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Abstract: This review considers the unique characteristics of Chinese cattle and intramuscular fat
content (IMF) as factors influencing meat quality, including tenderness, flavor, and juiciness of meat.
Due to its nutritional qualities, meat contributes to a healthy and balanced diet. The intramuscular
fat content and eating quality of beef are influenced by many factors, which can generally be divided
into on-farm and pre-slaughter factors (breed, sex of cattle, age at slaughter, housing system, diet, and
pre-slaughter handling) and postmortem factors (post-slaughter processing, chilling temperature,
and packaging). Meat quality traits can also be influenced by the individual genetic background
of the animal. Worldwide, the function of genes and genetic polymorphisms that have potential
effects on fattening of cattle and beef quality have been investigated. The use of DNA markers is
recognized as a powerful and efficient approach to achieve genetic gain for desirable phenotypic
characteristics, which is helpful for economic growth. The polymorphisms of the SIRT4, SIRT6, SIRT7,
CRTC3, ABHD5, KLF6, H-FABP, and ELOVL6 genes for body and growth characteristics of cattle, and
also for beef quality, are considered with the aim of highlighting the significance of beef intramuscular
fat content, and that growth, body, and meat quality characteristics are polygenically regulated.

Keywords: gene; markers; body; carcass; Qinchuan; cattle

1. Introduction

Beef is favored in both domestic and foreign markets due to its high protein content, low
cholesterol, essential amino acids content, minerals, vitamins, and also greater digestibility and
absorption which can reach 95%. Meat which is subjected to modification to either enhance taste,
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or improve preservation, is called processed meat [1]. Over the past few decades, for cattle to have
sustainable, efficient genetic gain and long-lasting progress in traits of economic importance, the
cattle selection programs have increasingly utilized molecular genetic technologies because genetic
improvement by traditional breeding systems slow due to the generational lag associated with progeny
testing. Therefore, the characterization of quantitative trait loci permits biomarker-aided assortment of
the economically important traits and provides faster genetic gain when candidate genes are correlated
with the traits of economic importance [2]. Qinchuan cattle (Bos taurus) are an indigenous Chinese
breed of cattle that is widely used in the production of beef due to its physiological and qualitative
characteristics. Despite this, the Qinchuan cattle have a slower growth rate and a less developed
carcass compared with other commercial breeds [3], and so the improvement of growth and carcass
characteristics through a focus on genetics is a key feature of Qinchuan cattle production. An increased
standard of living in China has seen an increased demand for beef which cannot be met by domestic
beef production. Therefore, improving the production and quality of beef is a priority. The use of
DNA markers to improve the carcass and quality characteristics of cattle was identified as a useful and
effective tool for genetic gain [2,4–6]. Quantitative traits of the body and carcass of cattle are defined
by a number of genes [7–9]. Therefore, the screening of candidate genes is necessary to understand
the connection between gene variation and body and carcass traits [10]. The SIRT4, SIRT6, SIRT7,
CRTC3, ABHD5, KLF6, H-FABP, and ELOVL6 genes are some candidate genes that have been identified
as regulating meat and carcass traits through metabolic controls, fatty acid oxidation, fat deposition,
and lipid synthesis. Especially for lipid metabolism, the SIRT4 gene in Qinchuan cattle seems to be a
major metabolic regulator that modulates fat deposition [11]. Sirtuins, or silent information regulator
genes (SIRT6), are members of the class III nicotinamide adenine dinucleotide (NAD)-dependent
deacetylase [12]. SIRT6 controls several pathways in the cell, including apoptosis, energy homeostasis,
functions of the mitochondria, and longevity. SIRT6 in mammals is mainly located in the nucleus and
participate in metabolism processes and DNA restoration [13]. It is proposed that SIRT6 controls the
development of the animal body and modulates lipid and glucose metabolism on a local and systemic
level [14]. The SIRT7 gene affects the traits related to growth and meat quality in Qinchuan cattle [15].
The ABHD5 gene is a catalyst of adipose triglyceride lipase (ATGL), which has an important function in
triglyceride metabolism. It has been reported that the ABHD5 gene is related to improve carcass quality
traits and can also be used as a biomarker for selection in Chinese cattle [16]. The gene known as
Kruppel-like factor 6 (KLF6) participates in the control of cell division, separation, and muscle growth.
Raza et al. [3] showed that the KLF6 gene is associated with ultrasound carcass measures, as well as
larger body and carcass measurements. Many studies report that the polymorphisms and expression
levels of H-FABP are related to the fat deposition in cattle [11]. The gene ELOVL6 encodes an enzyme
that participates in lipogenesis via the catalytic elongation of both saturated and monounsaturated
fatty acids. It has been shown that the ELOVL6 gene regulates the lipid metabolism and adipocyte
proliferation in Qinchuan cattle [17]. By controlling the gene expression in the cell-cycle, this gene
stimulates adipocyte proliferation.

The current review was intended to identify the genetic polymorphisms of bovine genetic
biomarkers that are associated with body and carcass traits in Qinchuan cattle. The identified SNPs in
Qinchuan cattle can be used to improve our understanding about the genes overall to inform on their
value for marker-assisted selection of body, carcass, and meat traits of Qinchuan cattle.

