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Abstract

Testing for random mating of a population is important in population genetics, because deviations from randomness
of mating may indicate inbreeding, population stratification, natural selection, or sampling bias. However, current
methods use only observed numbers of genotypes and alleles, and do not take advantage of the fact that the advent
of sequencing technology provides an opportunity to investigate this topic in unprecedented detail. To address this
opportunity, a novel statistical test for random mating is required in population genomics studies for which large
sequencing datasets are generally available. Here, we propose a Monte-Carlo-based-permutation test (MCP) as an
approach to detect random mating. Computer simulations used to evaluate the performance of the permutation test
indicate that its type I error is well controlled and that its statistical power is greater than that of the commonly used
chi-square test (CHI). Our simulation study shows the power of our test is greater for datasets characterized by lower
levels of migration between subpopulations. In addition, test power increases with increasing recombination rate,
sample size, and divergence time of subpopulations. For populations exhibiting limited migration and having average
levels of population divergence, the statistical power approaches 1 for sequences longer than 1Mbp and for samples
of 400 individuals or more. Taken together, our results suggest that our permutation test is a valuable tool to detect
random mating of populations, especially in population genomics studies.
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Introduction

In a random mating population all individuals have an equal
chance of being a mating partner. In population genetics,
deviations from random mating may indicate inbreeding,
population stratification, natural selection or sampling bias.
Extensive association studies have been conducted on
population samples to search for genes underlying complex
traits through linkage disequilibrium of these genes with
markers [1–8]. However, when samples originate from a non-
random mating population, spurious associations may arise
between marker loci and complex traits. In evolutionary
studies, it is important to determine whether a given locus is
under random mating since deviations may be due to natural or
artificial selection [9]. In population genetics, samples are
usually tested to determine if they are derived from the same

random mating population [9], since the samples might exhibit
signs of genetic stratification even if they are from one locality.

Many methods have been proposed to test for random
mating. They can be divided into two categories: asymptotic
and exact tests. Several asymptotic tests (also know as
“goodness-of-fit” orχ2 tests) have been developed based on
asymptotic theory. They perform well when considering
independent loci having a small number of alleles [10–12].
However, for loci having a large number of alleles, the
contingency table used to implement asymptotic tests usually
contains too many empty cells and the number of individuals in
the sample is insufficient for large sample theory to be applied
[13–24]. Although the “single allele test” addresses the problem
of sparse tables by analyzing each allele separately, the
statistical power of this approach is limited because multiple
comparisons are made [9]. With the advent of dense genome-
wide sequencing, loci having large numbers of alleles, and the
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genome as a whole, are now available for populations
genomics investigation [25]. These studies generate sparse-
matrix data for which asymptotic methods are not reliable. In
such cases, exact methods are necessary.

Exact tests use the exact probability of potential outcomes
rather than using an asymptotic probability distribution. The p-
value of the exact test is given by the sum of the exact
probabilities of the allele combinations that deviate from the
null hypothesis of random mating by at least as much as the
observed sample. The idea of the exact test was first proposed
by Fisher (1935) and subsequently advocated by Levene
(1949) and Haldane (1954) in genetics [26,27]. However, the
application of the exact test was hindered by its computational
complexity until Louis and Dempster (1987) proposed a
complete enumeration algorithm to compute the p-value for this
test [15]. Unfortunately, this method is computationally
impractical when the number of alleles is large. This prompted
the development of Monte Carlo (MC) and Markov chain Monte
Carlo (MCMC) methods, which are easy to perform and have
become widely used in population genetics [16,17].

In addition to the above statistical tests, some other
methods, such as STRUCTURE analysis and PCA analysis,
can be used to infer possible genetic substructure of
populations, thus providing evidence of random mating
[4,28–30]. However, these methods cannot act as a substitute
for statistical tests of random mating.

