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Abstract. Circular RNAs (circRNAs) are pervasively 
expressed circles of non-coding RNAs. Even though many 
circRNAs have been reported in humans, their expression 
patterns and functions remain poorly understood. In this study, 
we employed a pipeline named RAISE to detect circRNAs in 
RNA-seq data. RAISE can fully characterize circRNA struc-
ture and abundance. We evaluated inter-individual variations 
in circRNA expression in humans by applying this pipeline to 
numerous non‑poly(A)‑selected RNA‑seq data. We identified 
59,128 circRNA candidates in 61 human liver samples, with 
almost no overlap in the circRNA of the recruited samples. 
Approximately 89% of the circRNAs were detected in one or 
two samples. In comparison, 10% of the linear mRNAs and 
non-coding RNAs were detected in each sample. We estimated 
the variation in other tissues, especially the circRNA high-
abundance tissues, in advance. Only 0.5% of the 50,631 brain 
circRNA candidates were shared among the 30 recruited brain 
samples, which is similar to the proportion in liver. Moreover, 
we found inter- and intra-individual diversity in circRNAs 
expression in the granulocyte RNA-seq data from seven indi-
viduals sampled 3 times at one‑month intervals. Our findings 
suggest that careful consideration of inter-individual diversity 
is required when extensively identifying human circRNAs or 
proposing their use as potential biomarkers and therapeutic 
targets in disease.

Introduction

Circular RNAs (circRNAs) are a recently rediscovered class 
of non-coding RNA (1,2). They are formed by backsplicing 
events that involve a downstream 3' splice donor site joining 
an upstream 5' splice acceptor site in the primary transcript. 
Since the discovery of the first two circular RNAs (DCC 
in humans and SRY in mice) in the 1990s (3,4), numerous 
circRNAs have been identified in silico and validated in 
experiments (1,2). CircRNAs are remarkably stable, conserved, 
highly abundant and predominantly cytoplasmic (2). They 
are generated through several distinct mechanisms that rely 
on complementary sequences within flanking introns (2,5,6), 
exon skipping (6,7), and exon-containing lariat precursors (8). 
CircRNA expression is regulated by an RNA editing enzyme 
or RNA binding proteins, such as ADAR (6) and Quaking (9). 
Similar to linear RNA, circRNAs are generated from exons 
or introns at canonical splice sites and require typical spliceo-
somal machinery (10-12).

Computational biologists have developed several align-
ment algorithms to identify circRNAs using RNA-seq data. 
Two main approaches are used to detect circRNAs. One 
approach uses the annotated genome to build a reference 
scrambled exon-exon junction database. The scrambled 
exome includes all possible pairs of intragenic exons in a 
non-canonical order and the circularization of a single exon. 
The backsplice junction reads are aligned contiguously along 
their full length to databases, including KNIFE and other 
pipelines (13,14). The second strategy improves the alignment 
algorithms and the pipeline, identifying the backsplice aligned 
reads to the genome or transcriptome, and examples include 
mapsplice, find_circ, segemehl, circExplorer, circRNA_finder, 
CIRI, DCC and acfs (5,15-21). These algorithms differ in 
accuracy and sensitivity, and there is little overlap in their 
predictions (22).

Several studies have revealed that circRNAs are substan-
tially enriched in the brain tissues of humans and mice. Of 
note, the expression levels of circRNAs are dynamic during 
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brain development and are independent of the linear transcript 
that originates from the same gene locus (23-25). In epithe-
lial ovarian carcinoma, circRNAs display altered expression 
patterns between primary ovarian tumors and metastatic 
tumors (14). In heart‑specific circRNA candidates, there is a 
lack of differential expression of circRNAs between normal 
and diseased human heart (26). CircRNAs may also have an 
impact on aging and multiple disorders. CDR1as (ciRS-7) 
can serve as a miRNA ‘sponge’, arresting miR-7 function. In 
addition, miR-7 is a vital regulatory miRNA in Parkinson's 
disease (16). Genome-wide association studies linked a newly 
identified circRNA species, called cANRIL, with atheroscle-
rosis risk (27).

To systematically investigate the intra- and inter-
individual variation in circRNA expression profiles and 
the role of circRNAs in humans, we collected a large set of 
total RNA-seq data from NCBI Sequence Read Archive 
and ENCODE (28,29). A pipeline named RAISE (circRNA 
ReAlign Internal Structure and Expression) was developed to 
analyze circRNA candidates in these samples. Using RAISE, 
we identified 59,128 circRNA candidates in HCC and adja-
cent non-tumor tissues. Only a small portion of circRNAs 
is universally expressed in the recruited hCC samples. The 
expression of circRNAs in hCC shows inter-individual varia-
tions. In advance, we estimated whether circRNA expression 
varies in other tissues, especially in circRNA high-abundance 
tissues. Similar to liver cases, only 0.5% of the 50,631 brain 
circRNA candidates are shared among the 30 recruited brain 
samples. Moreover, we found inter- and intra-individual diver-
sity in circRNA expression in granulocyte RNA-seq data from 
seven individuals sampled 3 times at one-month intervals. Our 
results suggest that the majority of circRNAs exhibit inter- 
and intra-individual variations. When proposing variable 
circRNAs that are naturally highly expressed as prognostic 
markers, it is necessary to collect a sufficient number of indi-
viduals to confirm that these circRNAs are robustly expressed 
in humans.

