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Abstract

Divergent selection and local adaptation are responsible for many phenotypic differences between populations, potentially
leading to speciation through the evolution of reproductive barriers. Here we evaluated the morphometric divergence
among west European populations of Reed Bunting in order to determine the extent of local adaptation relative to two
important selection pressures often associated with speciation in birds: migration and diet. We show that, as expected by
theory, migratory E. s. schoeniclus had longer and more pointed wings and a slightly smaller body mass than the resident
subspecies, with the exception of E. s. lusitanica, which despite having rounder wings was the smallest of all subspecies. Tail
length, however, did not vary according to the expectation (shorter tails in migrants) probably because it is strongly
correlated with wing length and might take longer to evolve. E. s. witherbyi, which feed on insects hiding inside reed stems
during the winter, had a very thick, stubby bill. In contrast, northern populations, which feed on seeds, had thinner bills.
Despite being much smaller, the southern E. s. lusitanica had a significantly thicker, longer bill than migratory E. s.
schoeniclus, whereas birds from the UK population had significantly shorter, thinner bills. Geometric morphometric analyses
revealed that the southern subspecies have a more convex culmen than E. s. schoeniclus, and E. s. lusitanica differs from the
nominate subspecies in bill shape to a greater extent than in linear bill measurements, especially in males. Birds with a more
convex culmen are thought to exert a greater strength at the bill tip, which is in agreement with their feeding technique.
Overall, the three subspecies occurring in Western Europe differ in a variety of traits following the patterns predicted from
their migratory and foraging behaviours, strongly suggesting that these birds have became locally adapted through natural
selection.
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Introduction

Divergent selection and local adaptation are responsible for

many phenotypic differences found across populations, and may

lead to the evolution of reproductive barriers and speciation [1,2].

Local adaptations are expected to constrain gene flow among

populations, as hybrids would be maladapted relative to their

parents [1]. In addition, the speciation process is greatly facilitated,

even in the presence of gene flow, when the traits subject to

divergent selection are also involved in mate choice (often called

‘magic traits’ [3]). In order to understand the speciation process, it

is important to determine how ecology and genetics interact to

cause the evolution of the first reproductive barriers, before they

are confounded by further barriers and differences evolving

subsequently among populations/species [4]. The characterization

of diverging phenotypes and the identification of relevant

evolutionary forces acting on those phenotypes are crucial first

steps to study the causes of speciation [5].

In birds, two of the most significant selection pressures

associated with the evolution of reproductive barriers are

migratory and foraging behaviours. For instance, reproductive

isolation seems to be evolving as a consequence of a new migratory

direction in Blackcaps (Sylvia atricapilla; [6]), and migratory

behaviour has been suggested to be an important factor promoting

speciation [7–11]. On the other hand, foraging ecology has been

associated with divergent selection and speciation, particularly in

seed-eating species such as Darwin’s finches, Nesospiza buntings

and crossbills [12–14]. Other organisms have also evolved in

foraging behaviour leading to speciation, such as the benthic and

limnetic threespine sticklebacks [15]; and niche divergence has

been shown to promote reproductive isolation in a large variety of

taxa [16].
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The Reed Bunting (Emberiza schoeniclus) is the most variable

species within the large Emberizidae family, having numerous

subspecies described on the basis of bill size, body size and

plumage colour [17–20]. The variation in phenotype is complex

and to a large extent clinal [19,20]. Birds with a thick bill occur in

the southern part of the distribution, where the thickness of the bill

(as well as body size) increases towards the east, whereas thin-billed

birds occur further north. In addition, western individuals are the

darkest in plumage, becoming increasingly light in colour towards

the east [17,19,20]. Southern populations are resident, but further

north partial, short- and medium-distance migration occurs in

various directions, with thin-billed subspecies often co-occurring

with thick-billed birds during the winter [21]. During spring and

summer, Reed Buntings feed mostly on insects, but during the

winter, thick-billed birds seem to feed on insects lying dormant

inside the reed (Phragmites australis) stems; whereas the thin-billed

birds feed almost exclusively on small seeds (Shtegman 1948 cited

by [21], personal observations) [22–24].

Individual variation and the existence of intermediate popula-

tions led to some instability in Reed Bunting’s taxonomy, with the

number of recognized subspecies varying from 15 to over 20 [17–

20,25,26]. One of the subspecies for which little data exist and has

not been recognized by most authors before Byers et al. [20] is E.

s. lusitanica (hereafter lusitanica; first described by Steinbacher [27]),

which resides in the northwest part of the Iberian Peninsula (see

Figure S1, [28]). It was lumped with E. s. witherbyi (hereafter

witherbyi) pending further study by Vaurie [17] and by Cramp &

Perrins [19], though they admitted that it should probably belong

to the thin-billed group, close to E. s. schoeniclus (hereafter

schoeniclus), as was later described by Byers et al. [20].