Neither asymptotic nor exact tests possess enough statistical
power to take advantage of the large amount of polymorphism
data made available by genome-wide sequencing. Therefore,
there is considerable interest in novel statistical tests for
detecting random mating using large-scale sequencing data. In
this study, we address the shortcomings of the existing
methods by developing a Monte-Carlo-based-permutation
(MCP) test to detect random mating. Using computer
simulations, we demonstrate that the MCP test performs well
on large-scale sequencing data and that its statistical power is
greater than that of the classical chi-square test (CHI test).
Here, we discuss the influence of genetic and demographic
parameters, such as sequence length, sample size, mutation
rate, recombination rate, divergence time, and migration rate,
on the performance of the MCP test.

Materials and Methods

Model of random mating for sequence data
A random mating population is one in which all individuals

have the same probability of being mating partners. In other
words, potential mates have an equal chance of being chosen,
without being influenced by environmental, hereditary, or social
factors. In this context, the process of random mating can be
treated as a random sampling process. In our MCP method, we
simulated random mating as the pairing of sequences from
randomly selected individuals. Random mating was simulated
for a sample of individuals as follows: (i) two gametes from
these individuals, which were not necessarily from the same
individual, were randomly chosen without replacement to
generate a new individual; (ii) further two gametes were then
randomly chosen from the remaining pool of gametes to

generate another new individual; (iii) this process was repeated
until every gamete had been chosen. By treating this process
as a simple Monte Carlo permutation procedure, individuals
from a random mating population were simulated. After
choosing an appropriate statistic, the null distribution of this
statistic from a random mating sample can be obtained. By
comparing the observed statistic to its null distribution,
standard hypothesis testing can be performed to determine if
the sample is derived from a random mating population. This
approach resembles an exact test which randomly samples
alleles [17].

Average Pairwise difference within individuals as a
statistic

Pairwise difference, denoted by ξ in this study, is the number
of different nucleotides between aligned sequence pair. The
expected pairwise difference for a pair of sequences (E(ξ)) is
proportional to the mutation rate (μ) and expected coalescence
time (T) for that pair of sequences (i.e.E(ξ)=2μT). In a
population under random mating conditions, the expected
pairwise difference is the same for all randomly selected pairs
of sequences. However, for a non-random mating population,
the expected pairwise differences for randomly selected pairs
of sequences differ according to the population substructure.
For simplicity, we assume that sequences are sampled from
two homogeneous subpopulations called A and B. TAB denotes
the expected coalescence time of any pair of sequences, of
which one sequence comes from subpopulation A, the other
from B. Similarly, TAA and TBB denote the expected coalescence
time of any two sequences both coming from subpopulation A
or B, respectively. ξAB is the pairwise difference of two
sequences coming from two different subpopulations, and ξAA,
ξBB are the pairwise differences when both come from
subpopulation A or B, respectively. We can infer that E(ξAB) >
E(ξAA) and E(ξAB) > E(ξBB) in the case of a non-random mating
population, since TAB >TAA and TAB >TBB.

We suppose that a sample of size n individuals is drawn from
a population of interest. Sequences of the individuals are
denoted by C1, C2…, to C2n where C1 and C2 are from individual
1, C3 and C4 are from individual 2, and so on. Under random
mating, a sample of size n has an observed average pairwise
difference within individuals as defined by:

ξobserve=(ξC1C2 + ξC3C4 +……+ξC(2n-1)C(2n) )/n,
where ξC1C2 is the pairwise difference between sequences C1

and C2, and so on. When these sequences are randomly
permuted and divided into n pairs, we obtain a simulated
sample where the average pairwise difference within
individuals is defined as

