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Abstract. In this work we investigate how Rough Set Theory could be
employed to model uncertainty and information incompleteness about a
Reaction System. The approach that we propose is inspired by the idea
of an abstract scientific experiment: we define the notion of test, which
defines an approximation space on the states of a Reaction System, and
observation, to represent the interactive process of knowledge building
that is typical of complex systems. We then define appropriate notions
of reducts and study their characterization in terms of both computa-
tional complexity and relationships with standard definitions of reducts
in terms of Information Tables.
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1 Introduction

Complex systems, that are characterized by the mutual interaction of basic com-
ponents, represent currently one of the topics of major interest in many disci-
plines. This interest has been fostered both by the potential impact that these
systems have in the real world and also by the difficulty that they pose with
respect to the modeling and formalization point of view. Indeed, as interaction
represents one of the main features of complex systems, there has been increasing
attention towards developing mathematical and formal models that are explic-
itly based on the notion of interaction: some prominent examples are cellular
automata [5], membrane computing [14], formalisms to describe concurrent pro-
cesses [4,16], reaction systems [8]. This latter class of models has recently been
proposed as a simple and abstract formalization of biochemical processes involv-
ing substances and reactions, by which the states (i.e., collections of substances)
are transformed. While interesting from a computational or purely mathematical
point of view, one of the major limitations of this framework (and, more in gen-
eral, of abstract idealized models of complex systems), as recently acknowledged
in [6], relates to the fact that these models ignore the realistic aspects that are
intrinsic in complexity, in particular with respect to the fact that information
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available about these systems is usually only partial, uncertain and incomplete
and acquired through interaction with the system.

Rough Set theory [15] has originally been proposed to explicitly deal with
this type of information: both with respect to the representation of uncertain
and potentially incomplete information [13] (through the notion of lower and
upper approximations) and also with respect to knowledge acquisition [3,10,22]
(through the notion of reducts and rule extraction). Indeed, the relationship
between these two mathematical frameworks have been investigated, under the
perspective of Interactive Granular Computing [19], in [6,18] where Rough Set
Theory is integrated with Reaction Systems in order to be able to account for
uncertainty and incomplete knowledge in the latter formalism.

In this work, we also discuss how to relate these two modeling frameworks,
though under a different perspective. Indeed, the main purpose of this article is
to investigate how Rough Set Theory can be used to study Reaction Systems,
both from the modeling point of view and from the uncertainty representation
and management one. More specifically, we will consider the case where states
of a Reaction System are not directly perceived as is, but only through the
observation of the results of some experiments or tests that have been performed
on those states, as would be the case in a realistic scientific experiment. As such,
the reaction system in intrinsically built on information that can be affected by
different forms of uncertainty. Notably, while we will focus on the specific case of
Reaction Systems, the methodology that we propose mainly considers the graph
of the dynamics that underlies the model and thus, at least in principle, should
be easily generalizable to any class of discrete dynamical systems.

The rest of this paper will be structured as follows: in Sect. 2 we recall the
necessary background concerning both Reactions Systems, Rough Sets and their
linking; while in Sect. 3 we present the mathematical framework that we propose.
Finally, in Sect. 4 we discuss the obtained results and possible future research
directions.

2 Mathematical Background

In this section, the basic notions on both reaction systems and rough sets are
given.

2.1 Introduction to Reaction Systems

Reaction Systems are a model of computation inspired by biochemical reactions
involving reactants, inhibitors and products from a finite background set.

Definition 1. A Reaction System is an ordered pair (S,A) such that S is a
finite set of substances or entities, and A is a set of reactions in S.

A reaction can be formally defined as follows.
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Definition 2. A reaction, in a reaction system (S,A), is a triplet a =
(Ra, Ia, Pa) where Ra ⊆ S is the set of reactants, Ia ⊆ S is the set of inhibitors,
and Pa ⊆ S is the set of products.

The result of applying reaction a to a set X ⊆ S, denoted by resa(X), is
conditional: if Ra is included in X and Ia is disjoint with X, then a is enabled
on X, otherwise a is not enabled on X. If a is enabled on X, then a transforms
the set of reactants into the product set. Thus, formally:

resa(X) =

{
Pa Ra ⊆ X and Ia ∩ X = ∅
∅ otherwise

(1)

For a reaction system (S,A), the result function of A is resA : 2S → 2S , and
for each T ⊆ S it is defined as:

resA(T ) =
⋃

a∈enA(T )

PT (2)

where enA(T ) is the set of reactions of A enabled in T .
Given a RS R = (S,A) the associated graph of the dynamics is the graph

G[R] = (V,E) where V = 2S and (v1, v2) ∈ E if resA(v1) = v2. An example of
a Reaction System is illustrated in Example 1.