Previous studies addressing phenotypic divergence amongst

Reed Bunting subspecies generally analysed very few individuals of

each population and no statistical comparisons were made (but see

[29,30]). Genetic studies, however, have shown that the neutral

genetic divergence between the Italian subspecies E. s. intermedia

(thick-billed) and the central-European schoeniclus (thin-billed) is

slight but significant [31]. This was confirmed by a recent analysis

of mitochondrial DNA (ND2 gene) describing three partially

overlapping closely-related lineages in Asia [32], and by our own

analysis of mtDNA (control region) and microsatellites of Iberian

and central European subspecies [33]. Song discrimination

between different subspecies is also slight [34], but the bill size

differences between E. s. intermedia and schoeniclus are correlated

with diet suggesting local adaptation [22]. Furthermore, there

seems to be no interbreeding between thick-billed and thin-billed

subspecies in contact zones [31]. Therefore, this species seems to

be at an early stage of speciation, with populations/subspecies still

retaining ancient polymorphisms, but showing significant genetic,

morphological and behavioural divergence. Bill and body size are

especially interesting, as these traits are likely to influence song

characteristics involved in mate choice [35] (Gordinho et al. in

prep), potentially acting as magic traits of (ecological) speciation

[3]. It is particularly interesting to study organisms at this stage of

evolution, when the actual ecological and genetic mechanisms of

speciation can be witnessed.

In this study, we evaluated the morphometric divergence among

west European populations including two resident southern

subspecies from the Iberian Peninsula, witherbyi and lusitanica, as

well as migratory and resident populations of schoeniclus. Our

purpose was to determine the extent of local adaptation,

evaluating the effects of migratory behaviour and diet/feeding

technique, and to describe for the first time the morphometrics of

lusitanica. In particular, we tested the expectations that migratory

birds should have longer and more pointed wings, shorter tails and

lower body mass than residents [36,37]. In addition, we evaluated

to which extent lusitanica differed from witherbyi and schoeniclus in

terms of bill size and shape. As a southern resident subspecies,

lusitanica is expected to feed on insects lying inside reed stems

during winter (Neto et al. in prep), thus being close to witherbyi in

foraging-related traits, even though recent authors include it in the

small-billed group [20]. Morphological characters such as the ones

analysed here are generally highly heritable [38,39], and given

that the genetic divergence is very small [33], the morphological

differences among populations are likely to be meaningful

(adaptive), especially if the predictions are confirmed, showing

that the individuals ‘‘fit’’ their environments. It is especially useful

to study local adaptation in the west European populations of

Reed Bunting because schoeniclus includes both resident and

migratory populations, and Iberia is inhabited by two resident

populations/subspecies that differ markedly in size and bill

characters thereby allowing to separate the effects of migration

and foraging. With its intermediate characteristics, lusitanica is of

considerable interest because it allows us to evaluate the level of

reproductive isolation between the two bill-size groups.

Materials and Methods

Fieldwork
Biometric data of Reed Buntings were obtained from several

populations (Figure S1): (1) the resident lusitanica was measured at

Salreu marshlands, Portugal, from 2008 to 2011 (n = 201); (2) the

resident witherbyi, measured at several sites in Spain from 2002 to

2012 (n = 76); (3) wintering schoeniclus measured at Salreu

marshlands from 2008 to 2011 (n = 94); (4) the resident schoeniclus

from the United Kingdom, sampled in the Liverpool and Oxford

regions in autumn 2011 (n = 47); and (5) Scandinavian migrants

(schoeniclus) sampled at lake Krankesjön, Skåne, Sweden, just prior

to autumn migration in 2011 (n = 22). The two subspecies that

occur in Salreu were distinguished on the basis of date and

plumage traits, with lusitanica being obviously darker in the head,

upper parts and flanks, and having also darker and more intensely-

coloured wing coverts than the wintering schoeniclus (Figure 1, see

also [20,26]). Judging from the many local and foreign retraps, the

experience gathered during the last few years allowed us to classify

each bird to subspecies with 100% certainty, although there are no

quantitative data on plumage traits. Spanish birds of the

subspecies witherbyi were distinguished from the wintering shoeniclus

on the basis of date, plumage and genetics [30].

Birds were captured with mist-nets, marked with a metal ring

issued by the ringing centre of the country where ringing took

place, and the age and sex were determined using published

criteria [40,41]. The wing (maximum chord) and tail lengths were

measured with a ruler to the nearest 0.5 mm, tarsus and bill (to

skull) lengths, bill depth and bill width (at the nostrils) were

measured with callipers to the nearest 0.1 mm, weight was

measured either with a Pesola spring balance or a digital balance

to the nearest 0.1 g and the subcutaneous fat reserves were

recorded following Kaiser [42]. In addition, the length of each

primary was measured as described by Jenni & Winkler [43] in

birds with fresh feathers in autumn and winter. The sample size for

each individual measurement is variable, as it was not possible to

measure all traits in all birds.