ξpermute=(ξCs1Cs2 + ξCs3Cs4 +……+ξCs(2n-1)Cs(2n) )/n,
where, s1, s2…, until s2n is an order of one permutation of

sequence 1 to 2n. When a sample of sequences is collected
from a random mating population, E(ξobserve) = E(ξpermute), since
all sequence pairs have the same expected coalescence time.
However, if sequences are chosen from a non-random mating
population, containing two subpopulations A and B, there are
three possible pairwise differences for the simulated samples:
ξAA, ξBB, and ξAB. Thus ξpermute is a combination of these three
different pairwise differences, whereas in the real sample,
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ξobserve is only a combination of ξAA and ξBB. Because E(ξAB) >
E(ξAA) and E(ξAB) > E(ξBB), it follows that E(ξpermute) > E(ξobserve).
Therefore, the test of whether the sample is from a random
mating population can be formulated as

H0: ξobserve = ξpermute

H1: ξobserve < ξpermute

According to the null hypothesis (H0), the sample is from a
population under random mating whereas according to the
alternative hypothesis (H1), the population is not randomly
mating.

Hypothesis testing
Under the null hypothesis of random mating, the distribution

of average pairwise sequence differences within individuals is

equivalent to that of a simulated sample obtained by the
permutation procedures described above. In statistical
hypothesis testing, many permutations are conducted to obtain
the null distribution of average pairwise differences within
individuals. In other words, the null distribution of ξobserve can be
obtained by calculating ξpermute for each of the simulated
samples generated in the permutation procedure. For a given
permutation test, the significance level (p-value) of the null
hypothesis is the probability that ξpermute is equal to, or less than,
ξobserve. The hypothesis testing procedure is graphically outlined
in Figure 1.

To ensure that the obtained p-value is within δ units of the
true significance level, at a (1-γ) % confidence level, the

Figure 1.  A diagram of the MCP method.  In this case, a sample of n = 4 individuals was drawn from a population of interest.
Gamete sequences (2n) of the individuals are denoted by C1-C8 as follows: C1 and C2 are from individual 1, C3 and C4 are from
individual 2 and so on. After permuting these sequences N times (where N is any positive integer), N new datasets were obtained
by dividing each permuted sequence into n consecutive pairs. For each permutation, the ξpermute statistic could be calculated. This
allowed us to derived the null distribution of the statistic. After locating ξobserve on the null distribution, a p value of the test could be
obtained.
doi: 10.1371/journal.pone.0071496.g001
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required number of permutations is given byN ≥
Zγ/2
2δ

2
, where

Z is the z-score of a standard normal distribution [31]. In this
case, for δ=0.01 and a confidence level of 99%,

N ≥ 2.576
2δ

2≈17000 permutations are sufficient. Therefore, to

obtain reliable p-values in the present study, we performed
20,000 permutations for each statistical hypothesis test.

Performance evaluation
To evaluate the performance of our statistical test for random

mating, simulated genomic sequences in multiple genetic
scenarios were generated using the MS software program [32].
Both type I error rate (i.e. false positive rate) and type II error
rate (i.e. 1-statistical power) were evaluated. Experimental
parameters (e.g. sample size n and sequence length l), and
inherent parameters (e.g. mutation rate and recombination
rate), may affect the type I error of the MCP test. Under the
alternative hypothesis that mating is non-random, the power of
this test may also be affected by two parameters related to
demographic history: the divergence time of the subpopulations
and the migration rate between them.

Simulated datasets of genomic sequences were generated
using the “control of variables” strategy [33]. To evaluate how a
specific parameter affects the type I or type ΙI error of the MCP
test, the parameter’s values were varied in the simulation while
all other parameters were kept constant (we refer to these as
“steady states”) (Table 1). For example, we tested how
sequence length affects the performance of MCP when all
other parameters (e.g. sample size, recombination rate, and
mutation rate) were kept in a “steady state”. In each case, 1000
replicates were generated, thus yielding 1000 p-values in
statistical tests for which type I and type II errors could be
examined. Notations used in this report and the values of
parameters in “steady states” are presented in Table 1.

Table 1. Parameters and terminology.

Symbols Explanation “Steady states”

N Effective population size 5000

r Recombination rate per site per generation 10-8

l Sequence length 1Mbp

μ Mutation rate (per generation per site) 10-8

T
Divergence time of two subpopulations
(generations).