Example 1. Let R = (S,A) be a Reaction System where:

– S = {A,B,C};
– A = {(∅, ABC,BC), (A,C,AB), (B,C,AB), (C,AB,AC), (AB, ∅, ABC)}.
The graph of the dynamics of R is shown in Fig. 1.

Fig. 1. Graph of the dynamics for the Reaction System described in Example 1.

We refer the reader to [7] for a recent overview and tutorial on Reaction
Systems.
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2.2 Introduction to Rough Sets

Rough sets are an approach to imperfect knowledge proposed by Zdzi�law Pawlak
to model uncertain and incomplete knowledge [15]. For recent overviews on
Rough Set Theory and applications we refer the reader to [1,23]. The basic
notion of Rough Set Theory is that of an information table.

Definition 3. An Information Table is an ordered pair IT = (U,Att) such that
U is a finite non-empty set of objects and Att is a finite non-empty set of
attributes, where each a ∈ Att is a function a : U �→ Va and Va is the set of
possible values of a.

Given an IT , we say that two objects u, u′ are indiscernible w.r.t. B ⊂ Att
if ∀b ∈ B, b(u) = b(u′). Indiscernibility defines an equivalence relation where the
equivalence class of an object u is denoted as [u]B .

Given an Information Table IT = (U,Att) and B ⊆ Att, we can define for
X ⊆ U its rough approximation (or, rough set) as B(X) = 〈lB(X), uB(X)〉,
where lB(X) =

⋃
[u]B⊆X [u]B is the lower approximation of X and uB(X) =⋃

[u]B∩X �=∅[u]B is the respective upper approximation. We denote with RB(U)
the set of rough sets on U determined by B ⊆ Att.

The lower approximation of a set consists of all the elements that surely
belong to that set, while the upper approximation of a set is made of all the
element that possibly belong to the set. The boundary region can be defined
as Bnd(X) = u(X) \ l(X) and can be understood as the collection of elements
whose belonging to the set is not certain.

Given an Information Table IT = (U,Att), a super-reduct [21] is a subset of
attributes R ⊆ Att such that ∀x, [x]R = [x]Att. A super-reduct R is a reduct if
no subset of R is also a super-reduct. We denote by RED(IT ) the set of reducts
of IT , the core of an IT is defined as Co(IT ) =

⋂
R∈RED(IT ) R.

Finally, we notice that sometimes the starting point for defining rough sets
is a so-called approximation space (U,R), with U a set of instances and R an
equivalence relation (or, equivalently, a partition of U). Thus, any Information
Table induces an approximation space, which is a more general notion. The lower
and upper approximations are, then, defined exactly as above.

2.3 Related Work on Linking Rough Sets and Reaction Systems

The importance of linking Rough Set Theory and Reaction Systems, with the
goal of augmenting the formalism of Reaction Systems with notions of partial
information and incompleteness, has been recognized in [6,18]. Intuitively, in
these studies, the basic concept is that of a situation that could be understood as
a state of the system under observation. Situations can only be perceived through
attributes (that could represent physical experiments or other properties) and for
the observed situations (which represents the objects in an Information Table)
we are able to precisely tell whether a given substance was present or not in
that situation. However, we can give a lower and an upper approximation of the
present substances.
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Formally, in this framework, the authors start from the substances s of a
Reaction System R = (S,A) and, for each such substance, they define a Deci-
sion Table DT (s) = (U,Atts, ds), that is an Information Table (U,Atts) plus
a decision ds : U �→ {0, 1}, where U is a set of physical situations, Atts are
attributes through which the physical situation is perceived and ds(u) = 1 iff
substance s is present in situation u. Then, the set of situations in which s is
present is represented by the decision class D(s) = {u|ds(u) = 1}. Since it can
happen that the attributes Atts do not carry enough information to take a clear
decision, the decision class can be approximated via the information given by
the attributes Atts using the standard Rough Set notions of lower and upper
approximations, thus defining, L(D(s)) and U(D(s)). Then, the authors define
how a state Ŝ could be represented by aggregation of the decision systems DT (s)
for s ∈ Ŝ.