The Portuguese (lusitanica and wintering schoeniclus) and Swedish

Reed Buntings were measured by JMN, whereas Spanish birds

were measured by JMN, MM, JSM, EJB and others, and the birds

from the U.K. were measured by PF and RC. Differences in

measuring technique between the ringers (especially wing and bill

lengths, which are more difficult to measure) could potentially be a

Phenotypic Divergence in Reed Buntings
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problem for population comparisons because they will result in

significant differences given enough sample size. However, JMN

and PF have been ringing together for many years and their

measurements were calibrated and are comparable (the same was

done at a later stage between JMN, MM and JSM). In addition,

although preliminary analysis showed that many statistical

comparisons between schoeniclus wintering in Portugal (measured

by JMN) and in Spain (by several Spanish ringers) are significant

(despite these birds probably having the same origin and

biometrics), the actual differences in the means are very small

relative to the differences that we found among the populations/

subspecies. For instance, the difference in wing length (when

controlling for age and sex) between Portuguese and Spanish

schoeniclus was only 1.37 mm (F[1;744] = 29.8; P,0.001), whereas

the difference in tail length was 0.84 mm (F[1;737] = 2.76;

P = 0.097), tarsus 0.36 mm (F[1;741] = 20.0; P,0.001) and bill

depth 0.18 mm (F[1;683] = 34.1; P,0.001; see also Gosler et al.

[44] for a general inter-observer comparisons of measurements of

the same individual birds). Hence, the phenotypic divergence

found between populations (see Table 1) is real and not caused by

inter-observer differences. Furthermore, analyses restricted to

birds measured by JMN produced qualitatively similar results

(although the UK population was not included), and so we provide

the results obtained from the full dataset.

Geometric Morphometrics of the Bill
A photograph of the bill in profile was taken from 208

individuals of all populations/subspecies, and subjected to

geometric morphometric analysis, a powerful method with few a

priori assumptions to explicitly define shape [45–48]. This method

has recently been applied to a growing number of animal groups,

including in a few bird studies that compare bill shapes [49–51].

Prior to analysis, photographs were edited in Adobe Photoshop

CS4 (for details see Protocol S1), and then all geometric

morphometric analyses were conducted in software of the tps

series [52]. A tps file was built from images using tpsUtil [53,54]

and used in tpsDig [55], where seven landmarks and eight semi-

landmarks were digitized following Foster et al. [49]. The semi-

landmarks were placed by reference to a standardized grid

superimposed onto each image (cf. Figure S2 and Protocol S2).

Files containing links (between landmarks) and sliders (for each

semi-landmark) were built in tpsUtil and an image list was

obtained. Using the tpsSmall software [56], we confirmed that

shape variation between the specimens was sufficiently small and

therefore the distribution of points in the shape space can be

represented satisfactorily by their distribution in the tangent space.

We then applied a Generalized orthogonal least-squares Procrus-

tes Analysis (GPA) [57,58] using tpsRelw [59], in order to

standardize the size and to translate and rotate the configurations

Figure 1. Examples depicting plumage and bill shape differences among Reed Bunting subspecies. a) first-year females E. s. schoeniclus
(left) and E. s. lusitanica (right); b) first-year male E. s. schoeniclus; c) first-year male E. s. lusitanica and d) first-year male E. s. witherbyi, captured at
Salreu, Estarreja, Portugal, except the latter, which was captured at Lagunas de Villafranca, Toledo, Spain. All pictures were taken by JMN.
doi:10.1371/journal.pone.0063248.g001

Phenotypic Divergence in Reed Buntings

PLOS ONE | www.plosone.org 3 May 2013 | Volume 8 | Issue 5 | e63248



of landmark coordinates, therefore obtaining a consensus config-

uration. We computed partial and relative warps and extracted

relative warp scores with a a= 0, using the tpsRelw software [59].

tpsRelw output files were saved in NTS format, converted to csv

using tpsUtil, and merged with the image list in Microsoft Excel.

Because of logistical constraints that prevented inclusion of a

Table 1. Unstardardized parameters and t-tests of the General Linear Models evaluating the effects of age, sex and subspecies/
population on the various biometrics.