400

n Sample size (number of individuals) 400

θ 4Nμl 200

ρ 4Nrl 200

m Migration rate per generation 0

M 4Nm 0

β Significance level 0.05 or 0.01

Results

Evaluation of type I error
To evaluate the influence of experimental and inherent

parameters on the MCP test, we estimated the type I error rate
of the MCP test by simulations in which individual parameters
were varied using the “control of variables” strategy (see
Materials and Methods for details). In these simulations,
sequence length was varied from 5kb to 2Mb and sample size
was varied from 50 to 800 individuals. Since different genome
regions differ in their recombination (ρ=4Nrl) and mutation
rates (θ=4Nμl), we assessed both to evaluate their influence on
the type I error of our method (Table 2).

Our simulations indicate that type Ι error is well controlled in
the MCP test (Table 2). At a significance level of 0.05, type I
error rate ranged from 0.027 (for n=50) to 0.069 (for l=1Mb)
(Table 2). In simulations of the MCP test, under the null
hypothesis of a randomly mating population, the number of the
p-values smaller than a threshold p followed a binomial
distribution B(m, p), where m is the number of replicates.
Therefore, when m=1000 and p=0.05, 95% of estimated type I
error rates are expected to lie in the range 0.0373 to 0.0654. In
our evaluations, all the estimated type I error rates lie in this
range, except for the two extreme cases noted above.
Furthermore, when m=1000 and p=0.01, 95% of the
estimations are expected to fall between 0.0048 and 0.0183. In
this study, most of the corresponding estimations fell into the
expected range and none of them exceeded the upper
boundary (Table 2). Test for type I error for more scenarios are
presented in Tables S1-S4.

Table 2. Type 1 error of the MCP method with different
parameters.

Significance levels l = 5kb l = 50kb l = 500kb l =1Mb l = 2Mb
0.05 0.034 0.054 0.041 0.069 0.048
0.01 0.004 0.016 0.004 0.016 0.015
Significance levels n = 50 n = 100 n= 200 n =400 n =800
0.05 0.027 0.048 0.048 0.048 0.054
0.01 0.0047 0.011 0.012 0.011 0.017
Significance levels ρ = 100 ρ = 200 ρ = 400 ρ = 800 ρ = 1000
0.05 0.048 0.051 0.039 0.043 0.038
0.01 0.004 0.011 0.010 0.007 0.005
Significance levels θ = 100 θ= 200 θ= 400 θ= 800 θ= 1000
0.05 0.054 0.057 0.043 0.042 0.061
0.01 0.010 0.012 0.008 0.004 0.010

We used control variable strategy to detect type Ι error of MCP test in different
sequence length l, sample size n, recombination rate ρ = 4Nrl and mutation rate θ
= 4Nμl, corresponding to two significance levels 0.05 and 0.01. When detecting the
effects of one specific parameter, the values of the other parameters kept in
“steady states” were as follows: sequence length l= 1Mbp; effective population size
N=5000; recombination rate ρ=4Nrl=4×5000×10-8l ; sample size n=400 individuals
from a random mating population and mutation rate θ=4Nμl=4×5000×10-8l.
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Evaluation of statistical power
Given the generally favorable evaluation of type Ι error rate,

we sought to examine the statistical power of the MCP test at
significance levels of 0.05 and 0.01. We considered
experimental, inherent, and demographic parameters under the
alternative hypothesis to determine their effect on statistical
power.