Materials and methods

RNA‑seq datasets. We downloaded publicly available human 
and mouse RNA-seq data set samples from NCBI SRA (28) 
and ENCODE (29). human samples included hepatocel-
lular carcinoma (accession no. GSE65485) (30), granulocyte 
samples (accession no. GSE70390) (31), brain (accession 
nos. GSE53697 and GSE71315) (32,33). Mouse samples 
included liver and brain (accession no. PRJEB5489) (Table I).

RAISE: the workflow of circRNA identification. RAISE is a 
pipeline designed as a shell script to run after circRNA back-
splice sites have been identified. This pipeline can identify 
circRNA internal structures and alternative exon usage. In 
this study, we combined four circRNA prediction algorithms, 
including mapsplice (2,15,34), find_circ (16), acfs (20,24), and 
circRNA_finder (18). The main steps of RAISE are briefly 
described in Fig. 1. The first step is to obtain the unmapped 
reads. RNA-seq reads were aligned to the reference genome 
and transcriptome by hisat2, filtering contiguous and canon-
ical splice reads. Meanwhile, circRNA_finder was employed 
to identify circRNAs. The second step is applying mapsplice, 

acfs and find_circ to detect circRNAs from unmapped reads 
by combining the three tools and the circRNA_finder results. 
The third step is to extract the genomic region sequence of the 
circRNA backsplice site, tandemly duplicating this sequence 
to create a pseudo circRNA reference. The fourth step is to 
obtain backsplice junction site coverage and depth. The step 1 
unmapped reads are realigned to the pseudo circRNA refer-
ence by hisat2. The fifth step is conducting paired‑end read 
analysis with one read aligned to the backsplice site. If the 
mate reads are mapped to the circRNA region, they could be 
circRNA paired-end reads. If the mate reads are mapped out 
to a range of circRNA regions, they could be decoys. Then, 
the proper mapped paired-end reads and decoy reads were 
counted. The sixth step is to predict the circRNA transcript 
based on the proper mapped paired-end reads. With one read 
aligned to the backsplice site, the mate alignment read contains 
the circRNA inner splice site, which is used to detect circRNA 
internal structure and exon usage. The alternative step is to 
detect the support of circRNAs paired-end reads. There are 
several linear discordant paired-end alignment reads within 
the genomic region of the circRNA backsplice site that could 
be the potentially supported reads of circRNA candidates 
(Fig. 1). This pipeline is available as git repository: https://
github.com/liaoscience/RAISE.

CircRNA annotation and quantification. CircRNA annota-
tion is based on the Gencode (35) human genome (v38) and 
mouse genome (v10). We intersected the circRNA donator/
acceptor site to annotate gene regions, including coding 
RNA, non-coding RNA, intron, antisense and intergenic 
regions, with the BEDTools suite (v2.16.2) (36). The number 
of reads aligned to the circRNA‑specific head‑to‑tail junc-
tions was used as a measurement of circRNAs expression. 
Normalization with circRNA Spliced backsplice Reads 
Per Billion Mapped Reads (SRPBM) in each library was 
performed to enable the comparison of relative expression 
among samples (37). Circular to linear ratios were calcu-
lated using the backsplice reads of circRNAs by dividing 
the mean value of reads that span the linear splice junction 
reads, including the left and right sides of the circRNA 
splice sites (38).

Mapping and quantification of linear mRNA and lncRNA expres‑
sion. Sequencing quality was assessed by FASTQC (39). After 
removing adaptor and low-quality reads using cutadapt (40) 
(-q 10 -e 0.1 -O 10 -m 50), the clean reads were aligned to the 
human (hg38) genome reference sequences using hisat2 (41) with 
the default parameters. The bam files were generated, sorted, and 
deduplicated using SAMTOOLS (v1.3) (42). Read counts were 
tabulated with hT-Seq (43) in ‘union’ mode with the Gencode 
human v24 GTF file as a reference. Stringtie (v1.3) (44) was also 
used to estimate the total transcriptional output based on the 
Gencode human gene annotation (hG38 version 24) (35).

Gene Ontology enrichment analysis. Gene ontology (GO) 
term enrichment analysis was performed using DAvID (45), 
by inputting the list of circRNA derived host locus genes.