Age Sex Population

Wing 21.45460.211*** 25.65260.210*** (lus) 21.54560.370***

(sch) 3.54360.377***

(UK) 2.35160.436***

Tail 20.89860.252** 23.61960.251*** (lus) 23.86160.464***

(sch) 20.52460.471ns

(UK) 22.08760.534***

Tarsus 0.01760.093ns 20.65060.091*** (lus) 20.95960.153***

(sch) 20.60360.157**

(UK) 0.24260.186ns

Bill length 20.00960.054ns 20.39060.053*** (lus) 0.51160.089***

(sch) 0.27860.091**

(UK) 20.27560.117**

Bill depth 20.05260.027# 20.25460.027*** (lus) 20.91160.045***

(sch) 21.09460.047***

(UK) 21.41160.055***

Bill width 20.03960.040ns 20.13560.039*** (lus) 21.30560.066***

(sch) 21.31460.068***

(UK) 21.72860.086***

Bill shape index 20.02760.014# 0.03560.014* (lus) 0.43760.023***

(sch) 0.47960.023***

(UK) 0.53060.030***

Body mass 20.15560.128ns 22.23860.127*** (lus) 21.91760.232***

(sch) 20.62560.239**

(UK) 0.05660.276ns

Tail/Wing 20.00460.003ns 0.01560.003*** (lus) 20.03360.005***

(sch) 20.04560.005***

(UK) 20.05160.006***

PC1WING 0.20560.179ns 0.28260.180ns (lus) 21.70760.416**

(sch) 22.12660.396***

(UK) 21.37960.394***

PC2WING 0.59860.176*** 0.46660.176** (lus) 21.04960.408**

(sch) 20.11760.38ns

(UK) 0.25960.386ns

PCBILL 0.00860.057ns 20.46960.056*** (lus) 21.93660.093***

(sch) 22.20760.095***

(UK) 23.04760.132***

PCSIZE 0.29360.067*** 21.39460.067*** (lus) 21.06160.124**

(sch) 0.05860.126ns

(UK) 20.05860.151ns

RW1 20.00460.005ns 20.02660.005*** (lus) 20.11260.013***

(sch) 20.15160.013***

(UK) 20.16360.014***

# – P = 0.059; *** – P,0.001; ** – P,0.01; * – P,0.05; ns – non-significant.
Fat and muscle scores were included as covariates in the model analysing body mass. The parameters represent the difference relative to adults, males and E. s.
witherbyi. Models with significant interactions are presented in the main text.
doi:10.1371/journal.pone.0063248.t001
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standardized scale in each image, allometry was evaluated by

reference to a Principal Component based on univariate

measurements [49] (see below).

Statistical Analysis
As the variables were approximately normally distributed and

there were no obvious deviations from model assumptions judging

from the variance comparisons, covariance structure and residuals,

General Linear Models (GLM) were used to determine and

evaluate the effects of age, sex and population/subspecies on each

trait. Two-way interactions were also tested and kept in the final

model if significant. The basic biometrics (wing, P8, tail, tarsus, bill

length, bill depth and bill width) were included in stepwise

(forward) discriminant analyses (using default parameters, i.e., a

variable was entered in the model if it improved significantly the

significance of Wald’s test, having an F .3.84, and dropped if F

,2.71) in order to determine to which extent birds of different

subspecies and populations were correctly classified and by which

variables.

The size of the feeding apparatus (bill length, depth and width)

was reduced to one variable using principal component analysis

(PCBIlL, Table S1), which represents overall bill size and explains

60.1% of the variance. A bill shape index was calculated by

dividing bill length by bill depth. Tail to wing ratio was also

calculated for each bird by dividing these variables. The primary

lengths were first corrected for body size isometrically following

Lleonart et al. [60] and using a standard wing length of 78 mm.

Subsequently, adjusted primary lengths were reduced to two

variables (representing wing shape) using principal component

analysis (PC1WING and PC2WING), which explained 46.6% and

21.0% of the variance, respectively (Table S2). PC1WING

represents (the inverse of) wing convexity, as it is strongly

correlated with the length of the inner primaries, but not with

the outer primaries (Table S2); whereas PC2WING reflects wing

pointedness because it is strongly correlated with the longest

primaries (Table S2, see also [8,29]). Overall body size, estimated

as the first principal component of an analysis including wing, tail,

tarsus and bill lengths (PCSIZE, 51.7% of variance explained,

Table S3), was included as a covariate in some analyses in order to

control for allometric differences. Whenever one of the four

variables contributing to PCSIZE was the dependent variable in the

statistical model, body mass (and fat score) were used as covariates

to control for allometry. Statistical analyses were undertaken in

SPSS 20.0 [61], and results are presented as mean 6 SE (n).

Ethical Treatment of Animals
The capture and ringing of birds was conducted under the

licenses required by the corresponding national authorities,

following standard protocols and releasing the birds unharmed

on site. Permits were given by the following institutions: Daimiel

National Park, Marjal Pego-Oliva Natural Park, S’Albufera de

Mallorca Natural Park, Conselleria de Medi Ambient, Aigua,

Urbanisme i Habitatge, Generalitat Valenciana (440066);

Consejerı́a de Medio Ambiente y Desarrollo Rural de Castilla

La Mancha; Direcció General de Medi Natural, Educació

Ambiental i Canvi Climàtic, Conselleria d’Agricultura, Medi

Ambient i Territori, Govern de les Illes Balears (13123/2012);

Consejerı́a de Medio Ambiente de la Junta de Andalucı́a (6305);

Ringmärkningscentralen, Naturhistoriska Riskmuseet; CEMPA,

Instituto de Conservação da Natureza e Florestas (99/2011,

112/2012); British Trust for Ornithology (RC = 5435, AF5394).