2. Effect of Some Slaughter Value Factors on Meat Quality

Numerous studies have demonstrated that intramuscular fat content of cattle and beef quality
are influenced by factors of the production or processing system including the breed, sex, age,
housing system, feeding, and pre-slaughter handling, but also the individual genetic background of
an animal [18,19] (Figure 1). The impact of breed on suitability for meat production was reported by
many authors, but it is difficult to pinpoint the best breed for beef production and it is unlikely that
one breed will have all the desirable traits for survival, growth, and quality meat production [20–22].
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Breeds differ in many aspects including degree of muscling, intramuscular fat content, meat aroma,
juiciness, and tenderness. Because cattle breeds originating from Bos indicus exhibit late maturation,
higher calpastatin activity, and a larger percentage of connective tissue, the meat of these animals is
characterized by lower tenderness and higher cooking loss compared to the meat of the breeds derived
from Bos taurus [23].
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3. Most Important Beef Quality Traits

Beef quality attributes of importance for consumers include color, tenderness, taste, and
juiciness [24]. A significant role is also played by freshness, low fat content, and high nutritive
value [25]. Color depends on the concentration and chemical form of myoglobin found in the muscle
tissue. Fresh meat contains deoxymyoglobin (DMb), oxymyoglobin (OMb), and metmyoglobin (MMb).
The DMb form gives a scarlet pigmentation to fresh meat. In the presence of oxygen, deoxymyoglobin
is oxidized to OMb, resulting in a bright pink-red color. When the above forms are oxidized to MMb,
the meat becomes brown, which is highly undesirable. The formation of metmyoglobin is favored
by factors such as low pH, increased salt concentration, and UV light. The enzyme metmyoglobin
reductase decreases the level of the undesirable form of myoglobin, thus stabilizing the color of meat.

Beef tenderness is the ease of breakdown during biting and chewing. Many methods are available
for instrumental determination of the degree of meat tenderness. Physical methods measure the force
needed to shear, penetrate, detach, grind, compress, or tear a meat sample. The indicator typically
used to evaluate tenderness is the shear force value, which measures the force needed to cut the sample
perpendicular to the orientation of the muscle fibers. However, the correlation between this force and
sensory tenderness is low [26].

Intramuscular proteins of the connective tissue and myofibrillar proteins are the components
that are considered key contributors to the tenderness of beef. Their action is largely determined by
the muscle type, structure and composition, and also by the cooking method and temperature [27].
Another essential factor influencing the ultimate tenderness of beef is how the meat is stored and
proteolytic activity. At a temperature above the freezing point, meat is subject to the processes of
aging, which increases its tenderness and can influence taste. The changes that occur in meat as a
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result of endogenous proteolysis affect the structure and properties of both intramuscular connective
tissue and muscle fibers. Connective tissue proteolysis during maturation of meat is reflected in
increased collagen solubility, changes in the mechanical properties of perimysium, and changes in the
composition of proteoglycans [26,28]. During maturation, myofibril structure undergoes breakdown
of Z-line sarcomeres, some myofibril regulatory proteins, and thick and thin filaments of cytoskeletal
proteins which stabilize the spatial arrangement. The proteolytic changes in these proteins occur under
the influence of endogenous sacroplasmic proteinsthe calpains. The calpain system is represented
by several isomeric cysteine proteases and their inhibitor calpastatin [9,29]. A great deal of studies
has attempted to determine the function of genes whose polymorphism may impact the fattening
and slaughter value of cattle as well as beef quality traits. However, the effect of the analyzed
markers on different traits is not universal for all cattle breeds and cannot be extrapolated to the entire
species [9,30,31]. The most important carcass and meat quality traits for meat-producing animals are
summarized in Figure 2.
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4. Gene Polymorphism vs. Slaughter Value and Beef Quality

It is difficult to improve meat quality traits based on conventional selection methods because
they are regulated in a polygenic manner and have low heritability. The evaluation of meat quality
characteristics is expensive and can only be carried out postmortem. Knowledge about the genes and
chromosome regions associated with desired meat quality characteristics may prove very helpful when
selecting for breeding and estimating the breeding value of offspring. Many studies have been carried
out worldwide to establish the functions of various genes as well as polymorphisms with potential
effects on the fattening and slaughter value of cattle, as well as on beef quality (Table 1). Table 2 also
expresses all the included polymorphisms.

Table 1. Gene association with meat quality in cattle.

Gene Type Author(s) Findings

The SIRT4 gene

[32]
• Stimulated in the purpose of suppressing the oxidation of fatty acid in obesity,

further to elevate lipogenesis levels.

[33]

• Leads to an increase in peroxisome proliferator-activated receptor α (PPARα)
expression in the liver, cellular respiration, and pAMPK levels and, subsequently,
changed rates of fatty acid oxidation.

• Suppresses fatty acid oxidation, eventually stimulating lipid anabolism in
muscle cells.

[34] • Decreased adipocyte differentiation in the liver.

[11]
• They identified two SNPs in the SIRT4 gene related to meat quality in Qinchuan

cattle; SNP (g.-311C > T) was shown to be associated to subcutaneous fat
depth values.

[35]
• Has capability to catalyze deacetylation of malonyl-CoA decarboxylase and at the

same time impedes fatty acid catabolism.

SIRT6 gene

[36]
• Can deacetylate histone H3K9, also modify the expression levels of genetic

biomarkers linked with metabolism.

[37]
• Connected with cholesterol homeostasis of animals, and inhibits lipogenic

transcription factors (i.e., SREBP1 and SREBP2).

[38]

• Four SNPs have been determined in the SIRT6 gene of Qinchuan cattle, which are
present in intron 6, exon 7, exon 9, and 3’UTR, respectively, using the same
methods in 468 Qinchuan cattle.

• The above-mentioned SNPs are closely related to body measurements and carcass
quality traits in comparison with other genotypes.

[39]
• The thickness of back fat and intramuscular fat value of individuals that inherited

genotype -1100GG, were found to be notably higher than in individuals with the
AA or GA genotype -1100AA (p < 0.05).

[2]
• Back fat thickness and intramuscular fat content are more represented in animals

with a higher expression of the SIRT6 gene.
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Table 1. Cont.

Gene Type Author(s) Findings

Silent
information
regulators 7

(SIRT7)

[40–42]
• Controls the differentiation of myoblasts and adipocytes; glucose homeostasis,

cellular growth, also regulating lipid metabolism in the liver of mammals.

[43,44] • Controls the glycolysis as well as lipid hemostasis.

[45]
• Modulate the TGF- β signaling pathway to restrain metastasis of tumors of the

mammary gland.

[57]
• Promote the activation of ERK/STAT3 signaling pathway in glioma invasion

and proliferation.

[15]

• In Qinchuan cattle, two SNPs were identified in the SIRT7 gene (exon 6 and exon
7): SNP2 (g.3587C > T) and SNP3 (g.3793T > C).