Statistical analysis. The raw counts were first normalized 
using trimmed mean of M-values (TMM). Differential 



INTERNATIONAL JOURNAL OF ONCOLOGY  51:  1625-1638,  2017 1627

circRNA or gene expression was estimated using the edgeR 
package, and a negative binomial model was used to estimate 
differential expression between tumor and adjacent non-tumor 
tissues (FDR <0.02, 2-fold change) (46). Statistical analyses 
were performed using R 3.3.1 (http://www.r-project.org/).

Results

RAISE: a cocktail of circRNA analysis pipeline. Numerous 
computational pipelines use backsplice reads to identify 
circRNAs; however, there is little overlap in these circRNA 
detection methods. Each algorithm has bias and ‘blind spots’, 
so we combined several different read aligners to identify 
more circRNAs and increase the robustness of circRNA iden-
tification (22). Previous algorithms detect circRNA backsplice 
sites, but they do not include internal structure information. 
We combined four available circRNA detection algorithms 
(mapsplice, acfs, circRNA_finder, and find_circ) to develop 
an integrated pipeline called RAISE to improve the predic-
tion accuracy and detect the internal exon usage of circRNAs 
(Fig. 1). RAISE is an easy-to-use shell script pipeline. The 
four selected tools chosen are based on previous reviews and 
research (22,34).

We tested RAISE on human liver rRNA depleted 
samples from ENCODE. In this RNA-seq library, 5,977 
circRNA candidates were detected by mapsplice, 6,672 
circRNA candidates by acfs, 10,778 circRNA candidates by 
circRNA_finder, and 8,952 circRNA candidates by find_circ. 
There were 2,891 circRNA candidates that were detected 
by all four tools. After application of the RAISE pipeline, 
14,145 circRNA candidates were detected, and when we 
filtered out candidates with less than two backsplice reads, 
there were 8,270 circRNA candidates for advanced analysis. 
We compared the abundance of circRNA candidates between 
these tools and RAISE. The abundance in acfs and mapsplice 
was close to that of RAISE, whereas the abundance in 
find_circ and circRNA_finder was less than that in RAISE 
(Fig. 2A and B). Furthermore, the internal exon usage of 
3,052 high-abundance circRNA candidates was predicted. 
For example, the exon composition of circABCB4 contains 
exon 13 and exon 14 of the ABCB transcript, with one read 
aligned to the backsplice sites and the mate alignment read 
containing cis-junction splice information, which is consis-

tent with the linear RNA junction site (Fig. 2C). A total of 
1,255 alternative splice sites were also detected in the library; 
for example, circPLOD2 was derived from exons 2 and 3 of 
the PLOD2 gene, and there were two cis-splice junctions in 
intron 2 (Fig. 2D). Exon usage was different with the host 
locus linear RNAs.

CircRNAs display only minor alterations in expression in 
HCC and adjacent non‑tumor tissue. In order to investi-
gate the circRNA expression profile in HCC, we collected 
61 human liver samples. All of the RNA-seq data are 
non-poly(A)-selected, and are downloaded from NCBI and 
ENCODE, GSE65485 included 50 hCC samples and 5 adja-
cent non-tumor tissues; GSE77661 included 4 liver samples; 
ENCODE included 2 liver samples (Table I). These data 
included 51 hCC samples, 6 adjacent non-tumor samples and 
4 normal liver samples. The sequencing depths of these samples 
ranged from 29.3 to 122.3 million reads. Approximately 95% 
of these reads were aligned to the human reference genome 
(hg38). Multidimensional scaling (MDS) (47) analysis showed 
that the hCC samples were distinct from normal and adjacent 
non-cancerous tissue samples (Fig. 3A).

The RAISE pipeline was applied on the unmapped 
reads (5%), and 59,128 distinct circRNA candidates were identi-
fied in 61 liver samples. We chose seven HCC samples and five 
adjacent non-tumor samples (unpaired samples) to compare the 
expression patterns of circRNAs between tumor and adjacent 
non-tumor tissues. First, we found that 80% of the circRNA 
candidates in these 12 hCC samples were derived from the 
protein-coding exonic regions while other smaller fractions 
were antisense, long non-coding RNAs, intergenic regions 
and intronic regions (Fig. 4A). The genomic features of these 
circRNAs, e.g., genomic origins, exon numbers, exon length 
and genomic distance, were compared between hCC and adja-
cent non-tumor tissue. The exon numbers of most circRNAs 
were less than five. The length of most exonic circRNAs was 
~300-500 nt with a genomic distance of ~1,000-3,000 bp. There 
was no significant difference in the genomic features between 
hCC and adjacent non-tumor tissue (Fig. 4B-D).

Next, we inquired whether liver circRNAs are differ-
entially expressed between tumor and adjacent non-tumor 
tissues. Unlike mRNAs and lncRNAs, hundreds of linear 
RNA genes are significantly differentially expressed in these 

Table I. Summary of RNA-seq data set.