Results

General Morphological Differences
Swedish birds were statistically indistinguishable in all traits

(GLM, all P.0.1) to the schoeniclus wintering at Salreu, Portugal,

which, according to ringing controls, originate from northern

France, Sweden, Germany, Poland and Czech Republic (Neto

et al., in preparation). Therefore, these two populations were

lumped in all subsequent analyses. Otherwise, biometrics differed

markedly among the studied populations/subspecies (Tables 1,

Table S4). Age significantly influenced the length of feathers (wing

and tail) and consequently body size (PCSIZE), with adults being

larger than first-year birds. Also, with the exception of wing shape

(PCWING), all measurements differed between the sexes, with

females being significantly smaller than males, but having higher

values of bill shape index (bill length/bill depth) and tail/wing

ratio. Hence, these factors had to be taken into account for

population comparisons.

Stepwise discriminant analysis indicated that 100% of male

(Wilk’s lambda = 0. 142, x2 [4] = 161.83, P,0.001) and 97.9% of

female (Wilk’s lambda = 0.192, x2 [4] = 108.89, P,0.001) witherbyi

can be correctly distinguished from lusitanica (and from the other

populations studied here) on the basis of bill depth, bill width, bill

length and tarsus length (but note that bill depth alone was enough

to correctly classify 100% of male and 98% of female witherbyi from

lusitanica; see also [30]). Wing length, bill depth and bill width

allowed the correct classification of 94.8% of male (Wilk’s

lambda = 0.328, x2 [3] = 109.70, P,0.001) and bill and wing

lengths 92.6% of female (Wilk’s lambda = 0.321, x2 [2] = 142.09,

P,0.001) lusitanica and schoeniclus (see Figure 2). On the other

hand, discriminant functions of the two populations of schoeniclus

(migratory and UK residents) were able to correctly classify 88.3%

of male (Wilk’s lambda = 0.542, x2 [3] = 30.91, P,0.001) and

71.4% of female (Wilk’s lambda = 0.943, x2 [1] = 4.043, P = 0.044)

on the basis of bill width (both sexes), bill depth and tarsus length

(the latter two for males only).

Adaptations to Migration
Body mass (with fat and muscle scores as covariates) was similar

between witherbyi and schoeniclus resident in the UK, but was

slightly, but significantly, smaller in migrant schoeniclus and even

smaller in lusitanica. Body size (PCSIZE), however, was similar

across populations except for lusitanica, which was significantly

smaller than the other subspecies (Table 1). The discrepancy in the

comparisons of body mass and body size across populations can be

explained by migrant schoeniclus having the longest wings (Table 1,

Table S4), which was the most important factor loading for

PCSIZE (Table S3). Although lusitanica appeared equally small in

mass and size (PCSIZE) relative to the other subspecies, it actually

had the longest bill, but was smaller in all other body

measurements (wing, tail, tarsus; Table 1).

As predicted by theory, migratory populations of schoeniclus had

the longest wings, followed by resident schoeniclus from the UK,

witherbyi and lusitanica, which had almost no overlap in wing length

with the other populations (Table 1, Figure 2, Table S4). Wing

convexity (PC1WING) also varied significantly across populations,

with migratory schoeniclus having the most negative values (i.e.

more convex wings), followed by lusitanica, resident schoeniclus from

the UK and witherbyi (Table 1; see also [29]). On the other hand,

lusitanica had significantly less pointed (PC2WING) wings than the

remaining populations, which were otherwise similar (Table 1).

Differences in wing shape are better illustrated between lusitanica

and the migratory schoeniclus, as both have a large sample size and

were measured by the same person (JMN), allowing for detailed

Phenotypic Divergence in Reed Buntings
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comparisons between the primaries (Figure 3). As predicted by

theory, migratory birds had significantly longer outer primaries

and shorter inner primaries, and a tendency to have P6 longer

than P5, whereas in lusitanica P5 seems slightly longer on average

than P6 (Figure 3). The inclusion of body size (PCSIZE) as a

covariate in the statistical model does not affect the comparison of

wing shape (PC1WING and PC2WING) between populations (GLM:

PC1WING: PCSIZE: F[1;96] = 0.49, P = 0.486; Age: F[1;96] = 0.91,

P = 0.342; Sex: F[1;96] = 1.56, P = 0.215; Population: F[3;96] = 9.92,

P,0.001; PC2WING: PCSIZE: F[1;96] = 0.49, P = 0.486; Age:

F[1;96] = 9.77, P = 0.002; Sex: F[1;96] = 0.01, P = 0.919; Population:

F[3;96] = 6.38, P = 0.001), and so the difference is not caused by

allometry.

