Data in Brief 20 (2018) 1148-1152

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Performance output data and configurations of @CmssMark
stencil compilers experiments run through
PROVA!

Danilo Guerrera™, Antonio Maffia, Helmar Burkhart

University of Basel, Switzerland

ARTICLE INFO ABSTRACT

Article history: The data in this article are related to the research article titled
Received 15 May 2018 “Reproducible Stencil Compiler Benchmarks Using PROVA!”.
Accepted 24 August 2018 Stencil kernels have been implemented using a naive OpenMP

Available online 30 August 2018 (OpenMP Architecture Review Board, 2016) [1] parallelization and

then using the stencil compilers PATUS (Christen et al., 2011) [2]
and (Bondhugula et al., 2008) PLUTO [3]. Performance experiments
have been run on different architectures, by using PROVA! (Guer-
rera et al., 2017) [4], a distributed workflow and system manage-
ment tool to conduct reproducible research in computational
sciences. Information like version of the compiler, compilation
flags, configurations, experiment parameters and raw results are
fundamental contextual information for the reproducibility of an
experiment. All this information is automatically stored by PROVA!
and, for the experiments presented in this paper, are available at
https://github.com/sguera/FGCS17.
© 2018 The Authors. Published by Elsevier Inc. This is an open
access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

DOI of original article: https://doi.org/10.1016/j.future.2018.05.023
* Corresponding author.
E-mail address: danilo.guerrera@unibas.ch (D. Guerrera).

https://doi.org/10.1016/j.dib.2018.08.092
2352-3409/© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).


https://github.com/sguera/FGCS17
www.sciencedirect.com/science/journal/23523409
www.elsevier.com/locate/dib
dx.doi.org/10.1016/j.dib.2018.08.092
dx.doi.org/10.1016/j.dib.2018.08.092
dx.doi.org/10.1016/j.dib.2018.08.092
http://dx.doi.org/10.1016/j.future.2018.05.023
http://dx.doi.org/10.1016/j.future.2018.05.023
http://dx.doi.org/10.1016/j.future.2018.05.023
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dib.2018.08.092&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dib.2018.08.092&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dib.2018.08.092&domain=pdf
mailto:danilo.guerrera@unibas.ch
dx.doi.org/10.1016/j.dib.2018.08.092

D. Guerrera et al. / Data in Brief 20 (2018) 1148-1152 1149

Specifications Table

Subject area Computer Science

More specific subject area High Performance Computing

Type of data Shell scripts, JSON files (descriptors, performance output data)

How data was acquired Execution of the compiled source code

Data format Raw

Experimental factors

Experimental features Several kernels with different properties: grid size, number of threads

used in the parallel execution. Two architectures (compute systems).
Three implementation approaches: naive openMP, and 2 stencil compi-
lers: PATUS and PLUTO

Data source location Basel (Switzerland) and Erlangen (Germany)

Data accessibility https://github.com/sguera/FGCS17.

Related research article Reproducible Stencil Compiler Benchmarks Using PROVA!

Value of the data

® The data are output of reproducible executions of the source codes on different architectures, from
CPU to GPU.

® The data allow to compare the performance obtained using different approaches to parallelize
stencil computations: naive OpenMP (OpenMP Architecture Review Board, 2016) [1], PLUTO
(Bondhugula et al., 2008) [3] and PATUS (Christen et al., 2011) [2].compilers).

® Several stencils have been implemented and their execution performance registered, thus broad-
ening the impact of these data to several communities.

® The configuration data available, allow to reproduce the experiments eve n without using PROVA!
(Guerrera et al., 2017) [4] (a tool for reproducible research).

1. Data

Information like version of the compiler, compilation flags, configurations, experiment parameters
and raw results are fundamental contextual information for the reproducibility of an experiment. All
these information are automatically stored by PROVA! when creating a project, a method, or an
experiment. Each of them holds a descriptor that stores the relevant information and makes them
available to the tool and the users, when needed.

For each used software PROVA! stores the building and installing recipes, in the form of easyconfig
files (used by EasyBuild), the compilation and execution commands, together with their environment
(automatically using environment modules, in a way transparent to the user), self-documenting the
whole research from the creation of a project until the run of an experiment.