Accession no. Liver Brain Granulocytes Other Total Description

GSE65485 55   0   0   0 55 50 hCC and 5 adjacent non-tumor
GSE77661   4   2   0 20 26 In 4 liver samples, 2 are normal, 1 is hCC, 
      1 is hCC adjacent non-tumor tissue, 2 heart
GSE73570   0   0   0   6   6 Blood 1 repeat
encode   2   3   0 38 43 2 liver sample, 3 brain samples
GSE53697   0 17   0   0 17 8 control, 9 Alzheimer's diseased
GSE71315  16   0   0 16 8 ribozero total RNA, 8 polyA+ RNA
PRJEB5489 12 12   0   0 24 Mouse normal
GSE70390   0   0 21   0 21 human granulocytes 7x3
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Figure 1. The RAISE workflow for the identification and quantification of circRNA candidates. (A) The pipeline of circRNA detection: 1, Hisat2 alignment 
and filtering of mapped reads, STAR alignment and circRNA_finder identification. 2, Detection of circRNAs from unmapped reads using mapsplice, acfs and 
find_circ tools, and merger of their outputs with the circRNA_finder results. 3, Extraction of the genomic region corresponding to the circRNA backsplice 
site from the previous four tools' output, tandem duplication of the sequences to create a pseudo circRNA reference, realignment of the unmapped reads to the 
pseudo reference, and estimation of the abundance of circRNA candidates. 4, From the paired-end data, if one read is aligned to a circRNA backsplice site 
and if the mate read is aligned to the circRNA region, these paired‑end reads are classified among circRNA reads, whereas if the mate read is aligned outside 
the circRNA backsplice site, the paired‑reads are classified as decoys. (B) Prediction of circRNA internal exon usage by paired‑end and splice junction reads. 
(C) Discordant linear alignment reads that could be potential circRNA candidate paired-end reads.

Figure 2. Summary of RAISE prediction results. (A) Venn diagram comparison of circRNAs identified by the four tools. (B) Scatter plot of circRNA abun-
dance between RAISE and the four tools. (C) The internal structure is the same as that of linear RNAs. (D) The internal structure is different from that of 
linear RNAs. CircRNA internal structure displayed by IGv. Red and blue bold lines indicate exons, a curved red line indicates the cis-splice junction of the 
circRNA, a curved black line indicates the backsplice junction of the circRNA, gray and green lines indicate the paired-end alignment reads, and gray peaks 
indicate the read depth in the genomic region.
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two groups. We did not detect any differentially expressed 
circRNA candidates with statistical significance (Fig. 4E). The 
circRNA circALB (chr4:73405119-73408712) from exon 2-4 
of the ALB gene was in high abundance in adjacent non-tumor 
tissue, but it was not detected in 84% of a total of 50 hCC 
samples. Of note, ALB mRNA was highly abundant in the 
liver samples.

CircRNAs show inter‑ and intra‑individual expression diver‑
sity. In addition to assessing circRNA expression patterns in 
HCC, we turned our attention to the liver‑specific expression 
of circRNAs. We calculated the occurrence of each circRNA 
in these samples to discover the shared circRNAs and unique 
circRNAs. For example, circAPOA2 was detected in 28 hCC 
samples; hence, its occurrence was 28. In 55 hCC samples, 
the occurrence of circRNAs ranged from 1 to 55. We analyzed 
the total detected circRNA candidates and linear gene occur-
rences. Unlike linear RNAs, ~10% of the protein-coding 
RNAs and non-coding RNAs were expressed in all 55 hCC 

samples, whereas almost no detected circRNAs were shared 
by the 55 samples (Fig. 5A). Consequently, a single gene 
locus can transcribe multiple circular isoforms (48,49). We 
asked whether the diversity among the samples is due to 
variations in circular RNA isoform selection within the gene 
locus. We set the circRNAs derived from the same transcript 
as ‘transcript circRNA’ and those from the same gene locus 
as ‘gene circRNA’. For example, there are 329 circRNA 
isoforms in the ALB gene locus; we set these circRNAs as 
circALB. Furthermore, we compared the diversity in gene- 
and transcript-level circular RNA expression. Seven of the 
16,133 transcript circRNAs and 9 of the 9,696 gene circRNAs 
were shared among the 55 hCC samples (data not shown). 
These nine genes expressed circRNAs in all the samples 
independently of the circRNA backsplice sites. The ratio of 
transcript to gene circRNAs remained low in contrast to the 
ratio of transcript to linear RNAs. To test whether a similar 
expression pattern exists in mice, we downloaded 12 mouse 
liver RNA-seq datasets from NCBI SRA, analyzed them with 

Figure 3. Multidimensional scaling (MDS) analysis of the 55 hCC samples. (A) Linear transcriptome. (B) CircRNAs transcriptome. (C) A heatmap displaying 
the differentially expressed linear gene abundance in 12 hCC samples.