Although the tail of the migratory populations of schoeniclus was

significantly longer than that of the resident schoeniclus from the

UK and of lusitanica (but not significantly different from witherbyi),

the tail/wing ratio was significantly smaller in migratory schoeniclus

than that of other subspecies except the resident UK population

(GLM with schoeniclus and males as reference and B representing

the unstandardized coefficients/parameters of the fitted model:

Sex: B = 0.01460.03, P,0.001; Population: (lus)

B = 0.01060.003, P = 0.001, (UK) B =20.00860.004,

P = 0.066, (wit) B = 0.04160.005 P,0.001). However, if body

mass (rather than PCSIZE, which depends on tail length) is used as

a covariate to adjust for differences in body size, the tail length of

migratory schoeniclus and witherbyi are not significantly different

(B = 0.25560.494 mm, P = 0.605), whereas the tail of schoeniclus

from the UK are significantly shorter (B =21.96660.443 mm,

P,0.001) and even shorter in lusitanica (B =22.70560.317 mm,

P,0.001).

Adaptations to Foraging
Although there is a large overlap in measurements, all bill traits

differed significantly between lusitanica and schoeniclus, particularly

bill depth and width, the former being 2.6–3.9% (females–males)

larger in lusitanica (Table 1, Figure 2). This is particularly

remarkable given that schoeniclus is 7.4–8.3% heavier and have

6.1–4.9% longer wings than lusitanica (Table S4). As described

above, there was virtually no overlap in bill depth between the

thick-billed witherbyi and the remaining subspecies, with witherbyi

having a bill 14.3–17.3% deeper than lusitanica, but being only

8.0–7.8% heavier (Figure 2, see also [30]). On the other hand,

resident schoeniclus from the UK had significantly shorter (3.2–

5.3%) and less deep (7.3–8.6%) bills than the migratory schoeniclus

(Table 1, Figure 2). In contrast to the measurements of the flight

apparatus, there were significant interactions (not shown in

Table 1) between population and sex in bill length

Figure 2. Scatterplot of bill depth and wing length for each age, sex and subspecies/population. E. s. schoeniclus includes birds trapped
in Portugal during winter as well as those measured in Sweden.
doi:10.1371/journal.pone.0063248.g002
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(F[3;317] = 2.97, P = 0.032) and bill depth (F[3;323] = 3.98,

P = 0.008), which result from the fact that males differ more

between populations than females in these traits (see Figure 2 and

above). The inclusion of PCSIZE as a covariate in the model

comparing bill depth between populations still resulted in highly

significant differences (GLM: PCSIZE: F[1;281] = 23.2, P,0.001;

Sex: F[1;281] = 2.3, P = 0.130; Population: F[3;281] = 190.2,

P,0.001; Sex vs. Population: F[3;281] = 3.9, P = 0.009). Hence,

allometry does not explain the patterns found, particularly

between witherbyi and lusitanica, which vary in size and bill depth

in the same direction. Bill width largely follows the variation

described for bill depth, as does the overall bill size (PCBILL),

whereas the bill shape index varied in the opposite direction with

witherbyi having the deepest bill in relation to its length, followed by

lusitanica, migratory schoeniclus and the resident schoeniclus from the

UK (Table 1).

Geometric morphometrics of the bill in profile revealed

significant differences for the first nine axis (RW1-9) of variation

between the populations/subspecies (for RW1 see Table 1). The

first axis (RW1), which is the most important for population

discrimination, represents variation in the curvature of the culmen,

with witherbyi having the highest values, followed by lusitanica,

migratory schoeniclus and then by resident schoeniclus from the UK

(Table 1, Figure 4). As with the linear measurements, the

interaction between sex and population is highly significant

(F[3;190] = 5.78, P = 0.001) because females do not differ as much

between populations as males (see Figure 4). When body size (and

birds of unknown age, since age is not significant, see Table 1) is

included in the statistical model, the comparisons among

populations and the interaction with sex, remain highly significant

(GLM: PCSIZE: F[1;174] = 0.33, P = 0.569; Sex: F[1;174] = 1.86,

P = 0.174; Population: F[3;174] = 32.11, P,0.001; Sex vs. Popula-

tion: F[3;174] = 4.754, P = 0.003), and so differences in bill shape

cannot be explained by allometry. RW3, the second most

important bill shape variable to discriminate the populations

(representing variation from short, stubby to long, shallow bills, see

Figure 4), produces similar results to RW1 (GLM: PCSIZE:

F[1;174] = 0.23, P = 0.629; Sex: F[1;174] = 1.82, P = 0.179; Popula-

tion: F[3;174] = 5.93, P = 0.001; Sex vs. Population: F[3;174] = 3.03,

P = 0.031). The difference in RW1 between lusitanica and

migratory schoeniclus is greater than for any linear measurement

of the bill, especially in males (Figure 4). Indeed, discriminant

analyses (using RW1-5) between these two populations resulted in

95.1% of the males and 75.5% of females being correctly classified

to their original population; whereas linear measurements of the

bill (length, depth, width and bill shape index) resulted in 80.2% of

the males and 74.7% of the females being correctly classified.