• SNP2 (g.3587C > T) was determined in the SIRT7 gene, and it was concluded that
it can be linked with certain body size traits in Qinchuan cattle

• Qinchuan cattle with SNP3-C 3C3 genotype (g.3793T > C), had significantly
higher hip width, body length, ultrasound loin muscle area, chest circumference,
and back fat thickness.

CREB-regulated
transcription
coactivator 3

(CRTC3)

[46]
• CRTC3 gene is predominately expressed in both types of adipose tissues, and

consequently stimulated by catecholamine activity.

[47–49]
• CRTC3 controls lipid breakdown, mitochondrial production and oxidation of

fatty acids.

[46,48] • CRTC3 gene promotes the capacity of mitochondrial oxidative process in muscle.

[50]
• CRTC3 SNPs are linked to body masses and carcass traits in bovine beef. So,

identification of genetic markers represented in CRTC3 SNPs has a close
association with traits of conformation and the carcass.

The α/β
hydrolase
domain

containing 5
(ABHD5)

[51]
• The marbling trait of Hanwoo cattle was noticeably increased after emasculation,

while protein and mRNA levels of MAGL and ATGL have been declined.

[52]
• Wujin pigs with increased intramuscular fat deposition had subordinate levels of

ATGL expression than Shamrock pigs.

[53]
• ABHD5 gene was identified as elevating the triglyceride hydrolase activity of

ATGL the most.

[54]
• ATGL lipase activity increases due to the presence of ABHD5, but also expands

the substrate specificity.

[16]

• Indicated that the ABHD5 gene regulated by Ectopic viral integration site-1 (Evi1)
and enhancer binding protein alpha (C/EBP α), can be potential markers in MAS,
to develop high-quality carcass in the mentioned breed. Such results show that
ABHD5 can be used as a genetic biomarker for marbled beef selection, which will
be very useful in MAS for carcass quality.
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Table 1. Cont.

Gene Type Author(s) Findings

Kruppel-like
factor 6 (KLF6)

[55]
• Expression analysis of KLF6 mRNA or proteins has been documented in different

tissues including liver, lungs, and kidney of yak.

[56]
• Potential function of KLF6 during the differentiation of adipocyte it is stated to be

a transcriptional prohibitory factor of Delta-like 1 (Dlk1).

[57]
• The growth repressive activity arbitrated via KLF6 protein that controls the cell

cycle by transcriptional initiation of the cyclin-dependent kinase inhibitor
p21WAF1/Cip1.

[58,59]
• By regulating the TGFB1 signaling, the following functions of the KLF6 gene were

determined: Postnatal growth and development of skeletal muscles.

[3]

• Three SNPs (3332C > G; 3413C > T and 3521G > A) are located in the 2nd exon of
the bovine KLF6 gene, which consequently confirms their influence on carcass
quality and body measurement in Qinchuan cattle.

• Hap1/4 is related in a greater amount to ULA and IF than other combinations

[60]
• The haplotype combination Hap1/4 was significantly related with withers height,

greater body length, hip width, rump length, intramuscular fat, and ultrasound
loin area.

[56,60]
• Overexpression of KLF6 in the liver of bovine shows that KLF6 has a remarkable

and complex process in metabolism pathways.

Heart type fatty
acid binding

protein
(H-FABP)

[61,62]
• H-FABP is related with the pig intramuscular fat, which makes this biomarker an

important candidate gene for intramuscular fat regulation.

[63] • H-FABP-null mice exhibited better insulin sensitivity.

[64] • KLF15 gene can change the core promoter of the H-FABP gene.

[11,65]
• An SNP g.6643C > T in the promoter region of the bovine H-FABP gene is mostly

linked to weight and body length (p < 0.01) in Yak via modification of several
transcription factors binding sites.

[66]
• The analysis of single-markers showed that H-FABPs are related to IMF and a low

fat percentage.

[67]
• Higher expression levels of H-FABP stimulate adipogenesis in

3T3-L1 preadipocytes.

Very long chain
fatty acids
protein 5
(ELOVL5)

[2,68]
• ELOVL5 is complicated in the synthesis of palmitic acid (C16:0), palmitoleic acid

(C16:1), stearic acid (C18:0), and oleic acid (C18:1).

[68]
• The overexpression of ELOVL5 induces an enhanced fatty acid synthesis C18:1

cis-9, n-7
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Table 1. Cont.

Gene Type Author(s) Findings

Very long chain
fatty acids
protein 5
(ELOVL5)

[69]
• The reduction of ELOVL5 activity is associated with increased risk for

hepatic steatosis.

[70]
• ELOVL5 has a role in the synthesis of various bovine acids, like C16:0, C16:1,

C18:0, and C18:1.

[71]

• The ELOVL5 gene took part in fatty acid production.
• ELOVL5 was also proven to be related with C20:1n9/C18:1n9 and

C20:2n6/C18:2n6 production.

[72]
• Concluded that the ELOVL5 gene was associated with C14:0 in Chinese

Simmental cattle.

[70]
• ELOVL5 has a role in the synthesis of various acids in bovine, like C16:0, C16:1,

C18:0, and C18:1.

Very long chain
fatty acids
protein 6
(ELOVL6)

[68] • ELOVL6 controls the elongation of C16:0 (Palmitate) to C18:0 (Stearate) in beef.

[73]
• ELOVL6 lowers the levels of mRNA expression in genes that are in charge

for esterification.

[74–76]
• ELOVL6 is a direct target of sterol regulatory element-binding protein 1

(SREBP-1), and is regulated primarily by SREBP-1c and the
carbohydrate-responsive element-binding protein (ChREBP).

Table 2. Effects of various polymorphisms/variants as marker-assisted selection on body variables and
meat quality traits in Qinchuan cattle.

Gene SNP Site Related Traits References

SIRT4 g.−311C > T and
g.−771C ND Subcutaneous fat depths [11]

g.−1022G > A ND Intramuscular fat content
subcutaneous fat depth [11]

SIRT6 g.8460GNA ND Body measurements [38]

g.9429CNT ND Meat traits [38]

g.9735TNC ND Body measurements [38]

SIRT7 g.3587C > T Exon 6 Body size and meat quality
traits [11,15]

g.3793T > C Exon 7 Body size and meat quality
traits [11,15]
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Table 2. Cont.