LI et al:  COMPREhENSIvE ANALYSIS OF circRNA EXPRESSION PROFILES IN hUMANS BY RAISE1630

the same pipeline (Table I), and identified 3,801 circRNA 
candidates in these samples. Only 0.1% of circRNAs were 
shared in the mouse liver samples, i.e., 0.1% of the transcripts 
as well as 0.1% of the gene circRNAs were shared in each 
sample. This result is consistent with the human liver circRNA 
expression profile (Fig. 5B).

We then asked whether inter-individual circRNA expres-
sion diversity is also common in other human tissues. Since 
circRNAs are highly abundant in the brain (data not shown) (24), 
we downloaded several batches of brain ribosomal RNA 
depleted RNA-seq data from NCBI SRA and analyzed the 
brain circRNA expression profile with our pipeline (Table I). 
We identified 50,631 circRNA candidates in 30 human brain 
samples and found ~0.5% shared in each brain sample (Fig. 5C). 
The same pipeline was used on the mouse brain samples, and its 
results showed similarities to those of the human brain (Fig. 5D). 
Circular RNAs display greater variation than linear genes in 
both brain and liver.

CircRNA expression profiles are varied and diverse 
between individuals, whether or not circRNAs are repro-
ducibly expressed within one individual. We downloaded 

21 human granulocyte ribo-zero RNA-seq datasets from 
NCBI SRA (Table I). The data came from seven healthy 
individuals, with three samples at least one month apart (31). 
We used the previous pipeline to identify circRNAs and 
found that 3% were shared among these 21 samples. Within 
the individuals, circRNAs showed less reproducible expres-
sion than linear RNAs between different individuals (Fig. 5E 
and Table II). The unsupervised hierarchical clustering of 
the circRNA expression profiles of the 21 samples displayed 
inconsistent results within each donor (Fig. 6).

In short, for the tissues with low circRNA abundance, 
e.g., liver, the ratio of shared circRNAs was lower. For the 
tissues with high circRNA abundance, e.g., brain and granulo-
cytes, the ratio increased.

Shared circRNAs are highly abundant and are derived from 
circRNA hotspot gene loci. We further investigated the char-
acteristics of shared circRNAs and unique circRNAs. We 
observed that with an increase in the occurrence of circRNAs, 
their abundance also increased in all the studied samples. In 
13 hCC and 17 brain samples, the abundance of the highest 

Figure 4. CircRNAs display no difference between hCC and adjacent non-tumor tissue. (A) The genomic origin of circRNAs. (B) The exon number distribu-
tion of circRNAs. (C) The genomic distance of backsplice sites. (D) The length distribution of exonic circRNAs. Tumor represents hCC. Normal represents 
adjacent non‑tumor tissue. (E) Heatmap of several circRNA expression profiles from the samples. N represents adjacent non‑tumor tissue. T represents HCC.
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Figure 5. Comparison of circRNA and linear RNA distributions in humans and mice. x-axis corresponds to the occurrence of RNA in the recruited samples; 
y‑axis represents the fraction of RNAs. (A) Fifty‑five human HCC samples. (B) Twelve mouse liver samples. (C) Thirty human brain samples. (D) Twelve mouse 
brain samples. (E) Twenty-one human granulocyte samples.

Table II. CircRNA distribution in different tissues.

Specie tissue human brain Mouse brain human liver Mouse liver human granulocytes

Samples number 30 12 61 12 21
CircRNA candidates 50,631 7,124 59,128 3,801 31,063
Prediomant 5,017 516 2,743 244 3,893
Alter splice 3,042 182 5,228 55 1,528
Shared (>20%) 8,910 1,983 469 353 8,509
Shared prediomant 405 157 8 19 984
Shared alter splice 232 33 3 4 268
Unique (<20%) 41,721 5,141 58,659 3,448 22,178
Unique prediomant 4,612 359 2,735 225 2,909
Unique alter splice 2,869 156 5,224 55 1,318
Transcript circRNA 19,544 4,177 20,530 2,788 12,809
Co-exist 8,086 1,695 8,516 1,291 4,584
Shared co-exist 2,082 634 333 192 1,849

Shared circRNAs is the occurence of circRNAs in >20% of the recruited samples. Unique circRNAs is the total circRNA candidates minus the 
shared circRNAs. Prediomant circRNAs is in the circRNA backsplice sites, when backsplice reads of circRNAs more than the reads that span 
linear splice junction reads. Alter splice is the circRNAs internal structure which is different from linear RNAs. Transcript circRNA refers to 
the circRNAs reference transcripts. Co-exist is circRNAs and linear RNA genes co-expression.
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Figure 6. CircRNA expression displays inter- and intra-individual diversity in human granulocyte samples (seven individuals, sampled at three time-points 
spaced at least 1 month apart). Unsupervised hierarchical clustering of the circRNAs. heatmap colors represent relative circRNA abundance in each sample.