Thus the general structure of the data in the repository is:

e PROBLEM
o EASYCONFIGS
o COMPUTE SYSTEM
= METHOD (implementation)
e OUT (raw output per thread used)
e SRC
o Makefile
© Sources


https://github.com/sguera/FGCS17

1150 D. Guerrera et al. / Data in Brief 20 (2018) 1148-1152

2.

2.1.

o INPUT_PARAMETERS

e METHOD DESCRIPTOR
= EXPERIMENTAL RESULTS
PROLOGUE infos
EPILOGUE infos
RESULTS (ordered in a json)
PLOTTING SCRIPT
FIGURE
= METHOD_TYPE

e COMPILATION SCRIPT

e RUN SCRIPT

e METHOD_DESCRIPTOR (containing the environment module used)

Experimental design, materials, and methods
Experiment 1

In this experiment has been solved a classical wave equation with a fourth order-in-space and

second order in time finite difference method. After the discretization, 3 implementations have been
produced:

a naive C + OpenMP
a C source with PLUTO directives
a source in a Domain Specific Language used as input for PATUS.

Two different compute systems have been used:

Mint cluster at university of Basel: 4 compute nodes of dual socket AMD Opteron 6274 “Bulldozer”
with a nominal clock speed of 2.2 GHz and 16 cores per chip. Each CPU has a 2 x 6 MiB L3 cache
shared among a NUMA domain (8 cores), every 2 cores are sharing a 2 MiB L2 cache (16 MiB in
total), and a 16 KiB core private L1 cache. The peak performance of one core is 8 flops per cycle in
DP or 16 flops per cycle in SP. Each node is equipped with 128 GiB of RAM (DDR3-1600) per socket
and has a maximum memory bandwidth of circa 20 GB/s per socket (measured via the STREAM
COPY benchmark). The machine is running a 64-bit Ubuntu 14.04.4 LTS (kernel 3.13.0-93-generic).
LiMa cluster at Regionales RechenZentrum Erlangen: 500 compute nodes of dual socket Xeon 5650
“Westmere” with a nominal clock of 2.66 GHz and 6 cores + SMT per chip. Each CPU has 12 MiB L3
cache shared among all cores, and core-private L2 and L1 caches of 256 KiB and 32 KiB respectively.
The peak performance of one core is 4 flops per cycle in DP or 8 flops per cycle in SP. Each node is
equipped with 24 GiB of RAM (DDR3-1333) per socket and has a maximum memory bandwidth of
circa 21 GB/s per socket (measured via the STREAM COPY benchmark). The machine is running a
64-bit CentOS release 6.7(kernel 3.10.0-327.22.2.el7.x86_64).

The software stack, maintained by PROVA!, consisted, respectively, of the following environment

modules:

GCC/4.9.3-2.25
GCC[/4.9.3-2.25, PLUTO-pet/0.11.0 (pet branch)
GCC[4.9.3-2.25, PATUS/0.1.4, Java/1.7.0_79, Maxima/5.37.2 (compiled with ecl/16.0.0)

The easyconfigs used to install such modules are available at the repository.



D. Guerrera et al. / Data in Brief 20 (2018) 1148-1152 1151

The experiment has been conducted using three dimensional grids of size 200 and IEEE single
precision arithmetic (float), over 100 timesteps.

2.2. Experiment 2

The second problem we chose to solve is a blur filtering. The filter matrix of the smoothing used,
corresponds to a discrete two dimensional Gaussian function: G(x,y) = J#exp(—"?{;gz), where
o denotes the width (i.e. standard deviation) of the bell-shaped function. Gaussian filters are isotropic
if the filter matrix is large enough (at least 5 x 5, like in our case) to provide a sufficient
approximation.

The size of our grids is 1024? points and we calculate 50 timesteps in IEEE single precision
arithmetic.

The same systems and methods of Experiment 1 have been used.