Discussion

In this study, we described the phenotypic divergence amongst

Reed Bunting populations likely to be relevant for the seemingly

on-going speciation process in this species. We chose to analyse

traits for which clear predictions of the direction of evolution could

be made relative to two selection pressures that are known to

influence speciation in birds: migration and diet. In particular, we

showed that, according to predictions, migratory schoeniclus had

longer and more convex wings than the resident Iberian subspecies

(see also [29]), and similar patterns have been found in other bird

species [37,39,62,63]. The migratory schoeniclus also had slightly

Figure 3. Isometrically-adjusted primary lengths of the resident E. s. lusitanica and the migratory E. s. schoeniclus wintering in
Portugal and from Sweden. Sample size is indicated between parentheses. T-tests indicate that primaries 9, 5, 4, 3, and 2 are significantly different
between the subspecies (ns – non-significant; * – P,0.05; ** – P,0.01; *** – P,0.001).
doi:10.1371/journal.pone.0063248.g003
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smaller body mass than the other populations, as predicted by

theory, except for lusitanica, which is much smaller than the other

subspecies. These variations/adaptations seemed to have occurred

despite northern Reed Buntings being short to medium distance

migrants, rather than long-distance migrants [21], and so the

selection pressure for high aspect-ratio wings might not be as high

as in other species that have been studied (e.g. [37]). Comparisons

of migratory and resident populations of the nominate subspecies

reveal slight differences in wing shape, which is rounder (less

convex) in the resident population (UK) than in migratory

schoeniclus. Also, birds from the UK were heavier than the

migrants, but in contrast to expectations had relatively short tails.

A recent common ancestry, large gene flow and the occurrence of

short-distance seasonal movements in UK birds (particularly in

some years when snow cover might prevent them to have access to

seeds; [21,64]) might explain the small differences found. Tail

length, however, did not vary according to the expectation of

shorter tail in migratory birds, and tail/wing ratio seemed to

reflect mostly the longer wings of migrants (see also [37]). This

may be a consequence of tail and wing lengths being strongly

correlated both phenotypically and genetically in birds, and for

this reason it is possible that tail length takes longer to evolve and

may even act as a morphological constrain to adaptation in wing

lengths [65].

We also show that the southern subspecies, which have been

observed feeding on dormant insects lying inside reed stems during

winter, have thicker bills (which they use to open the reed stems;

pers. observations, [21]). In contrast, northern populations, which

switch their diets to seeds during the winter [23] (although they

can also feed on insects opportunistically by gleaning [24]; pers.

observations), have much shorter and especially thinner bills (see

also [30]). Particularly interesting is the small, resident, Iberian

subspecies lusitanica, for which we present for the first time

statistical comparisons with other populations. This subspecies has

a disproportionally long and thick bill for its small body size,

having a significantly larger bill than the large-bodied nominate

subspecies, but smaller/thinner than all witherbyi. In contrast, birds

from the UK have smaller and thinner bills than those of

migratory schoeniclus, which could be associated with a diet

composed of smaller seeds (although this has so far not been

studied in any detail).

In addition to the linear measurements, our geometric

morphometric analyses revealed important differences in bill

shape, particularly in culmen curvature. The resident witherbyi

remains especially distinct regarding bill shape from the remaining

Figure 4. Bill shape in relation to population and sex, as measured by the two most important axis of variation for population
discrimination (RW1 and RW3) derived from geometric morphometric analysis.
doi:10.1371/journal.pone.0063248.g004
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populations; but in contrast to the linear measurements, there is

some overlap in culmen curvature (RW1) between lusitanica and

witherbyi males (Figure 4). On the other hand, lusitanica differs from

the nominate subspecies in bill shape to a greater extent than when

only the linear bill measurements are used, especially in males,

although there is still overlap between these subspecies (Figure 4).

This is most likely associated with differences in diet (Neto et al., in

prep.) because birds with a more convex culmen are able to exert a

greater strength at the bill tip, which is probably very useful to

open the reed stems, whereas seed-eating birds tend to crack the

seeds at the base of the bill [49]. Given these results, and despite

the overlap in bill traits with schoeniclus (especially in females),

lusitanica appears to share morphological traits with the thick-billed

subspecies (as expected by their ecology and distribution), but it is

still quite distinctive from both groups due to its much smaller size

and dark plumage (in addition to the feeding apparatus).

One interesting morphological difference clearly shown by our

analyses is the sexual dimorphism in bill size and shape, which is

consistent across subspecies. Sexual differences in bill size and

shape do not result from the overall small body size of females, as

sex remains significant when body size is taken into account in the

statistical models. Females have shorter, thinner bills and a less

convex culmen than males and, independently of its origin (sexual

selection or intra-specific competition), these differences are

probably associated with ecological differences that have hitherto

not been studied. It is possible that females prefer smaller seeds in

northern populations or search for insects in thinner reeds in

southern populations, but more radical foraging niche differences

may occur between the sexes. Interestingly, bill size and shape

diverged more between populations in males than in females,

which could suggest that in addition to ecology, sexual selection

could have also played a role in population divergence. Our results

are comparable to those described for tidal-marsh (North

American) sparrows, for which intraspecific competition for food

(and/or possibly male-male competition for territories/females)

was considered the most likely cause for the greater increase in

male than female bill size associated with the colonization of

marshes by a variety of emberizid species [66]. As shown

theoretically and empirically (in threespine stickebacks), both

sexual dimorphism and speciation can co-occur as long as the

effects of loci underlying sexually dimorphic traits are orthogonal

to those underlying sexually selected traits [67]. The role of sexual

selection and competition in producing the sexual differences

found in Reed Buntings deserve further research.