The approach that we take in the following is similar in spirit, in that we also
take states as the basic notion of our framework and we assume that, in general,
these states are not completely recognizable but only perceived via tests that
affirm whether some substances are present or not in the current situation. A
fundamental difference, however, relates to the fact that the decision attribute in
the framework of [6,18] can be seen as an a-priori notion that is independent of
the attributes, in that it is already represented in the decision system. As we will
see in the following sections, in the approach that we propose the decision w.r.t.
a substance being present or not in a situation is only an a-posteriori notion that
is entirely defined by the values of the attributes or, as we will call them, tests.
Indeed, the result of the tests is the only information that we have about a state
and we are able to state that a given substance s is present in a given situation
only inasmuch the result of the tests is able to do so.

The notion of test that we will introduce resembles the notion of a sensor
in complex dynamical systems [11]: both represent available information about
the state of a complex system and, in both cases, one of the most interesting
problem is related to finding a minimal and sufficient set of tests (resp. sensors)
that are able to accurately describe the dynamics of the whole, partially unob-
servable system. The main differences between these two notions relate to the
fact that: sensors are defined in the context of classical (i.e. based on dynamical
systems theory), typically continuous, complex systems while the notion of test
that we will introduce is based on discrete dynamical systems; furthermore, the
underlying theory for minimal set of sensors are based on ideas from statisti-
cal mechanics, control theory and related disciplines, while the theory that we
develop for tests is based on Rough Sets and graph theory.

3 Methods

As argued in Sect. 1, one of the main features of real complex systems which
is lacking in the formalism of Reaction Systems is the ability to model partial
or uncertain information about the states of the system. Further, a Reaction
System is fully specified in terms of the reactions, while in reality the model
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is usually construed via gradual observation of the behavior of the system. In
this section we will formalize both concepts through application of Rough Set
Theory to Reaction Systems. We assume that the dynamics of the complex sys-
tem that we observe is fully described by an underlying Reaction System which,
however, may be unknown. The goal is then to understand, given a certain set
of experimental tests that we may perform, whether these tests are sufficient to
accurately describe the dynamics of the system. In order to do so, in Sect. 3.1 we
will formalize the notion of partial observability of a Reaction System through
the notion of Approximate Reaction System and tests. Further we will consider
the issue of dynamic acquisition of knowledge about a Reaction System, for-
malized via observations, that is states of partial knowledge about the graph
of the dynamics of a Reaction System. In Sect. 3.2 we will describe reducts for
Approximate Reaction Systems, their existence conditions and characterization.

3.1 Approximate Reaction Systems

Definition 4. An Approximate Reaction System (ARS) is a triple R =
(S,A, T ), where S is the set of substances, A is the set of reactions and T is
the set of tests. A test t ∈ T is a function t : S �→ {⊥,
}, we denote with
supp(t) = {s ∈ S|t(s) = 
} the support of t. The result of test t on state

X ⊆ S is rt(X) =
∨
s∈X

t(s) =

{

 supp(t) ∩ X �= ∅
⊥ otherwise

(3)

Definition 5. We say that a test t identifies a substance s ∈ S if supp(t) = {s}.
As all tests t that identify a given substance s are isomorphic, we will denote
any such test as ts.

Intuitively, a test represents a piece of information about the state of a Reac-
tion System that tells an observer whether some given substances are present,
or not, in the state. In particular a test is given a disjunctive interpretation, it
is only able to tell us whether at least one (but not necessarily all) of the sub-
stances it tests for are present in the given state. The intuition for this definition
derives from the concept of a chemical test, that is a qualitative or quantitative
procedure designed to identify, quantify, or characterise a chemical compound
or chemical group: so, a test that identifies a substance represents a chemical
test that is able to precisely detect a single chemical compound (e.g. a test for
blood sugar), while a chemical test for recognizing chemical groups, e.g. acids,
can be represented by a general test. Then, an Approximate Reaction System
represents the uncertain and partial knowledge that we have on the behaviour
of a real underlying reaction system given that we are only able to observe its
states through the tests specified by T .

We observe that a set of tests T defines an indiscernibility partition of the
states:

X ∼T Y iff ∀t ∈ T, t(X) = t(Y ) (4)
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We denote by [X]T the equivalence class of state X ⊆ 2S determined by the
set of tests T . Thus, it follows that the set of test determines an approximation
space (2S ,∼T ). The rough approximations of the states are formally defined as
follows: let X ⊆ 2S be a state, then, its rough approximation determined by T
is given by r(X) = 〈l(X), u(X)〉 where

l(X) =
⋂

Y ∈[X]T

Y (5)

u(X) =
⋃

Y ∈[X]T

Y (6)

Given an ARS R = (S,A, T ), the associated graph of the dynamics is the
graph G[R] = (VT , ET ) where:

– VT = RT (2S);
– (v1 = 〈l(X), u(X)〉, v2 = 〈l(Y ), u(Y )〉) ∈ ET iff ∃l(X) ⊆ W ⊆ u(X), l(Y ) ⊆

Z ⊆ u(Y ) s.t. (W,Z) is an edge in the graph of the non-approximated reaction
system.