We compared our MCP test to the CHI test. Since the CHI
test uses numbers of genotypes and alleles, it cannot be
directly implemented using real sequences. Therefore, we
chose a fixed number of equally distanced SNPs, treating them
as independent loci. We also evaluated the influence of locus
number (from 1 to 100 in increments of 10) on the performance
of the CHI test. When n loci (n>1) were available in the CHI
test, we calculated Pearson’s chi-statistic for each locus and
summarized this to obtain a summary statistic following a
standard central chi-square distribution with n degrees of
freedom [34]. In simulations, we found that the type Ι error rate
of the CHI test was greater than expected, which may be due
to the interdependence of the loci involved (Tables S5-S8). To
compensate for the inflated type I error in the CHI test power
evaluation, we replaced the standard rejection criteria with
empirical thresholds for significance levels 0.01 and 0.05,
represented respectively by the 10th and 50th ranked values of
the CHI test summary statistic in 1000 simulated tests under
the null hypothesis. This allowed us to calculate the statistical
power of the CHI test at different loci. The highest statistical
power of the CHI test using different numbers of loci was
chosen for comparison to our method (Tables S9-S12).

Our investigation showed that the MCP test has more
statistical power than the CHI test in experimental designs with
different sequence lengths and sample sizes. For sequence
length, the statistical power of the MCP and CHI tests was
compared for eight lengths, in the range of 1kb to 2Mb (Figure
2A). The statistical power of both tests increased with an
increase in sequence length, however, the power of the MCP
test was consistently much higher than that of the CHI test. For
example, when l=1Mbp, the power of the MCP test reached 0.8
or higher, whereas the power of the CHI test was only around
0.2. Furthermore, for sequence lengths greater than 1.5Mb, the
power of the MCP test exceeded 0.9.

For sample sizes ranging from 100 to 1000 individuals, the
power of both tests increased with larger sample size, with the
power of the MCP test consistently greater than that of the CHI
test. For samples of more than 400 individuals, the power of
the MCP test exceeded 0.8 for a significance level of 0.05, but
the power of the CHI test never exceeded this value, even for
sample sizes greater than 1000 individuals (Figure 2B).

The MCP test outperformed the CHI test in genome regions
subject to a variety of mutation and recombination rates. We
found that statistical power did not vary for mutation rates θ
ranging from 50 to 1000 (Figure 2C). However, at a
significance level of 0.05, the power of the MCP method
consistently exceeded 0.8, whereas the power of the CHI test
was approximately 0.6. Furthermore, at a significance level of
0.01, the power of the MCP test was approximately 0.6,
whereas that of the CHI test was only 0.3. The power of both
tests at different recombination rates ρ ranging from 50 to 1000

was evaluated (Figure 2D). The power of the MCP test
increased with increasing recombination rate, whereas that of
the CHI test remained relatively constant. With a recombination
rate per generation per site of 10-8 (ρ=200 when μ=10-8), which
is the most commonly used recombination rate [35–38], the
power of the MCP test exceeded 0.4, but that of the CHI test
was less than 0.2, at a significance level of 0.05.

We further compared the statistical power of the MCP and
CHI tests in demographic scenarios having different population
divergence times and gene migration rates (Figure 2E and
Figure 2F). Statistical power increased with divergence time for
both methods. Interestingly, for a population divergence of 400
generations, the power of the MCP test was greater than 0.9 at
a significance level of 0.05, and approached 1 when population
divergence increased to 600 generations whereas the power of
the CHI test never exceeded 0.8. The power of both methods
was highly dependent on the migration rate between
subpopulations. The power was high for small or no migration
rates, but declined with increasing migration rate, resulting in
no power at the highest migration rates (Figure 2F).

Discussion

Here we report a Monte Carlo permutation-based (MCP)
statistical test for detecting random mating in a population of
interest. Computer simulation showed that the type Ι error
behaved well in the MCP testing and statistical power of the
method compared favorably with the CHI test in most cases.
Moreover, this method can be used not only to detect
population stratification of genetic samples, but also to test for
random mating at specific regions of the genome or multiple
tightly linked loci.

