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Maintaining polymorphisms for genes with effects of ecological significance

may involve conflicting selection in males and females. We present data from

a captive population of ruffs (Philomachus pugnax) showing that a dominant

allele controls development into both small, ‘female mimic’ males (‘faeders’),

and a previously undescribed class of small ‘female faeders’. Most male ruffs

have elaborate breeding plumage and display behaviour, but 0.5–1.5%

are faeders, which lack both. Females from a captive population previously lack-

ing faeders were bred with two founder faeder males and their faeder sons. The

faeders’ offspring had a quadrimodal size distribution comprising normal-sized

males and females, faeders and atypically small females. By contrast, ornamen-

ted males fathered only normal-sized offspring. We conclude that both founding

faeders were heterozygous for a faeder allele absent from the original popu-

lation. This allele is dominant to previously described genes that determine

development into independent versus satellite ornamented males. Unlike

those genes, the faeder allele is clearly expressed in females. Small body size is

a component of the male faeder mating strategy, but provides no obvious benefit

to females. Bisexual expression of the gene provides the opportunity to quantify

the strength of sexually antagonistic selection on a Mendelian trait.

1. Introduction
Alternative mating behaviours and morphs of most species derive from

substantial developmental and/or behavioural plasticity, but stable genetic

polymorphisms have nonetheless been described in diverse taxa [1–3]. The

specific mechanisms maintaining such polymorphisms continue to be debated

[1–7], but probably involve the expression of alternative alleles in both sexes

[7]. Such selection includes situations with antagonistic selection in males

and females, termed ‘intralocus conflict’ [8]. This study documents a locus

that provides the opportunity to quantify the strength of this conflict.

The ruff is a Eurasian shorebird with a complex lek mating system that

includes a stable trimorphic polymorphism in male mating behaviour and mor-

phology [9–12]. Two morphs are highly ornamented: ‘independent’ males,

with dark plumages, defend ca 1-m2 mating courts against each other on

leks. Non-territorial ‘satellite’ males, with white plumages, co-display with

independents on courts, while remaining reproductive competitors. A rare

third morph (ca 1% [12–15]) consists of small, unornamented ‘faeders’ that
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Table 1. Morphometrics of captive male and female ruff morphs (mean+s.e.). Male morph was determined by behaviour; female morphs assigned based on
mode in figure 1.

morph n bill (mm) tarsus (mm) minimum mass (g)

males

independent 132 35.5+ 0.1 52.7+ 0.2 157.6+ 1.1

satellite 46 34.6+ 0.2 51.6+ 0.3 148.0+ 1.7

faeder 21 32.9+ 0.3 48.5+ 0.3 128.6+ 1.5

females

normal 246 30.9+ 0.2 44.7+ 0.1 90.8+ 0.4

faeder 19 28.3+ 0.2 40.4+ 0.2 73.7+ 0.9
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resemble females, forego male display, and have dispropor-

tionately large testes [11,12]. Development into a satellite

versus independent is controlled by a Mendelian dominant

allele at a single autosomal locus [16,17]. Following the dis-

covery of faeders, we bred them in captivity to determine

the mode of inheritance of this third male phenotype.
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2. Material and methods
We bred ruffs in captivity in 1985–2009. The founders were 56

ornamented males and 64 females hatched from eggs collected

near Oulu, Finland in 1985, 1989 and 1990. Two faeders captured

during northward migration in The Netherlands [13] were intro-

duced as sires in 2006; they and their faeder sons were bred in

2007–2009.

Ruffs were bred in outdoor aviaries near Kingston, Ontario

(1985–1993) and Burnaby, British Columbia (1994–2009). In

Kingston, parentage was determined by restricting females’

access to individual males, and monitoring their laying and incu-

bation. In Burnaby, parentage of chicks produced in 2002–2009

was determined using microsatellite markers ([18]; see electro-

nic supplementary material), crosschecked with knowledge of

subdivided aviary locations of females and their access to indi-

vidual males. Chicks were reared in groups organized by hatch

date, and subsequent development occurred in common flocks.

Culmen and tarsus were measured no earlier than 90 days

after hatch, and minimum body mass after six months of age

was used as a third measure of body size.
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Figure 1. Body-size distributions (PC1, see Material and methods) and (a) morphs
of the offspring of independent (n ¼ 159) and (b) satellite (n¼ 133) (both
presumed homozygous recessive ff ), and (c) faeder ( presumed heterozygous, Ff,
n¼ 63) male ruffs mated with females presumed to lack faeder alleles ( ff ).
Shading indicates morph type of offspring and sex: males solid, females hatched.
(a) Morph assignments
Ornamented males were categorized as independents or satellites

based on behavioural observations [17]. Faeders were identified by

their lack of breeding plumage and courtship behaviour, and mol-

ecular sex determination [19]. As expected from previous studies

[11–15], faeders were smaller than ornamented males (table 1

and figure 1). We used logistic regression of known males to

assign phenotypes based on body size to males that died prior to

expressing a definitive phenotype (see electronic supplementary

material). Our analyses are based on birds surviving to fledging,

and our interpretations assume no morph-specific biases in

prefledging mortality.

Following the introduction of breeding faeders, females pro-

duced smaller females than had previously been grown in

captivity. To try to characterize potential ‘faeder females’, we cal-

culated principal component scores of body size for all males

and females, using culmen, tarsus and minimum adult mass.

