoprotein) in mice fed a high-
fructose diet and the mechanism might be associated with hor-
mones (i.e., insulin, leptin, and adiponectin) (Ibitoye and Ajiboye,
2018). Previous studies have shown that danshenolic acid regu-
lated obesity and related metabolic diseases by reducing the
expression of liver genes (i.e., sterol regulatory element binding
protein 1 (SREBP1), fatty acid synthase (FAS), stearyl coenzyme A
desaturase 1 (SCD1). Additionally, ferulic acid also improved the
glucose and lipid homeostasis in high-fat diet-induced obese mice
by inhibiting the protein expression of liver gluconeogenesis, such as
phosphoenolpyruvate carboxylase (PEPCK) and glucose-6-
phosphatase (G6Pase) (Naowaboot et al., 2016).

2.4. Lignans and lipid metabolism

Lignans mainly include secoisolariciresinol, lariciresinol, mata-
iresinol, pinoresinol, medioresinol, and syringaresinol, andwith the
clarification of the new lignan structure, the property spectrum has
also been broadened (Durazzo et al., 2018). The regulatory role of
lignans in lipid metabolism and obesity has been widely reported
(Zhang et al., 2015; Scharinger et al., 2016; Jahagirdar et al., 2018).
For example, 7-hydroxymatairesinol (7-HMR), a plant-based lig-
nan, limited the weight and fat gain and lowered serum lipids,
cholesterols, and triglycerides of mice induced by a high-fructose
diet (Biasiotto et al., 2018). The mechanism might be related to
increasing the level of peroxisome proliferatoreactivated receptor a
(PPARa) and carnitine palmitoyl transferases 1c and 2 (Cpt1c and
Cpt2) (key genes involved in fatty acid oxidation) (Chan et al., 2018).
More importantly, further research confirmed that the anti-
hyperlipidemic effect of lignan is achieved by down-regulating
the liver X receptor a (LXRa)/SREBP1c/FAS/acetyl-CoA carboxylase
(ACC) and SREBP2/3-hydroxy-3-methylglutaryl-coenzyme A
reductase (HMGCR) signaling pathways (Sun et al., 2017).

3. Hostemicrobe interplay in the lipid metabolic benefits of
dietary polyphenols

Although abundant studies reported that polyphenols have
antioxidant (Das et al., 2016), anti-inflammatory (Joseph et al.,
2016), anti-obesity (Xu et al., 2015), antibacterial (Lu et al., 2018),
and anti-cancer (Gorlach et al., 2015) benefits, because of the low
bioavailability of polyphenols, a novel view points out that poly-
phenols interact with intestinal microbes to affect host lipid
metabolism (Anhê et al., 2019). On the one hand, polyphenols affect
the structure of gut microbiota, such as Firmicutes, Bacteroidetes,
and Actinobacteria (Chambers et al., 2019); on the other hand, gut
microbiota further improves the bioavailability of polyphenols and
promotes the production of polyphenol metabolites including bile
acids and short-chain fatty acids (Fernandes et al., 2014), which
regulate lipid homeostasis (Fig. 1) (Castro-Barquero et al., 2018).

3.1. Impact of dietary polyphenols on microbial ecology in obese
subject

The role of polyphenols in anti-obesity has beenwidely reviewed
and themainmechanisms include causing satiety, promoting energy
expenditure by stimulating brown fat-producing heat, regulating fat
cells, and inhibiting lipid breakdown (Meydani and Hasan, 2010;
Wang et al., 2014; Rupasinghe et al., 2016). However, recent studies
also confirm the key role of polyphenols in host lipid metabolism
and obesity development through regulating gut microbiota. For
example, grape seed extract affected the compositions of microbiota
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by increasing the relative abundances of Lachnospiraceae, unclassi-
fied Clostridales, Lactobacillus, and Ruminococcacceae (Rasines-
Perea and Teissedre, 2017). Resveratrol modified intestinal mi-
crobes in obese mice by reducing the relative abundances of Turi-
cibacteraceae, Moryella, Lachnospiraceae, and Akkermansia and by
increasing the relative abundances of Bacteroides and Para-
bacteroides (Sung et al., 2017). Meanwhile, in vitro experiments have
also shown that polyphenols act as prebiotics by promoting the
growth of beneficial bacteria such as Lactobacillus spp. and Bifido-
bacterium spp., and plum polyphenols have been reported to reduce
body weight in obese rats by altering gut microbial structure by
increasing Faecalibacterium spp., Lactobacillus spp., and Bacteroides
spp. (Noratto et al., 2014). Together, dietary polyphenol intervention
can regulate gut microbial ecology, making it more conducive to
health by increasing the abundances of probiotics (Marchesi et al.,
2016).