Using the average pairwise difference within individuals has
the advantage of allowing the MCP test to consider multiple loci
without assuming independence between them, since
recombination has no effect on this measure in a homogenous
population. Linkage disequilibrium (LD), which can even occur
between loci situated several kilobases apart, can inflate the
type Ι error in statistical tests. Accordingly, we found that the
type I error for the CHI test was highly inflated when more
markers were used in order to increase statistical power
(Tables S5-S8). In inference-based approaches for detecting
population stratification, LD is also problematic. For example,
STRUCTURE does not fully eliminate the effects of strong LD,
which may produce inaccurate results [39–41]. Therefore, it
was suggested that loci used as input for STRUCTURE
analysis should be separated by at least 1 cM [39–41].
However, this constraint is an obvious drawback in the analysis
of genome-wide sequencing data.

In contrast to other methods for detecting random mating
[15,27], we found that the performance of our MCP method is
not diminished by increasing the number of alleles or
haplotypes. In fact, higher statistical power is achieved with
longer sequence lengths. Moreover, power increases rapidly
especially in cases with larger sample sizes, lower migration
rates, higher recombination rates, and larger divergence time
between subpopulations (Figure 2). When the inherent genetic
and demographic parameters are fixed, higher statistical power
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Figure 2.  Statistical power of MCP and CHI tests under varying: (A) sequence length, (B) recombination rate, (C) sample
size, (D) migration rate, (E) population divergence, and (F) mutation rate.  
doi: 10.1371/journal.pone.0071496.g002
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of the MCP test can be achieved by increasing the sample size
or sequence length. In the worst case, when only a single
polymorphic locus is available for random mating tests, the
statistical power of the MCP test is still comparable to that of
the classical CHI test. Hence, the MCP test is preferable to the
CHI test for a broad range of genetic studies. Obviously, false
positive result of CHI test is well controlled in scenario with only
unlinked loci. Therefore, CHI test is still a good choice in such
scenario.

The MCP test is presented in this report as a single-tailed
test, rather than a two-tailed test, since inbreeding is common
in population genetic history whereas outbreeding is relatively
rare [42,43]. Notably, the MCP test can be conveniently
modified to form a two-tailed test when necessary. However, a
two-tailed version of the MCP test is likely to be impractical for
quality control of sequencing projects. This is because when
sequencing errors are randomly introduced into sequence
products, the errors have little impact on the average pairwise
difference. Therefore, a two-tailed MCP test may lack power in
detecting sequencing errors. Furthermore, a two-tailed MCP
test may not be a good choice for detecting balancing selection
because detecting extra heterozygosity has been suggested to
be lack of power in simulation study [44,45].

The time complexity of the entire MCP test calculation
process is O(mn2 +Nn), where m is the number of SNPs, n is
the number of individuals and N is the number of permutations.
On a cluster machine with 4G RAM, with 4 CPU cores (Dual-
Core AMD Opteron(tm) Processor2214, 2194 MHz), with each
test executed using a single CPU, it would require about 10
minutes with 2000 individuals and a window size of 2Mbp,
using a R script. Thus, the MCP test is suitable for large data
sets.
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recombination rate ρ = 4Nrl=4×5000×10-8l and no migration.
(DOCX)

Table S11.  We detected the power of the CHI test in
different sample size n with certain numbers of loci.
Other parameters in “steady states” were as follows: sample
size n=400 individuals, in which half of them came from
subpopulation 1 and the other half came from subpopulation 2;
the divergence time of the two subpopulations T=10000 years;

effective population size N=5000; mutation rate
θ=4Nμl=4×5000×10-8×106=200; recombination rate
ρ=4Nrl=4×5000×10-8×106=200 and no migration.
(DOCX)

Table S12.  We detected the power of the CHI test in
different mutation rate θ with certain numbers of loci.
Other parameters in “steady states” were as follows: sequence
length l = 1Mbp; sample size n=400 individuals, in which half of
them came from subpopulation 1 and the other half came from
subpopulation 2; effective population size N=5000;
recombination rate ρ=4Nrl=4×5000×10-8×106=200; divergence
time of the two subpopulations is T=10000 years and no
migration.
(DOCX)
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