An example of an ARS and its associated graph of the dynamics is shown in
Example 2.

Example 2. Let R be a ARS R = (S,A, T ): where S and A are as detailed in
Example 1, while T = {t1, t2, t3} where supp(t1) = {B}, supp(t2) = {A,C} and
supp(t3) = {B,C}. Figure 2 illustrates the related graph of the dynamics.

Fig. 2. Graph of the dynamics for the ARS in Example 2.

We notice that this graph features a form of non-determinism as, for example,
there are multiple outgoing arcs from the node labeled 〈B,ABC〉. We notice,
furthermore, that the state where only substance B is distinct from the state
〈B,ABC〉 even though the lower approximation of the latter one is exactly B.

As illustrated in Example 2, one can observe that, in general, the incom-
pleteness and uncertainty determined by the fact that the result of tests is the
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only information available about the states, the resulting graph of the dynamics
could feature a form of non-determinism, while the graph of the dynamics of a
standard Reaction System is necessarily deterministic. This suggests that, hav-
ing fixed a set of tests, if we observe the evolution of a system and we derive that
the resulting graph of the dynamics is non-deterministic then, the employed test
are not sufficient to properly describe the system (at least, if we assume that the
underlying phenomenon could be modeled as a Reaction System).

While tests formalize the notion of partial observability in terms of the sub-
stances, they do not provide a formalization of the idea that, in general, knowl-
edge about a complex system is acquired iteratively by repeatedly observing
its evolution over time from an initial state. We formalize this other notion via
observations:

Definition 6. Given the graph G[R] = (VT , ET ) of an ARS R, we denote as
G[R]x = (Vx, Ex) the set of all maximal paths starting from x.

We say that an observation of an ARS is a collection O(R) =
{G[R]x1 , ..., G[R]xn

} for x1, ..., xn ∈ VT . We denote with VO(R), EO(RT ), respec-
tively, the set of nodes and edges in O(R).

Given an observation of an ARS we can define the respective Information
Table as:

Definition 7. An ARS Information Table I[O(R)] for an observation O(R) of
an ARS R = (S,A, T ) is an ordered pair (U, T ), where U =

⋃
G[R]x∈O(R) Vx.

Thus an ARS Information Table represents two different types of partial,
incomplete information about an underlying Reaction System: first, the incom-
pleteness of information w.r.t. the global dynamics of the Reaction System as
only the dynamics involving the states under observation is known; second,
the incompleteness of information w.r.t. the states, as these are only observed
through the set of tests that are performed.

We notice that the definition of identifies that we previously defined applies
only to single tests. In order to generalize this notion we would need to consider
set of tests. Intuitively a set of tests F identifies s if we know with certainty
that, given a state X, if ∃t ∈ F, t(X) = 
 then s ∈ X.

Formally,

Definition 8. A set of tests F ⊆ T identifies s ∈ S if

∀X ⊆ 2S ,∃t ∈ F s.t. s ∈ supp(t) and t(X) = 
∧
∀s′ ∈ supp(t) \ {s},∃t′ �= t ∈ F s.t. s′ ∈ supp(t′) ∧ t′(X) = ⊥.

(7)

This notion allows to define an alternative formulation of lower and upper
approximations that is not explicitly based on the equivalence relation on the
states:

Definition 9. The lower and upper approximation defined by the relation T
identifies s are, respectively:

l′(X) = {s ∈ S|∀t ∈ T s.t. s ∈ supp(t), t(X) = 
 ∧ T identifies s} (8)
u′(X) = {s ∈ S|∀t ∈ T s.t. s ∈ supp(t), t(X) = 
} (9)
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Then, we can prove the following result, that states that the two alternative
formulations are equivalent:

Lemma 1. l(X) = l′(X) and u(X) = u′(X).