3.2. Microbial metabolites of dietary polyphenols

Recent studies have demonstrated the role of dietary poly-
phenols in the prevention of obesity and obesity-related diseases
(Wang et al., 2014). However, most polyphenolic compounds
escape the digestion and absorption of the small intestine, and are
metabolized by microorganisms in the colon (Ozdal et al., 2016).
Polyphenols are mainly hydrolyzed by the microbial enzymes,
responsible for the hydrolysis release of o-glucosides and the
cleavage of carbon-carbons, resulting in smaller molecules that are
more active than natural compounds. Therefore, gut microbiota is
highly linked to the bioavailability of polyphenols. In this review,
catechins, resveratrol, curcumin, and anthocyanins will be fully
introduced.

3.2.1. Catechins
Catechins are the major polyphenolic compounds in green tea,

including epigallocatechin-3-gallate (EGCG), epigallocatechin
(EGC), epicatechin-3-gallate, epicatechin, gallocatechins, and gal-
locatechin gallate (Khan andMukhtar, 2018). EGCG is hydrolyzed to
EGC and gallic acid in the first stage of metabolism and then EGC is
converted to 1-(30,40,50-trihydroxyphenyl)-3-(200,400,600-trihydrox-
yphenyl) propan-2-ol, which is further transformed to 1-(30-dihy-
droxyphenyl)-3-(200,400,600-trihydroxyphenyl) propan-2-ol. In
addition, a part of 1-(30-dihydroxyphenyl)-3-(200,400,600-trihydrox-
yphenyl) propan-2-ol is converted to 5-(30,50-dihydroxyphenyl)-
pentanoic acid and a small portion is converted to 3,5-
dihydroxyphenylpropionic acid (3,5-DHPPA) (Mitchell et al.,
2019). Furthermore, metabolomics analysis also revealed that EGC
produces 5-(30,40,50-trihydroxyphenyl)-g-valerolactone and then
forms 5-(30,50-trihydroxyphenyl)-g-valerolactone in tea poly-
phenols, and epicatechin is biotransformed into 5-(30,40-dihydrox-
yphenyl)-g-valerolactone. The g-valerolactone ring of 5-(30,50-
trihydroxyphenyl)-g-valerolactone and 5-(30,40-dihydroxyphenyl)-
g-valerolactone could be opened through hydrolysis, yielding 4-
hydroxy-5-(dihydroxyphenyl)-valeric acid. Microbial dehydrox-
ylation reactions could further convert 4-hydroxy-5-(dihydrox-
yphenyl)-valeric acid to 5-(dihydroxyphenyl)-valeric acid and then
to 3-hydroxyphenyl-valeric acid (Zhou et al., 2019b). Some micro-
organisms have been shown to participate in EGCG biotransfor-
mation, including Enterobacter aerogenes, Raoultella planticola,
Klebsiella pneumoniae susp., Pneumoniae, Bifidobacterium longum
subsp. infantis, Clostridium orbiscindens, and Eubacterium ramulus
(Takagaki and Nanjo, 2010; Kutschera et al., 2011).

3.2.2. Resveratrol
Resveratrol is metabolized by the gut microbes in the large in-

testine to generate dihydroresveratrol, lunularin, and 3,40-
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dihydroxy-trans-stibene (Muhammadi and Shafiq, 2019). The
analysis of 16S rRNA sequences indicated that lunularin is posi-
tively associated with higher abundances of Bacteroidetes, Acti-
nobacteria, Verrucomicrobia, Cyanobacteria, and a lower
abundance of Firmicutes (Bode et al., 2013). Importantly, new
bacterial strains Slackia equolifaciens and Adlercreutzia equolifaciens
are found to convert resveratrol to dihydroresveratrol (Bode et al.,
2013). Resveratrol and its metabolites have widely been reported
to involve in lipid metabolism and the mechanisms include: (1)
inhibiting adipocyte growth by modulating a panoply of protein
targets such as nuclear hormone receptor-type, nuclear factor
kappa-B (NF-kB), enolases, and sirtuins; (2) increasing thermo-
genesis by regulating central energy pathway signaling and protein
targets (AMPK, mammalian target of rapamycin [mTOR], and pro-
tein kinase B [PKB, alos known as Akt]); (3) reducing inflammation
by inhibiting cyclooxygenases (COX) and quinone reductase 2
(QR2) enzymes, and activating SIRT1 (Leixuri et al., 2014;
Muhammadi and Shafiq, 2019).