Gene SNP Site Related Traits References

CREC3 g.62652 A > G Intron 3 Loin muscle area [50]

g.62730C > T Exon 4 BL, HH, RL, and
HW [50]

g.66478G > C Exon 6 BL and CD [50]

g.91297C > T Intron 13 Body conformation [50]

ABHD5
Evi1 and C/EBP α

as a transcriptional
factor

Transcriptional
factor

Carcass quality
traits [16]

KLF6 g.3332C > G Exon2 Body and carcass
measurements [3]

g.3413C > T Exon2 Body and carcass
measurements [3]

g.3521G > A Exon2 Body and carcass
measurements [3]

H-FABP g.6643C > T ND Weight and body
length [11,65]

g.1375 C >G ND Lipid deposition [62]

ELOVL5 g.−110T>C ND
Monounsaturated

fatty acid, SFA
saturated fatty acid

[2,68,70]

ND
Subcutaneous fat

thickness [70]
Fatty acid profile

ELOVL6 ND ND Fatty acid profile in
meat [61]

Note: None detected (ND), body length (BL), chest depth (CD), hip height (HH), rump length (RL), and hip width (HW).

4.1. The SIRT4 Gene

The bovine SIRT4 gene, which is expressed within the mitochondrial matrix and sited on
chromosome 17, has three introns and nine exons. Functionally, it is linked with various multiple
biological pathways; regulates lipid metabolism and, in particular, is associated with obesity-linked
syndromes (i.e., cardiovascular and diabetes disease) in humans [77]; and maintain genomic
stability [78]. SIRT4 has a role in suppressing the oxidation of fatty acids and elevating lipogenesis by
suppressing malonyl CoA decarboxylase activity [32]. The knockdown of SIRT4 expression leads to
an increase in peroxisome proliferator-activated receptor α (PPARα) expression in the liver, cellular
respiration, and pAMPK levels and, subsequently, altered rates of fatty acid oxidation [33]. Elevation
in the expression of the SIRT4 gene may led to decreased adipocyte differentiation in the liver [34].
Recently, Gui et al. [11] detected polymorphisms in Qinchuan cattle SIRT4 that are related with fat
deposition and meat quality. They identified two SNPs in SIRT4; SNP (g.−311C > T) was shown to
be associated to subcutaneous fat depth values, whereas the SNP (g.−1022G > A) had an effect on
intramuscular fat content and subcutaneous fat depth values [11]. This was the first work to reference
that SIRT4 may directly or indirectly affect the quality traits of meat in Chinese cattle. Mammalian
SIRT4 gene expression is situated in the mitochondria, which regulates two biological functions
related to mono-ADP ribosyltranferase and adeacetylase [79]. The SIRT4 has resulted in suppressing
fatty acid oxidation, eventually stimulating lipid anabolism in muscle cells via the repression of
malonyl-CoA decarboxylase function [33]. Another mechanism of SIRT4, via its capability to catalyze
deacetylation of malonyl-CoA decarboxylase, at the same time impedes fatty acid catabolism [35].
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Under elevated ambient temperatures, SIRT4 expression increases, affecting the metabolism of fatty
acids in humans [80].

SIRT4 is a central regulator of different metabolic pathways, particularly in the homeostasis of
fats. In addition, SIRT4 intermediates, either directly or indirectly affect the deposition of lipids in
farm animals. Two SNPs markers (g.−311C > T and g.−1022C > A) of SIRT4 could be used to identify
bovine capable of accumulating lipids and meet carcass specifications. The SIT4 polymorphisms are
potential biomarkers for the selection of fat deposition and meat quality in livestock.

4.2. SIRT6 Gene

The mammalian sirtuins family of genehas seven homologs, SIRT1 to 7, are also considered as a
part of the class III nicotinamide adenine dinucleotide-dependent deacetylase family [12]. The silent
information regulators 6 (SIRT6) gene play a central role in carboxyl termini and other several cellular
localizations in mammals [81] (Figures 3 and 4). SIRT6 is principally a helper protein with several
biological pathways, such as nuclear chromatin, stress resistance, and lifespan, as well as has roles
in metabolism [82]. Previous studies have indicated that SIRT6 can deacetylate histone H3K9, and
also modify the expression levels of genetic biomarkers linked with metabolism [36], and insufficient
levels of this SIRT6 gene expression in the liver may affect lipid and glycolysis metabolism [39,83].
Interestingly, the SIRT6 gene attained was connected with cholesterol homeostasis of animals, and
inhibits lipogenic transcription factors (i.e., SREBP1 and SREBP2) through stimulating the mitochondrial
phosphorylation process [37]. The SIRT6 gene is necessary enzyme for metabolism of lipid, which is
associated to fat deposition in mammals. Therefore, due to suppression of PPARγ gene, the transgenic
mice expressed the SIRT6 gene and downregulated the fat deposition in response to restricted feed
intake by adjusting transcription factor binding sites, as previously described [84]. Gui et al. [38] have
identified four sequence variants (SVs) in intron 6, exon 7, exon 9, and 3’UTR, using a technology
based on sequencing that was carried out in 468 individual Qinchuan cattle. Four SNPs have been
determined in the SIRT6 gene of Qinchuan cattle, which are present in intron 6, exon 7, exon 9, and
3’UTR, respectively, using the same methods in 468 Qinchuan cattle [38,85].
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The above-mentioned SNPs are closely related to body measurements and carcass quality traits
in comparison with other genotypes [38,86]. Recently, the thickness of backfat and intramuscular fat
was greater in individuals that inherited genotype -1100GG, than in individuals with the AA or GA
genotype-1100AA), while genotypes of other SNPs (c.−84 C > T) in the promoter region of SIRT6 had no
significant association with deposition of lipids [39]. It seems that backfat thickness and intramuscular
fat content are more represented in animals with a higher expression of the SIRT6 gene (especially,
SNP c.−1100 A > G) [2]. The role of SIRT6 in regulating glucose and lipid metabolism is illustrated in
Figure 3.