Data were available from 470 ruffs hatched in 1985–2009. PC1



Table 2. Proportion of faeder offspring sired by faeders mated to females in a population previously lacking faeder characteristics. Daughters were categorized
as faeders by their small size (figure 1, see text).

sons daughters

morph of sire proportion faeder n proportion faeder n

independent 0.00 91 0.00 144

satellite 0.00 80 0.01 95

faeder 0.55 42 0.48 40

individual faeder sires

#5474 (wild caught) 0.61 18 0.48 21

#3520 (wild caught) 0.38 8 0.33 6

#302 (son of 3520) 0.60 10 0.38 8

#305 (son of 3520) 0.25 4 0.33 3

#672 (son of 5474) 1.00 2 1.00 1

#308 (son of 5474) — 0 1.00 1
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accounted for 0.91 of the total variance, with similar eigenvector

weightings for culmen (0.578), bill (0.574) and mass (0.580). The

PCA scores allow us to plot the size distribution of all birds on a

single scale.
3. Results
Faeders were sired exclusively by both founding faeders

and four of their faeder sons (table 1 and figure 1). Fifty-five

per cent of the 42 sons sired by faeder males were faeders

(table 2; 31 different mothers, with one to seven offspring per

female, mean ¼ 2.6). By contrast, no faeders occurred among

171 sons of ornamented males produced in 1985–2009

(morph by sire: LR x2¼ 88.0, p , 0.0001).

All of the unusually small females produced following

faeder introduction were daughters of faeders (figure 1;

tables 1 and 2). We classified as putative ‘faeder females’ 20

birds comprising a mode with the lowest PC1 scores, all

but one of which were faeders’ daughters. Assuming that a

female raised in 1996 was small for reasons unrelated to

faeder genes, we classified her as normal. Based on this

boundary criterion, 47.5% of faeders’ daughters were categor-

ized as faeder females (table 2). Female morph class differed

by sire (size mode by paternity: LR x2¼ 73.6, p , 0.0001).

If the faeder trait is determined by a dominant Faeder (F )

allele expressed in both sexes, then we expect half the offspring

of heterozygous faeder sires (Ff ) crossed with homozygous ( ff)
non-faeder females to be faeders (table 2, sexes pooled, GOF x2

against expected 1 : 1 morph ratio ¼ 0.00, p ¼ 1.0). No other

simple genetic model fits these data. In wild populations,

male faeders comprise ca 0.5–1.5% of all birds [12–15]. Assum-

ing that faeder females occur at similar frequencies to males,

and barring assortative mating, the expected probability of

faeder � faeder matings is ca 1024. It is therefore likely that

both founding faeders were heterozygotes.

Since birds have ZW sex determination, and males are

homogametic, the F-locus cannot be W-linked, but it could

be either autosomal or Z-linked. If Z-linked, all female faeder

daughters and none of their sons would be faeders, whereas

equal proportions are expected in both sexes if the locus is auto-

somal. These data are unavailable, however, because no faeder
female produced offspring during their first potential breeding

season, nor did the 2006 or 2007 cohorts do so as 2-year-olds, or

the 2006 cohort as 3-year-olds.
4. Discussion
A single dominant Faeder allele parsimoniously accounts for

the inheritance of development into permanent female-

mimicking faeder males and a discrete size mode of small

females. A previously described autosomal dominant S
allele controls development into Satellite or Independent

male ruffs, with no obvious expression in females (Satellite
locus [16,17]). Faeder could be a super-dominant third allele

at the Satellite locus, similar to the system determining three

male morphs of a marine isopod [5], or be at a separate epi-

static Faeder locus. As outlined above, if at a separate locus, it

may be Z-linked or autosomal. As an alternative approach to

determining the genetic architecture, a microsatellite-based

linkage map provided no evidence of linkage between mar-

kers linked to Faeder- and Satellite-loci [20]. Thus, epistasis

between two autosomal loci appears to account for the

inheritance of the three morphs.

In the wild, faeder females should form a discrete mode

of ca 0.5–1.5% small individuals, parallel to the size mode of

faeder males [12–15], unless they are strongly selected against

early in life. Six published body-size distributions of migrant

ruffs each suggest a very small left-side mode and/or left-

skewed tail not previously recognized as being of interest

([12,14,15,21–23], see electronic supplementary material,

table S1).

To maintain polymorphisms, alternative alleles must have

equal long-term fitnesses [1–5]. Previous considerations of the

relative fitnesses of ruff morphs have only considered the

mating success of ornamented males [6,10,24,25]. Although a

female’s Satellite-locus genotype can be inferred from male be-

haviour induced by administration of testosterone [17], there is

no obvious reason to expect differential selection on the

alternative Satellite alleles in females. By contrast, accounting

for the maintenance of the faeder polymorphism will require

fitness measurements from both sexes [7,8]. Small size is

presumably an adaptive component of the faeder males’
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‘female mimic’ mating strategy [12], but may be disadvanta-

geous for females. The young female faeders’ complete lack

of production of chicks in the captive flock is unusual. If the

F allele is strongly disadvantageous for females, we are chal-

lenged to understand what limits the evolution of stronger

sex-limited expression. Unless other components of fitness

offset this apparent fitness disadvantage, faeder males must,

on average [3,7], have compensatory fitness advantages over

ornamented males, and the system therefore offers an unu-

sually promising opportunity to assess the strength of

sexually antagonistic selection on a Mendelian trait [8].

Trimorphic male mating strategy polymorphisms, while

uncommon, have been described from several taxa [1,3–5]. A

‘rock–paper–scissors game’, in which each morph achieves

higher marginal fitness effects in specific frequency-dependent

dyadic combinations, can stabilize persistence [4]. Owing to

the rarity of faeders, however, variation in their frequency
may not alter the relative mating success of the other two

morphs sufficiently for this model to account for stability

in ruffs. Gathering data to measure variation in morph fit-

nesses in the wild will be practical once molecular markers

distinguishing morphs become available [20].
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