3.2.3. Curcumin
Due to its low bioavailability, curcumin is generally metabolized

by microbiota in the colon (Di Meo et al., 2019). The curcumin
metabolic pathway includes reduction, methylation, demethox-
ylation, hydroxylation, and acetylation by gut microorganisms, and
themain products contain tetrahydrocurcumin (THC), dihydroferulic
acid (DFA), and 1-(4-hydroxy-3-methoxyphenyl)-2-propanol (Tsuda,
2018; Zam, 2018). In addition, curcumin can bemetabolized by Pichia
pastoris into 4 major metabolites, such as 5-hydroxy-7-(4-hydroxy-
3-methoxyphenyl)-1-(4-hydroxyphenyl) heptan-3-one, 5-hydroxy-
1,7-bis (4-hydroxy-3-methoxyphenyl) heptan-3-one,5-hydroxy-1,7-
bis (4-hydroxyphenyl) heptane-3-one, and 1,7-bis (4-hydroxy-
3methoxyphenyl) heptan-3,5-diol (Zam, 2018). Several microbiota
such as Escherichia coli, Blautia sp. (mrg-pmf1), Bifidobacterium,
Lactobacillus, Pichia anomala, and Bacillusmegaterium dcmb-002 have
often been found to be involved in the biotransformation of curcu-
min (Shen and Ji, 2019). Curcumin and itsmetabolites involve in lipid
metabolism mainly by targeting the following pathways: (1) inhib-
iting the formation and differentiation of adipocytes by down-
regulating proliferator-activated receptor g (PPARg), CCAAT/
enhancer-binding protein a (C/EBPa), extracellular-signal-regulated
kinase (ERK), c-Jun N-terminal kinases (JNK), and p38 and acti-
vating wnt/b-catenin and SIRT1; (2) reducing inflammation via
inhibiting monocyte chemoattractant protein-1 from 3T3-L1 adi-
pocytes and down-regulating the inflammatory transcription factors
NF-kB and activator protein-1 (AP-1); (3) promoting antioxidants by
activating NFE2-related factor 2 (Nrf2) (Bradford, 2013; Zhao et al.,
2017).

3.2.4. Anthocyanins
Most of anthocyanins can reach the colon and undergo various

enzymatic process by microbiota such as the cleavage of the sugar
moiety and the formation of anthocyanin aglycon (Khan et al.,
2020), and anthocyanin aglycon can be biotransformed into sim-
ple phenolic acids by 2 bacterial enzymes (a-L-rhamnosidase and
b-D-glucosidase) (Esposito et al., 2015). Then phenolic acids are
further degraded into protocatechuic acid, syringic acid, vanillic
acid, phloroglucinol aldehyde, phloroglucinol acid, and gallic acid
(Pojer et al., 2013). The metabolic processes of anthocyanin include
the cleavage of glycoside bond, the decomposition of anthocyanin
heterocyclic ring, and the demethylation, which is associated with
E. ramulus and Clostridium saccbarogumia (Tian et al., 2019). An-
thocyanins andmetabolites improve obesity primarily by inhibiting
lipogenesis (Jamar et al., 2017), reducing inflammation (Lee et al.,
2017; Peng et al., 2019), promoting energy homeostasis (Elena
et al., 2017), and improving insulin resistance (Tarun et al., 2017).
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4. Conclusions

During the past decades, remarkable progress has been made in
our understanding of dietary polyphenols and host lipid meta-
bolism. In this review, we summarized the basis for the under-
standing of lipid metabolic benefits of dietary polyphenols and
discussed the interaction between dietary polyphenols and gut
microbiota, which further regulates the lipid metabolism. Despite
the progress made in the understanding of dietary polyphenols, gut
microbiota, and lipid metabolism over the past few years, there are
still a number of prominent research avenues to be explored. For
example, how dietary polyphenols shape gut microbiota and how
microbiota further targets host lipid metabolism? Different poly-
phenols have different roles in gut microbiota, and the specific
mechanisms targeting host lipid metabolism should be investi-
gated. In addition, the effects of polyphenols in the clinic should be
fully studied and the dietary guidelines of polyphenols to control
the development of obesity will become more prominent. In the
future, polyphenol recipewill promote a series of effectivemethods
to guide us in maintaining healthy habits and controlling obesity.
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