4.3. Silent Information Regulators 7 (SIRT7)

The SIRT7 gene is the protein that is mostly correlated with rRNA activation genes, RNA
polymerase 1 (RNA Pol 1), and histones [87], and has different roles in lipid and cellular homeostasis
in sheep [40]. SIRT7 is mostly localized in the nucleolus in mammals. In this way, it can regulate
cell functions by acting as a cellular regulative protein with a mono-ribosyltransferase function.
The expression of SIRT7 upregulates RNA Pol 1-mediated rDNA transcription, while repression
decreases the rDNA transcription. Likewise, SIRT7 controls the differentiation of myoblasts and
adipocytes, glucose homeostasis, cellular growth, as well as regulating lipid metabolism in the liver of
mammals [40–42] (Figure 5).
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The SIRT7 gene controls glycolysis as well as lipid hemostasis [43,44] in the liver by regulating the
ubiquitin-proteasome pathway [41,44,45]). Recent results demonstrated that SIRT7 could modulate
the TGF-β signaling pathway to restrain metastasis of tumors of the mammary gland [45], and also
promote the activation of the ERK/STAT3 signaling pathway in glioma invasion and proliferation [88].
That showed that the SIRT7 gene behaved as a key enzyme for lipid metabolism, which could be
related to deposition of lipids in mammals. Previously, in Qinchuan cattle, two SNPs were identified
in the SIRT7 gene (exon 6 and exon 7): SNP2 (g.3587C > T) and SNP3 (g.3793T > C), which are linked
with body traits and meat quality [15]. Furthermore, SNP2 (g.3587C > T) was determined in the SIRT7
gene, and it was concluded that it can be linked with body size traits including a higher hip width
and greater ultrasound loin muscle area in Qinchuan cattle [11,15]. Additionally, the same Chinese
researchers found that the local cattle with an SNP3-C 3C3 genotype (g.3793T > C) had a significantly
higher hip width, body length, ultrasound loin muscle area, chest circumference, and back fat thickness
compared with those with the SNP3-T 3T3 genotype (p < 0.05).

4.4. CREB-Regulated Transcription Coactivator 3 (CRTC3)

CREB-regulated transcription co-activator 3 (CRTC3) is an essential protein in lipid homeostasis [89]
and is regarded as a member of the CREB co-activator class (CREB-regulated transcription coactivators
CRTC) [50]. CRTC3 is placed on chromosome 21 in cattle and is contained in 15 exons and 14 introns.
CRTC regulate the production of ATP via involvement of the c-AMP pathways [90–93] and encompass
an N-terminal CREB binding area, a splicing domain, a central regulatory area, and a C-terminal
transactivation region [46]. CRTC mRNA and protein are mainly present in white adipose tissue in
humans. Expression analyses form previous reports suggested that the CRTC3 gene is predominately
expressed in both types of adipose tissues, and consequently stimulated by catecholamine activity [46].
It was also revealed that CRTC3 controls lipid breakdown, mitochondrial production, and oxidation
of fatty acids [47–49]. Decreased plasma free fatty acid levels were examined in the skeletal muscles
of CRTC3 knocked-out mice, while the results indicated reduced insulin sensitivity. In addition,
the CRTC3 gene promotes the capacity of mitochondrial oxidative process in muscle by overexpression
of the hormone receptor coactivator PGC1α in the nucleus [46,48]. Besides, it was found that the
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polymorphisms of CRTC3, rs3862434 and rs8033595, are linked to obesity risk. Based on the function
as a regulator in fat deposition, CRTC3 is likely to influence traits related to fat deposition in animals.

For meat quality in native Chinese beef cattle, there were four SNPs, two in introns (SNP1: g.62652
A > G and SNP4: g.91297C > T) and two in exons (SNP2 g.62730C > T and SNP3: g.66478G > C) with
an influence on carcass characteristics [50]. These SNPs primarily expressed in CRTC3 which is located
on chromosome 21. Animals with genotype AG, at the SNP1 locus, displayed a greater loin muscle
area value than the other genotypes (p < 0.01). Unlike other genotypes (p < 0.05), at the SNP2 locus,
with genotype CC, a greater BL, HH, RL, and HW was found. It can be concluded that the G allele
could be used for trait selection in cattle at the SNP2 locus. Higher values of CD and BL were found in
animals with genotype GC at the SNP3 locus, unlike the ones with genotype GG (p < 0.05 and p < 0.01).
The cattle with genotype CT at SNP4 had a larger conformation (p < 0.05). The T allele in SNP4 is
claimed to be related to better growth traits in indigenous Chinese cattle. Wu et al. [50] indicated
high expression profiles in adipose tissues, rumen, and other splanchnic tissues. It is considered that
CRTC3 SNPs are linked to growth and carcass traits in bovine beef. Identification of genetic markers
representing CRTC3 SNPs is associated with traits of conformation and carcass, which can be used to
advance marker-assisted selection and breeding programs in Chinese cattle for promoting the selection
of economically favorable traits. The effect of the CRTC3 gene on growth and meat quality parameters
is summarized in Figure 6.
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4.5. The α/β Hydrolase Domain-Containing Protein 5 (ABHD5)