Proof. Consider first the upper approximation u(X): by Definition 6 a substance
s is in u(X) iff ∃Y ∈ [X]T .s ∈ Y . Thus, ∀t ∈ T.s ∈ supp(t), t(Y ) = 
; but, by
definition of ∼T this also means that t(X) = 
. Since s was arbitrary we can
see that Definition 6 implies Definition 8. For the converse we can consider two
cases:

1. s ∈ X, then obviously Definition 6 holds;
2. s /∈ X but ∀t ∈ T s.t. s ∈ supp(t).t(X) = 
. Let Y = X ∪{s}, then evidently

Y ∈ [X]T but this means that Definition 6 follows.

As regards the lower approximation, we showed that the first part of the
Definition characterizes the substances that are in the upper approximation, then
we must show that the condition that T identifies s is necessary and sufficient
for saying that s is also in the lower approximation. Let us assume that T
identifies s, and t be the test that satisfies the condition for state X. Similarly
for each substance s′ let ts

′
be the test s.t. s′ ∈ supp(ts

′
) and ts

′
(X) = ⊥.

Then if supp(t) = {s} the implication obviously follows, so let us focus on the
case where {s} ⊂ supp(t). Consider the equivalence class [X]T , then evidently
∀Y ∈ [X]T , t(Y ) = 
 and ts

′
(Y ) = ⊥ which means that s′ /∈ Y and since this

holds ∀s′ �= s ∈ supp(t) is must hold that s ∈ Y , so Definition 5 follows.
For the converse, notice that if Definition 5 holds then if s ∈ l(X), then

∃t ∈ T.s ∈ supp(t) ∧ t(Y ) = 
, otherwise there would be a state Z = Y \ {s}
with both Z, Y ∈ [X]T . If {s} = supp(t) then Definition 8 follows. On the
contrary, consider s′ �= s ∈ supp(t) such that ∃t′ �= t with s′ ∈ supp(t′). If ∃Y
s.t. t′(Y ) = ⊥ then we are done. Otherwise we can notice that such a couple
t, t′ must exist otherwise it must exists Z, Y ∈ [X]T s.t. Z = (Y \ {s}) ∪ {s′}
but this is an absurd as we assumed that s ∈ l(X). Thus Definition 8 really is a
characterization of lower approximations.

In the following section we will define the concept of reduct for an ARS.

3.2 Reducts

Given an ARS = (S,A, T ), we may ask whether the given set of tests is sufficient
to describe the dynamics that we could observe, if we had been able to fully
observe the states of the Reaction System. More in general, one may assume
that the provided set of tests is all we can have (e.g., for a certain situation the
provided tests are the most precise and powerful that are known) to describe
the Reaction System: in this case we can ask whether all the tests available are
necessary or there exists some test that is redundant.

Both these two concepts correspond to the idea of a reduct in Rough Set
Theory.
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Definition 10. Given an ARS RT = (S,A, T ) and an observation O(RT ), for
a given F ⊆ T , we define RF = (S,A, F ). Then, we say that F is a:

– complete super-reduct if G[RF ] = G[(S,A)];
– relative super-reduct if G[RF ] = G[RT ];
– weak super-reduct if G[RF ]|O(RT ) = G[RT ]|O(RT )

where G[RF ]|O(RT ) is the restriction of G[RF ] to O(RT ). We say that F is a
complete (resp. relative, weak) reduct if it is a complete (resp. relative, weak)
super-reduct and it is minimal w.r.t. this property.

The following result characterizes (complete, relative, weak) reducts in terms
of Information Tables:

Proposition 1. Let RT = (S,A, T ) be an ARS and O(RT ) an observation.
Then F ⊆ T :

– is a weak reduct iff it is a reduct for I[O(RT )];
– is a relative reduct iff it is a reduct for I[RT ] = (2S , T );
– is a complete reduct iff it is a reduct for I∗[RT ] = (2S , T ∪ {ts|s ∈ S}), where

ts is a test that identifies s.

Proof. The case of weak reducts follows directly from Definition 10.
The condition for relative reducts is equivalent to saying that RT (2S) =

RF (2S), that is the set of rough sets of states are the same when considering the
full set of tests or the reduct F . We can notice that an equivalent condition for F
being a relative reduct would be being a reduct for the ARS information system
I[RT ] = ({[X]T : X ⊆ 2S}, T ) in which the equivalence classes determined by T
are made explicit.

On the other hand, the condition for complete reducts states that F must be
able to identify all the substances s ∈ S. ��
Corollary 1. The smallest complete reduct REDmin of an ARS where ∀s ∈ S
∃ts ∈ T has |REDmin| = |S|.