2.3. Experiment 3

A classical heat equation, describing the temperature change over time, given initial temperature
distribution and boundary conditions. A finite differencing scheme is employed to solve the heat
equation numerically on a square region. The size of the grids is 5122 and we calculate 100 timesteps
in IEEE single precision arithmetic.

The implementation used makes use of MPI for the parallelization.

The compute system used is Mint (details presented above). To complement that description, it is
equipped with Mellanox Infiniband MT26428 [ConnectX VPI PCle 2.0 5GT/s - IB QDR |/ 10GigE].

The module used is OpenMPI/1.10.1-GCC-4.9.3-2.25.

2.4. Experiment 4

The problem solved is the same presented in the Experiment 1, using a naive implementation,
parallelized with OpenMP, using NUMA-aware initialization. The compute system where it was run is
the KNL partition of the

® miniHPC cluster: 22 compute nodes of dual socket Xeon E5-2640 v4 “Broadwell” with a nominal
clock of 2.4 GHz and 10 cores+SMT per chip. Each CPU has 25 MiB L3 cache shared among all cores,
and core-private L2 and L1 caches of 256 KiB and 32 KiB respectively. The peak performance of one
core is 16 flops per cycle in DP or 32 flops per cycle in SP. Each node is equipped with 32 GiB of
RAM (DDR4-2133 ECC) per socket and has a maximum memory bandwidth of circa 35 GB/s per
socket (measured via the STREAM COPY [48,49] benchmark). Additionally, 4 KNL nodes are
available, each being a 64 Core Intel Xeon Phi 7210 1.50 GHz Processor (16GB on-Die Memory),
equipped with 96GB 2133 MHz DDR4 ECC memory and Omni-Path 100 GBits Host Fabric Interface,
with a maximum memory bandwidth of 102 GB/s (as displayed on the Intel website). The machine
is running a 64-bit CentOS release 7.2.1511(kernel 3.10.0-327.e17.x86_64).

The environment module used is GCC| 4.9.3-2.25.

2.5. Experiment 5

In this experiment a 2D Jacobi calculation is carried out, computing a new value for each element
of the grid, such a value being an average of the element's current value and the values of its
neighbors. Several grid sizes were used (5122, 10242, 20482 and 40962), calculating 10,000 time-steps.
The implementation uses CUDA to parallelize the kernel. The experiments ran on a machine hosting a

® NVIDIA GeForce GTX 1060: 10 Multiprocessors, 128 CUDA Cores/MP, warp size of 32, 1.85 GHz max
clock rate, 1.5 MiB L2 cache and 6 GiB of 4 GHz RAM. The device to device memory bandwidth is



1152 D. Guerrera et al. / Data in Brief 20 (2018) 1148-1152

circa 14 GB/s, while the host to device and device to host peaks at 12GB/s (measured via the NVIDIA
bandwidth test, available in CUDA).

The environment module used is CUDA-8.0.44-GCC-5.4.0-2.26.

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at http://dx.doi.
org/10.1016/j.dib.2018.08.092.

References

[1] OpenMP Architecture Review Board, The OpenMP™ API specification for parallel programming, 2016. [Online]. Available:
¢http://[www.openmp.org).

[2] Matthias Christen, Olaf Schenk, Helmar Burkhart, PATUS: a code generation and autotuning framework for parallel iterative
stencil computations on modern microarchitectures, in: Proceedings of IEEE International Parallel Distributed Processing
Symposium, 2011.

[3] Uday Bondhugula, Albert Hartono, J. Ramanujam, P. Sadayappan, A practical automatic polyhedral parallelizer and locality
optimizer, in: Proceedings of the 29th ACM SIGPLAN Conference on Programming Language Design and Implementation,
2008.

[4] D. Guerrera, A. Maffia, H. Burkhart, PROVA! try, prove, convince, 2017. [Online]. Available: (https://prova.io).


http://dx.doi.org/10.1016/j.dib.2018.08.092
http://dx.doi.org/10.1016/j.dib.2018.08.092
http://www.openmp.org
https://prova.io

	Performance output data and configurations of stencil compilers experiments run through PROVA!
	Data
	Experimental design, materials, and methods
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4
	Experiment 5

	Supporting information
	References