The α/β-hydrolase fold domain containing protein 5 (ABHD5) is a part of the paralogous protein
pair ABHD4 and ABHD5 that have a role as a co-activator of mammalian adipose triglyceride lipase
(ATGL) and also participates in lipid metabolism and energy balance [16]. The control of intramuscular
fat deposition is modulated by several lipolytic enzymes including: ATGL, monoglyceride lipase (MAGL),
and hormone sensitive lipase (HSL). Consequently, it has been reported that the marbling trait of
Hanwoo cattle was noticeably increased after castration, and protein and mRNA levels of MAGL and
ATGL declined [51]. Castrated animals promote intramuscular fat accumulation via the reduction of
lipolytic enzymes activity such ATGL and MAGL. Previous reports in different animals, for instance
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Wujin pigs with increased intramuscular fat deposition, had subordinate levels of ATGL expression than
Shamrock pigs [52]. Enhanced triglyceride and fat accumulation were observed in the skeletal muscle
of ATGL knockout mice, which exhibited reduced responsiveness to insulin [94]. Additionally, ABHD5
is one of the potential proteins which directly modifies ATGL and does not depend on the environment
of the cell [53,95,96]. The ABHD5 gene was identified as elevating the triglyceride hydrolase activity of
ATGL the most [53]. ATGL lipase activity increases due to the presence of ABHD5, but also expands the
substrate specificity. In the triglyceride, the acyl residue is primarily hydrolyzed by ABHD5 at the sn-2
position. However, the presence of ABHD5 supports the acyl residue at the sn-1 or sn-2 position [54].
Based on the fact that ABHD5 regulates ATGL function, it can be concluded that this protein has
a role in the metabolism of lipids and energy balance [16]. The sequence analysis of 5′-regulated
region of the ABHD5 gene showed significant transcription factor binding sites such as CREB, C/EBP
α, or PPAR γ, which indicates that the transcription of the ABHD5 gene is tightly connected with the
lipid metabolism and energy balance signaling pathways. Wang et al. [16] studied the regulation of
cellular lipid metabolism in bovine adipocytes by the transcriptional regulatory mechanism of the
ABHD5 gene. The same researchers quantified the mRNA expression level of ABHD5 in various tissues
in differing generations of Qinchuan cattle and using molecular techniques, like gene cloning, the
luciferase reporter assay, and site directed mutation and EMSA to identify the function of Evi1 and
C/EBPα transcription factors in the regulation of ABHD5. Wang et al. [16] indicated that the ABHD5
gene was regulated by an ectopic viral integration site-1 (Evi1) and enhancer binding protein alpha
(C/EBPα), and can be potential markers in marker-assisted selection, to develop a high-quality carcass
in the mentioned breed. Such results show that ABHD5 can be used as a genetic biomarker for marbled
beef (Figure 7).
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4.6. Kruppel-Like Factor 6 (KLF6)

KLF6 is a part of the mammalian sp1/KLF transcription factors, which regulate muscle
development, cell division, development, differentiation, and adipogenesis [97–100]. KLF6 is essential
for adipogenesis [101]. Expression of KLF6 mRNA or proteins has been documented in different tissues
including liver, lungs, and kidney of yak [55], but the exact role and expression levels in cattle tissues has
not been identified. The potential function of KLF6 is as a transcriptional prohibitory factor of Delta-like
1 (Dlk1) acting during the differentiation stages of adipocyte formation, The KLF6 works by encoding
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a transmembrane protein that impedes adipogenesis [56]. The growth repressive activity of KLF6 was
observed in postnatal and developing skeletal muscle as controlling the cell cycle by transcriptional
initiation of the cyclin-dependent kinase inhibitor p21WAF1/Cip1 [57]. By regulating the transforming
growth factor beta 1 (TGFB1), the functions of KLF6 in postnatal growth and development of skeletal
muscles was determined [58,59], including the activation of hepatic glucokinase and regulation of insulin
sensitivity in liver by NAFLD [102]. Recently, Raza et al. [3] evaluated the variations and haplotype
combinations of the KLF6 gene, and found three SNPs (3332C > G, 3413C > T, and 3521G > A) which
are located in the 2nd exon of the bovine KLF6 gene were associated with carcass quality and body
measurements of Qinchuan cattle (Figure 8).
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Expression of KLF6 in the liver of bovines indicates that KLF6 is involved in complex metabolism
pathways and is a critical regulator of metabolic process and apoptosis [56,60]. The haplotype
combination Hap1/4 of the KLF6 gene was associated with a taller wither height, longer body length,
wider hips, longer rump, more intramuscular fat, and a greater loin area compared to other haplotype
combinations [3]. The Hap1/4 haplotype of KLF6 is a potential biomarker for determination of body
measures and carcass traits in Qinchuan cattle. Bearing in mind that the main functions of the KLF6
gene are related to the lipid metabolism, there is a need for additional studies to identify the specific
functions regarding meat quality traits, but also detailed polymorphism identification of other genes is
necessary to clarify genotypes for body and carcass traits.

4.7. Heart Type Fatty Acid Binding Protein (H-FABP)

Heart type fatty acid binding protein (H-FABP) is categorized as an intracellular fatty acid-binding
protein used for the transportation of long-chain fatty acids. The H-FABP gene is expressed in the heart,
subcutaneous fat, and skeletal muscles, and to a lesser extent expressed in brown fat tissue, placenta,
and the neuron cells [103,104]. The H-FABP gene participates in signal transduction pathways, such
as mitochondrial β oxidation and the uptake or utilization of long chain fatty acids [105]. H-FABP is
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associated with intramuscular fat concentration in pigs, which makes this biomarker an important
candidate gene for intramuscular fat regulation [61,62] (Figure 9).
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Previous studies reported that the H-FABP-null mice exhibited better insulin sensitivity, which
was possibly associated to the augmented reliance on glucose [63]. The expressions of genes related
to lipid metabolism and glycolysis are regulated by the knockdown of the H-FABP gene in brown
adipocytes [106]. Li et al. [64] report that the KLF15 gene can change the core promoter of the
H-FABP gene, thus influencing the meat and growth traits in mammals. A SNP g.6643C > T in
the promoter region of the Yak H-FABP gene is linked to weight and body length via modification
of several transcription factors binding sites and through diverting long-chain fatty acids to the
mitochondria [11,65].

The H-FABPs are related to IMF and a low (lean meat) fat percentage [66,81]. Higher expression
levels of H-FABP stimulate adipogenesis in preadipocytes [67]. Even though it seems that this
gene does not have any significant functions in determining quality traits, like carcass weight and
backfat [107], previous studies on the native Tibetan pig stated that the levels of mRNA and protein
expression of H-FABP in backfat, longissimus dorsi, and liver were increased in pigs with greater
fat [62]. Shang et al. [62] reported that the C-1375G site can stimulate expression of H-FABP and in this
way be connected to lipid deposition in pigs.