Figure 7. Comparison of the abundance of different circRNA occurrences. x-axis represents the occurrence of circRNAs in the recruited samples; y-axis shows 
the abundance of circRNAs (log2). (A) Thirteen human hCC samples. (B) Twelve mouse liver samples. (C) Seventeen human brain samples. (D) Twelve mouse 
brain samples. (E) Twenty-one human granulocyte samples.
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occurring circRNA was 5 times more than that of the lowest 
occurring circRNA. We also analyzed the human granulocyte 
dataset and found that its circRNA expression profile was 
similar to that of the human brain samples (Fig. 7).

Then, we discovered that a single gene locus can produce 
multiple circRNAs. We investigated whether the different 
occurrences of gene circRNAs corresponded to different 
numbers of circular isoforms. Based on the occurrence of the 
circRNA gene loci in the recruited samples, these circRNA 
gene loci were assigned to one of three categories: shared 20%, 
shared 20-90%, and shared 90%. Shared 20% are the gene loci 
of expressed circRNAs in <20% of the recruited samples. 
Shared 20-90% are the gene locus-expressed circRNAs in 
>20% and <90% of the recruited samples. Shared 90% are 
the gene locus-expressed circRNAs in >90% of recruited 
samples. Most of the shared 20% circRNA gene loci have 
one or two circRNA isoforms. Shared 90% circRNA gene 
loci have multiple circRNA isoforms. A total of 230 of these 

gene loci gave rise to >10 circRNAs in human granulocytes 
(Fig. 8). These gene loci are circRNA hotspot gene loci (38). 
The shared 90% circRNA loci have not only more distinct 
circRNA isoforms but also highly abundant circRNA isoforms 
compared to those in the other categories. We then analyzed 
the alternative splicing and alternative backsplicing of highly 
shared circRNA gene loci. Typically, the shared circRNA genes 
express more than two circRNAs in their gene locus; only 
one or two are highly abundant, whereas the others are lowly 
abundant and diverse. For example, two of the four circular 
isoforms of the circRNA UBXN7 were highly abundant. 
CircRNA UBXN7-1, derived from exon 3-5, was universally 
expressed in all the human granulocyte samples. CircRNA 
UBXN7-2 derived from exon 2-5 was detected in 14 of 21 
granulocyte samples. Its other two circular isoforms were 
low abundance and were detected in less than five samples. 
The alternative backsplicing and alternative cis-splicing of 
circRNAs were diverse.

Figure 8. Number of distinct circRNAs per gene locus in humans and mice. x-axis represents the number of alternative circRNAs in a single gene; y-axis 
shows the fraction of genes. Based on the occurrence of the circRNA gene loci in the recruited samples, these circRNA gene loci were assigned to one of 
three categories: shared 20%, shared 20-90%, and shared 90%. Shared 20% are the gene locus-expressed circRNAs in <20% of the recruited samples. Shared 
20-90% are the gene locus-expressed circRNAs in >20% and <90% of the recruited samples. Shared 90% are gene locus-expressed circRNAs in >90% of the 
recruited samples. (A) Fifty‑five human HCC samples. (B) Twelve mouse liver samples. (C) Thirty human brain samples. (D) Twelve mouse brain samples. 
(E) Twenty-one human granulocyte samples.
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Furthermore, we investigated the relative circular to 
linear transcript abundance. We suggested that the predomi-
nant circRNAs have a circular to linear ratio >1. We found 
2,045 circRNA isoforms that are predominant transcripts 
among the 55 hCC samples, but only 8 predominant 
circRNAs, were shared in the hCC samples. Moreover, in the 
30 brain samples, there were 5,017 predominant circRNAs and 
405 shared circRNAs (Table II). Predominant circRNAs were 
not significantly enriched in shared circRNAs.

In summary, shared circRNAs are highly abundant. The 
shared circRNA gene loci have multiple distinct circRNAs. 
In these shared circRNA gene loci, circRNA expression 
demonstrates diverse alternative cis-splicing and alternative 
backsplicing.

Comparison of the tissue‑specific shared circRNAs in humans. 
Even though a large number of circRNAs are inter-individually 
diverse and vary among the samples, a small proportion of 
circular RNAs is shared. Previous studies indicated that the 
expression of circular RNA is related to the genomic origin of 
the linear transcripts (5,23,24) and that circular RNAs regulate 
the transcription of host mRNAs (9,50,51). We conducted a 
Gene Ontology analysis on the linear transcripts derived 

from the shared liver and brain circRNAs, which revealed 
significant differences between them. Since there are almost 
no shared circRNAs in the liver, we considered the circRNAs 
detected in >20% of the samples as shared circRNAs in the 
liver. We found that liver samples were enriched with lipo-
protein metabolic process and extracellular exosome while 
brain samples were enriched with protein phosphorylation, 
postsynaptic density, and protein kinase activity (Fig. 9). Both 
liver and brain samples contained numerous protein binding 
genes, and most of the GO terms were related to tissue‑specific 
functions. highly represented gene categories included ApoE 
and ALB genes in the liver and RIMS1, hTT and KLhL24 in 
the brain (Fig. 9 and Table III).