We notice that while the definition of (complete, relative, weak) reducts sug-
gests an algorithm for checking whether F ⊆ T is a reduct (e.g. by constructing
the discernibility matrix for the corresponding Information Table), the time com-
plexity of this algorithm is linear in the size of the ARS Information Table but,
in general, exponential in |S|. We can see from Corollary 1 that, at least for
complete reducts, a simple algorithm for finding reducts (and hence for testing
them) when we restrict to the case where ∀s ∈ S, ts ∈ T and that operates in
time linear in |T | can be given.

A different, but equivalent, characterization of reducts can be formulated in
terms of the identifies relation defined in Sect. 3.1.

Theorem 1. Let ARS = (S,A, T ) be an ARS and let ST = {s ∈
S|T identifies s}. Then F ⊆ T :
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– is a complete super-reduct iff S = SF ;
– is a relative super-reduct iff ST = SF .

Proof. This follows from the fact that if the condition holds then ∀X the lower
and upper approximations remain equal.

Notice that while Theorem 1 and Proposition 1 are equivalent characteri-
zations, the former result suggests an algorithm for testing reducts whose run-
time is O(|S|2|T |2). Algorithm 1 describes the algorithm for the case of complete
reducts, the case for relative reducts is equivalent. The consequence of this result
is that the problem of finding complete and relative reducts is in NP not only
when considering the graph of the dynamics as the size of the problem, but also
when considering the size of the Reaction System. As finding reducts in gen-
eral Information Tables is NP -complete [20], we conjecture that the problem of
finding (complete, relative) reducts lies in the same complexity class.

Algorithm 1. A polynomial-time algorithm for the verification of complete
reducts.

procedure Check-Complete-Reduct
Require: R = (S,A) Reaction System , F a reduct

check ← �
for all s ∈ S do

for all f ∈ F : s ∈ supp(f) do
temp ← �
for all s′ �= s ∈ supp(f) do

temp ← temp ∧ ∃f ′ �= f.s′ ∈ supp(f ′) ∧ s /∈ supp(f ′)
end for
if temp = � then

check ← �
Break

else
check ← ⊥

end if
end for

end for
Return check

end procedure

Notice that while a similar characterization could be given also for checking
weak reducts, in that case the complexity would still be polynomial w.r.t. the
number of states in the observation, hence, in the worst case, exponential in the
number of substances.

4 Conclusion

In this paper we considered the study of mathematical methods to model com-
plex systems, focusing on the formalism of Reaction Systems, in particular with
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respect to their ability to model incomplete and partial information. As these
characteristics are commonly represented through Rough Set Theory, and also
acknowledging a recent research direction towards the linking of Reaction Sys-
tems and Rough Sets, we developed a mathematical framework, based on core
Rough Set theoretic concept to study these issues. We introduced the notion of
partial observability of the states of a Reaction System, through the notion of
tests, and after observing that this induces an approximation space we applied
ideas from Rough Set Theory to define lower and upper approximations; reducts
that could be used to automatically model Reaction Systems based on (poten-
tially uncertain and incomplete) observations. In order to further the applica-
tions of Rough Set Theory to the study of complex systems, we think that the
following open problems may be of interest:

– We provided a characterization of complete and relative reducts based on tests
and their ability to identify the substances. This characterization suggests
that the problem of finding (complete, relative) reducts is in NP not only
w.r.t. the size of the graph of the dynamics (which is in general exponential
in the number of substances) but also w.r.t. the size of the Reaction System.
Similar characterizations for weak reducts would be interesting;

– We considered reducts as sets of tests that are able to represent, without
loss of information, the graph of the dynamics of the Reaction System (or
Approximate Reaction System). It is not hard, however, to observe that this
definition may be too restrictive: indeed, if one’s interest only concerns the
general dynamics of a system, then an approximated graph may be tolerable
as long as it has the same properties of the original graph (e.g., w.r.t. the
reachability of states). It would then be interesting to give a definition of
reducts that characterizes this property of invariance w.r.t. the satisfaction
of properties expressed in a given logic [2];

– While in this work we considered approximations and reducts, Rough Set The-
ory also encompasses methods for rule induction [9,17] in order to explain a
Decision Table via sets of rules. Applying these approaches in the context of
Approximate Reaction Systems and observations (and, more in general, com-
plex systems) could enable the interactive and iterative learning and updating
of Reaction System models [12] based on observed dynamics;

– Finally, while the present work applies to Reaction Systems, we argued that,
as the proposed methods mainly use the graph of the dynamics, these notions
could also be extended to other discrete complex systems formalisms: in order
to do so, appropriate definitions of tests should be considered.
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