4.8. Very Long Chain Fatty Acids Protein 5 (ELOVL5)

ELOVL and its homologs are parts of the very long chain fatty acids protein class (Figure 10).
Seven homologues of ELOVL have been identified (ELOVL 1–7) and are identified as being involved in
fat metabolism in mammals. The ELOVL genes encode enzymes which are differentially represented in
different tissues, and the individual enzymes have different preferences of fatty acid substrate [108,109].
Among them, ELOVL5 is involved in the synthesis of palmitic acid (C16:0), palmitoleic acid (C16:1),
stearic acid (C18:0), and oleic acid (C18:1) [70], which are the main fatty acids in beef [2,68]. ELOVL5 is
an essential protein in for the synthesis of specific monounsaturated fatty acid (MUFA) in mammalian
cells and has a role in fatty acid elongation [70]. When ELOVL5 is knocked out, the elongation of C16:1
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cis-9, n-7 is reduced, while the overexpression of ELOVL5 induces an enhanced fatty acid synthesis
of C18:1 cis-9, n-7 [68]. Furthermore, it has been confirmed that the reduction of ELOVL5 activity is
associated with increased risk for hepatic steatosis, while polyunsaturated fatty acids (PUFAs) that are
internal produced are key regulators of fatty acid synthesis [69].
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Studies in pigs have proven that the ELOVL5 gene takes part in fatty acid production and is
associated with C20:1n9/C18:1n9 and C20:2n6/C18:2n6 production [71]. ELOVL5 can have pleiotropic
effects on diverse fatty acid structures in multiple stages of the metabolism. Recently, Zhu et al. [72]
performed genome-wide association study (GWAS)in Chinese Simmental cattle and they concluded
that the ELOVL5 gene was associated with C14:0 in Chinese Simmental cattle. It could be seen that
different regions and loci can be candidate biomarkers for genomics-based breeding strategies. All the
mentioned methods have proved that ELOVL5 is strongly linked with fatty acids, and can be used for
genomic selection for fatty acids in the Chinese Simmental cattle.

4.9. Very Long Chain Fatty Acids Protein 6 (ELOVL6)

Very long chain fatty acids protein 6 (ELOVL6) gene encodes a crucial protein that participates in
lipogenesis by catalyzing the elongation of monounsaturated and saturated fatty acids [17]. Expression
of bovine ELOVL6 has been confirmed in many tissues important in lipid metabolism, including
adipose tissues, brain and the liver. The ELOVL6 gene takes part in the biosynthesis of several
fatty acids, including; palmitic acid (C16:0), palmitoleic acid (C16:1), stearic acid (C18:0) and oleic
acid (C18:1). Additionally, ELOVL6 controls the elongation of C16:0 (palmitate) to C18:0 (stearate).
Because palmitate and stearate are the major fatty acids in beef [68], the participation of ELOVL6 in the
production of fatty acids may be especially important for beef breeding.

The deficiency expression of ELOVL6 in mice has improved quantities of C16:0 and C16:1n-7
in various tissues, and reduced levels of C18:0 and C18:1n-9 [108,110,111]. Recent studies suggest,
that the stearic acid (C18:0), as an ELOVL6 product, participates in the control of mitochondrial
function via stearoylation of transferring receptor 1 (TFR1) [112]. ELOVL6 lowers the levels of mRNA
expression in genes that are in charge for esterification, such as concentrations of glycerol-3-phosphate
acyltransferase mitochondrial and diacylglycerol acyltransferase 2 (DGAT2), and also triacylglycerol [73].
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Recent studies proved that ELOVL6 is a direct target of sterol regulatory element-binding protein
1 (SREBP-1) and is regulated primarily by SREBP-1c and carbohydrate-responsive element-binding
protein (ChREBP) [74–76]. Binding of SP1 to the promoter regions of ELOVL6 controls their transcription
activity [113]. The ELOVL6 c.-394G > A polymorphism is responsible for mutation of the quantitative
trait locus on pig chromosome 8, what in the end dictates porcine fatty acid composition [61]. Results
of transcriptome and genomic sequencing reveal that ELOVL6 is a potential biomarker that affects
meat quality in bovines and has an important role in the regulation of fat metabolism by elongating
fatty acids [17].

Junjvlieke et al. [17] reported that the binding of transcription factors KLF6 and PU.1 appeared
in the −168/+69 region, and have an essential role in regulating the transcription of bovine ELOVL6.
The same researchers claim that up-regulation of ELOVL6 increases peroxisome proliferator activated
receptor γ (PPARγ) expression, however it down regulates the fatty acid-binding protein 4 (FABP4)
expression. Additionally, the reduction of ELOVL6 subsequently regulated the expression level of
mRNA PPARγ, FABP4, ACSL, and FATP1. By regulating the expression levels of genes involved in the
cell cycle, ELOVL6 stimulates adipogenesis.

5. Conclusions

Marker-assisted selection is a powerful tool for the improvement of beef cattle production, and
can be used to advance both management and breeding decisions. In this review, we summarized
numerous regions and SNPs that are potential biomarkers for genomics-assisted breeding strategies
for the improvement of carcass quality and body variables in Chinese Qinchuan cattle. It appears that
there is a need for further studies to assess the potential role of other sequences of the major genes
or other associated genes in different breeds and populations. Novel methods, like whole-genome
sequencing and whole-transcriptome profiling, are likely to be valuable tools to identify signatures of
selection and gene pathways involved in these traits.

Author Contributions: S.H.A.R., R.K. and L.Z. substantially contributed to the conception, and the design; S.A.A.,
M.E.A.E.-H. and A.F.K. contributed to analysis and interpretation of data; M.E.A.E.-H., A.T., H.O., C.M. and
N.M.S. drafted the manuscript; and all authors checked and approved the final version of the manuscript, and
agreed to be accountable for its contents.