Furthermore, we also analyzed the liver, brain, blood, granu-
locyte and heart shared circRNAs, i.e., 39 shared circRNAs 
in these tissues (Table III). Some of these shared circRNAs 
have been previously validated by experiments, e.g., circZK-
SCAN1 (52) and circMAN1A2 (50,53). CDR1as was detected in 
the three other tissues except the blood and granulocyte samples.

Conservation of the identified circRNA candidates between 
human and mouse. Previous research indicated that circular 
RNAs are evolutionarily conserved in function (2,23,49,54). 

Figure 9. GO analysis of the shared circRNA host genes. (A) Brain and (B) liver. Enriched terms are grouped by GO category: biological process (red), cellular 
component (green), and molecular function (blue).
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First, most circRNAs originated from CDS regions, which 
are evolutionally preserved in the genome. Second, the back-
splice sites of circRNAs are conserved. We compared human 
and mouse conservation of circRNAs with a previously 
described computational method (55). In total, we identified 
169,044 circRNA candidates in 178 human samples and 
9,886 circRNA candidates in 24 mouse samples. In human and 
mouse, there were 3,579 shared conserved gene locus-detected 

circRNA candidates. There were 83,389 gene locus-expressed 
circRNA candidates in humans and 8,615 circRNA candidates 
in mice.

Discussion

Eukaryotic circRNAs are a type of less abundant, but 
biochemically stable, transcripts that are expressed in diverse 

Table III. CircRNAs shared in different tissues.

chr start end gene transcript strand circRNA

chr1 26729380 26774901 ARID1A ARID1A-201 + chr1:26729650-26732792(+)
chr1 1.17E+08 1.18E+08 MAN1A2 MAN1A2-001 + chr1:117402185-117442325(+)
chr1 1.17E+08 1.18E+08 MAN1A2 MAN1A2-001 + chr1:117402185-117420649(+)
chr1 1.17E+08 1.18E+08 MAN1A2 MAN1A2-001 + chr1:117402185-117414831(+)
chr1 1.17E+08 1.18E+08 MAN1A2 MAN1A2-001 + chr1:117402185-117405645(+)
chr1 66958911 66960078 MIER1 MIER1-005 + chr1:66958058-66963160(+)
chr1 26921726 26946862 NUDC NUDC-001 + chr1:26942659-26943065(+)
chr1 1.81E+08 1.81E+08 STX6 STX6-002 - chr1:180984676-180993425(-)
chr1 21715124 21721146 USP48 USP48-008 - chr1:21715388-21721764(-)
chr10 5709626 5714574 FAM208B FAM208B-014 + chr10:5699524-5714207(+)
chr10 1.02E+08 1.02E+08 FBXW4 FBXW4-002 - chr10:101667885-101676436(-)
chr12 1.23E+08 1.24E+08 RILPL1 RILPL1-001 - chr12:123498543-123499536(-)
chr13 45962176 46052759 ZC3h13 ZC3h13-002 - chr13:46003138-46020557(-)
chr14 45121588 45131261 FKBP3 FKBP3-003 - chr14:45118027-45130790(-)
chr14 49820096 49852780 NEMF NEMF-005 - chr14:49825866-49831361(-)
chr14 39179090 39182750 PNN PNN-005 + chr14:39179090-39179462(+)
chr14 22909490 22911792 RBM23 RBM23-012 - chr14:22909482-22911403(-)
chr14 22905585 22919149 RBM23 RBM23-004 - chr14:22906194-22911403(-)
chr18 9136805 9235820 ANKRD12 ANKRD12-009 + chr18:9182381-9221999(+)
chr18 21704957 21864974 MIB1 MIB1-004 + chr18:21765771-21779685(+)
chr19 8461969 8465372 hNRNPM hNRNPM-014 + chr19:8455404-8463686(+)
chr2 1.12E+08 1.12E+08 ZC3h6 ZC3h6-001 + chr2:112299848-112300029(+)
chr2 1.12E+08 1.12E+08 ZC3h6 ZC3h6-001 + chr2:112299848-112325197(+)
chr22 50372072 50444391 PPP6R2 PPP6R2-004 + chr22:50372019-50394135(+)
chr3 1.96E+08 1.97E+08 RNF168 RNF168-001 - chr3:196487398-196488683(-)
chr3 1.58E+08 1.59E+08 RSRC1 RSRC1-201 + chr3:158122102-158123991(+)
chr3 1.7E+08 1.7E+08 SEC62 SEC62-009 + chr3:169976945-169988359(+)
chr4 1.52E+08 1.53E+08 FBXW7 FBXW7-004 - chr4:152411302-152412529(-)
chr4 1.28E+08 1.28E+08 LARP1B LARP1B-005 + chr4:128074459-128077962(+)
chr6 4836098 4954373 CDYL CDYL-007 + chr6:4891712-4892379(+)
chr6 18223868 18264823 DEK DEK-001 - chr6:18236451-18258405(-)
chr7 1E+08 1E+08 ZKSCAN1 ZKSCAN1-001 + chr7:100023418-100024307(+)
chr8 61623710 61714596 ASPh ASPh-001 - chr8:61618977-61653660(-)
chr8 67083848 67195611 CSPP1 CSPP1-003 + chr8:67131950-67137603(+)
chr8 1.08E+08 1.08E+08 EMC2 EMC2-004 + chr8:108449822-108455930(+)
chr9 5919008 6007787 KIAA2026 KIAA2026-002 - chr9:5968018-5988545(-)
chr9 33948374 33989043 UBAP2 UBAP2-004 - chr9:33971650-33973237(-)
chr9 33994481 34048872 UBAP2 UBAP2-010 - chr9:33986759-34017189(-)
chr9 33921693 34048901 UBAP2 UBAP2-001 - chr9:33960825-33989126(-)
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genomic locations. The abundance of circRNAs is ~1-3% of 
the level of poly(A)+ RNAs (49), and most circRNAs exist in 
low abundance. Therefore, identifying all of the expressed 
circRNAs is difficult. Each circRNA prediction algorithm 
brings its own bias and ‘blind spots’ (22). We solved this 
problem by combining the distinct algorithms to yield a more 
trustworthy and sensitive output (34). It was reported that 
circRNA isoforms from the same host transcript share the 
same backsplice sites with different internal exons (24). As 
a result, the internal exon composition of circRNAs cannot 
simply be predicted using junction exons and linear RNA exon 
composition (24,48,56). RAISE is designed to detect circRNA 
internal exon composition and predict circRNA transcript 
sequences (Fig. 2C). The availability of coverage and splice 
information helps in the identification of a circRNA and its 
exon composition. The internal exon usage of circRNAs was 
used to predict circRNA transcript sequences and investigate 
circRNA functions.

We used RAISE to compare the circRNA expression 
profiles in HCC with adjacent non‑tumor tissue samples and 
did not find any significant differences. Even though there is 
no significant differential expression between tumor and adja-
cent non-tumor tissue, we observed that circRNAs expression 
profiles are diverse between individuals and are independent of 
the linear gene expression. In the case of circRNA expression, 
this variation means detected or not, whereas for linear gene 
expression, it represents whether the abundance is high or low. 
Since the circRNAs are not highly enriched in hCC-affected 
tissues, we tested whether various other tissues possessed 
the same expression patterns. In the brain rRNA depleted 
RNA-seq data, the ratio of shared circRNAs was 0.5%, which 
is higher than the ratio in the liver but lower than the ratio of 
the linear gene. The brain and liver samples displayed high 
inter-individual variation in the expression of circRNAs. We 
collected 21 granulocytes samples from seven individuals at 
three time-points to determine whether circRNAs were repro-
ducibly expressed within one individual. The results showed 
that circRNAs are not reproducible within one individual. 
Briefly, the circRNAs fall into two categories: the randomly 
or variably expressed circRNAs, and the robustly expressed 
circRNAs. The biological roles of either of these types is not 
yet clear and thus requires functional studies. Several previous 
studies have highlighted a few circRNAs which are highly 
abundant and ubiquitously expressed (1,55).

In agreement with previous research, individual circRNA 
expression seems to be highly stochastic. however, the vari-
able expression of circRNAs in different samples may also trap 
miRNAs (57). Meanwhile, some online databases, including 
Arraystar's circRNA target prediction software, Circ2Traits, 
CircInteractome and CircNet (58-61), have been developed to 
predict circRNA-miRNA interaction networks. Circ2Traits 
is a comprehensive database for circular RNAs with poten-
tial association with disease and traits (58). CircNet and 
CircInteractome, both predict the miRNAs target of circRNAs 
and create the circRNA-miRNA interaction network (59,60).

We also observed that most of the circRNAs are detected in 
only a few cell types and that they are not as cell‑type‑specific 
as mRNAs (55). The variation and diversity of circRNAs 
expression profiles may be due to the large number of circRNA 
transcripts expressed at a low level. Interestingly, most of the 

circRNAs co-exist with linear RNA transcripts; however, only 
a small portion of these circRNAs are predominant transcripts 
(Table II). There are several shared circRNAs among the 
recruited samples in the same tissue. The shared circRNAs 
usually have multiple circular isoforms in the gene locus, and 
these gene loci are circRNA hotspots. We conducted a Gene 
Ontology analysis on the host genes that gave rise to shared 
circRNAs and showed that these genes are related to tissue-
specific functions.

We used our RAISE pipeline to show that circRNAs have 
both intra- and inter-individual variations in their expression 
patterns. Our findings can be helpful in identifying novel 
circRNAs and designing better therapeutic approaches. 
Furthermore, according to our suggestions only the robustly 
expressed circRNAs are a candidate for usage as a biomarker.
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