Funding: The study was supported by the National Science and Technology Support Projects (No. 2015BAD03B04);
National 863 Program of China (No.2013AA102505); the National Modern Agricultural Industry Special Program
(No. CARS-37); National Key Research and Development Program of China (No. 2018YFD0501700).

Acknowledgments: All the authors acknowledge and thank their respective Institutes and Universities.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. World Health Organization. Q&A on the Carcinogenicity of the Consumption of Red Meat and Processed
Meat. Available online: https://www.who.int/features/qa/cancer-red-meat/en/ (accessed on 7 August 2019).

2. Abd El-Hack, M.E.; Abdelnour, S.A.; Swelum, A.A.; Arif, M. The application of gene marker-assisted
selection and proteomics for the best meat quality criteria and body measurements in Qinchuan cattle breed.
Mol. Boil. Rep. 2018, 45, 1445–1456. [CrossRef] [PubMed]

3. Raza, S.H.A.; Khan, R.; Schreurs, N.M.; Guo, H.; Gui, L.S.; Mei, C.; Zan, L. Expression of the bovine KLF6
gene polymorphisms and their association with carcass and body measures in Qinchuan cattle (Bos Taurus).
Genomic 2019. [CrossRef] [PubMed]

4. Pedersen, L.D.; Sørensen, A.C.; Berg, P. Marker-assisted selection can reduce true as well as pedigree-estimated
inbreeding. J. Dairy Sci. 2009, 92, 2214–2223. [CrossRef] [PubMed]

5. Raza, S.H.A.; Gui, L.; Khan, R.; Schreurs, N.M.; Wang, X.; Wu, C.; Mei, L.; Wang, X.; Ma, D.; Wei, H.; et al.
Association between FASN gene polymorphisms ultrasound carcass traits and intramuscular fat in Qinchuan
cattle. Gene 2018, 645, 55–59. [CrossRef] [PubMed]

https://www.who.int/features/qa/cancer-red-meat/en/
http://dx.doi.org/10.1007/s11033-018-4211-y
http://www.ncbi.nlm.nih.gov/pubmed/30006771
http://dx.doi.org/10.1016/j.ygeno.2019.03.005
http://www.ncbi.nlm.nih.gov/pubmed/30880114
http://dx.doi.org/10.3168/jds.2008-1616
http://www.ncbi.nlm.nih.gov/pubmed/19389980
http://dx.doi.org/10.1016/j.gene.2017.12.034
http://www.ncbi.nlm.nih.gov/pubmed/29273553


Genes 2019, 10, 717 19 of 24

6. Boucher, C.A.; Carey, N.; Edwards, Y.H.; Siciliano, M.J.; Johnson, K.J. Cloning of the human SIX1 gene and its
assignment to chromosome 14. Genomics 1996, 33, 140–142. [CrossRef] [PubMed]

7. D’Andre Hirwa, C.; Wallace, P.; Shen, X.; Nie, Q.; Yang, G.; Zhang, X. Genes related to economically important
traits in beef cattle. Asian J. Anim. Sci. 2011, 5, 34–45.

8. Boukha, A.; Bonfatti, V.; Cecchinato, A.; Albera, A.; Gallo, L.; Carnier, P.; Bittante, G. Genetic parameters of
carcass and meat quality traits of double muscled Piemontese cattle. Meat Sci. 2011, 89, 84–90. [CrossRef]
[PubMed]

9. Gao, Y.U.; Zhang, R.; Hu, X.; Li, N. Application of genomic technologies to the improvement of meat quality
of farm animals. Meat Sci. 2007, 77, 36–45. [CrossRef]

10. Ribeca, C.; Bonfatti, V.; Cecchinato, A.; Albera, A.; Gallo, L.; Carnier, P. Effect of polymorphisms in candidate
genes on carcass and meat quality traits in double muscled Piemontese cattle. Meat Sci. 2014, 96, 1376–1383.
[CrossRef]

11. Gui, L.; Wu, H.; Raza, S.H.A.; Schreurs, N.M.; Shah, M.A. The effect of haplotypes in the promoter region of
SIRT4 gene on the ultrasound traits in Qinchuan cattle. Trop. Anim. Health Prod. 2019, 1–6. [CrossRef]

12. Luft, F.C. Are you certain about SIRT? J. Mol. Med. 2014, 92, 305–306. [CrossRef] [PubMed]
13. Silberman, D.M.; Ross, K.; Sande, P.H.; Kubota, S.; Ramaswamy, S.; Apte, R.S.; Mostoslavsky, R. SIRT6 is

required for normal retinal function. PLoS ONE 2014, 9, e98831. [CrossRef] [PubMed]
14. Li, X.; Kazgan, N. Mammalian sirtuins and energy metabolism. Int. J. Biol. Sci. 2011, 7, 575–587. [CrossRef]

[PubMed]
15. Gui, L.; Xin, X.; Wang, J.; Hong, J.; Zan, L. Expression analysis, single nucleotide polymorphisms within

SIRT4 and SIRT7 genes and their association with body size and meat quality traits in Qinchuan cattle.
J. Integr. Agric. 2016, 15, 2819–2826. [CrossRef]

16. Wang, X.; Khana, R.; Razaa, S.H.A.; Lia, A.; Zhanga, Y.; Lianga, C.; Yanga, W.; Wua, S.; Zan, L. Molecular
characterization of ABHD5 gene promoter in intramuscular preadipocytes of Qinchuan cattle: Roles of Evi1
and C/EBP α. Gene 2019, 690, 38–47. [CrossRef] [PubMed]

17. Junjvlieke, Z.; Mei, C.G.; Khan, R.; Zhang, W.Z.; Hong, J.Y.; Wang, L.; Zan, L.S. Transcriptional regulation of
bovine elongation of very long chain fatty acids protein 6 in lipid metabolism and adipocyte proliferation.
J. Cell Biochem. 2019, 120, 13932–13943. [CrossRef] [PubMed]

18. Mach, N.; Bach, A.; Velarde, A.; Devant, M. Association between animal, transportation, slaughterhouse
practices, and meat pH in beef. Meat Sci. 2008, 78, 232–238. [CrossRef] [PubMed]
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