Another interesting morphological difference that we described

is the much smaller size of lusitanica relative to the remaining

subspecies, for which we have no obvious adaptive explanation.

This subspecies lives in close proximity to the large and thick-billed

witherbyi, but uses mostly coastal reedbeds located in the Atlantic

influenced (wet, mild) geographical region, whereas the latter

occurs mostly in inland (occasionally coastal) reedbeds in the

Mediterranean influenced (dry, hot or continental) region. Both

the small size and dark plumage of lusitanica could perhaps be

explained by adaptations to the mild, wet climate where they

occur (following Gloger’s rule); whereas its thinner bill (in

comparison with witherbyi) could be related to their occurrence in

brackish sites, where the reeds tend to be shorter and thinner,

although this is not sufficiently studied. As witherbyi have a thicker

bill than lusitanica, even when controlling for body size, and the

foraging ecology seems to be similar (Neto et al. in preparation), it

is possible that bill size between these subspecies has evolved to

dissipate heat in the warmer eastern Iberian sites. In fact, summer

temperatures might be responsible for the clinal variation of

increasing bill size towards the east among thick-billed subspecies

of Reed Buntings. This has recently been shown to occur in several

North American emberizids [68–70]. The relative roles of diet and

temperature on the evolution of bill size should be further studied

in Reed Buntings, especially among subspecies with similar diets.

In previous studies, we have shown that the genetic divergence

among the Reed Bunting subspecies is very small, but significant,

with GST (microsatellites) ranging from 0.03 to 0.04 and WST

(mtDNA) from 0.04–0.05 between schoeniclus and each Iberian

subspecies; and 0.04 (microsatellites) and 0.14 (mtDNA) between

the two Iberian subspecies [33]. In addition, the shallow mtDNA

phylogeny indicates that these subspecies diverged very recently,

after the last glacial maxima [33]. Therefore, and given that the

morphological traits studied here generally have high heritabilities

[38,39] and showed limited plasticity in a common garden

experiment with a North American emberizid [71], differences

among populations found in this study probably evolved very

rapidly through natural selection. However, genetic drift, espe-

cially in the threatened Iberian subspecies, cannot be excluded as a

potential explanation for some of the morphological differences

that were found, nor does (adaptive) plasticity. Detailed compar-

isons between genetic and phenotypic divergence are clearly

needed (for which additional genetic markers need to be used

relative to those already available for this system [33]), as well as

common garden experiments, in order to confirm whether these

traits are indeed under selection or locally adapted [71,72].

In conclusion, our morphometric analyses clearly show that the

three subspecies of Reed Buntings occurring in Western Europe

differ in a variety of traits in the direction predicted by their

migratory and foraging behaviours, strongly suggesting that these

birds became locally adapted through natural selection. Whether

these traits contribute to reproductive isolation is currently being

investigated in this interesting study system (Gordinho et al, in

preparation). This study contributes to improve upon the limited

knowledge on speciation phenotypes that is available for a variety

of organisms [5].
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39. Tarka M, Åkesson M, Beraldi D, Hernández-Sánchez J, Hasselquist D, et al.

(2010) A strong quantitative trait locus for wing length on chromosome 2 in a
wild population of great reed warblers. Proc R Soc B 277: 2361–2369.

40. Svensson L (1992) Identification guide to European passerines, 4th edition. Lars

Svensson, Stockholm.

41. de la Puente J, Seoane J (2001) The use of primary abrasion for ageing Reed
Buntings Emberiza schoeniclus. Ring & Migrat 20: 221–223.

42. Kaiser A (1993) A new multi-category classification of subcutaneous fat deposits

in songbirds. J. Field Ornithol. 64: 246–255.

43. Jenni L, Winkler R (1989) The feather length of small passerines: a measurement

of wing-length in live birds and museum skins. Bird Study 36: 1–15.

44. Gosler AG, Greenwood JJD, Baker JK, Davidson NC (1998) The field
determination of body size and condition in passerines: a report to the British

Ringing Committee. Bird Study 45: 92–103.

45. Rohlf FJ, Marcus LF (1993) A revolution in morphometrics. Trends Ecol Evol 8:
129–132.

46. Marcus LF, Corti M, Loy A, Naylor GJP, Slice DE (eds) (1996) Advances in

Morphometrics. NATO ASI Series A: Life Sciences. Plenum Press, New York.

47. Klingenberg CP (1996) Multivariate allometry. In: Marcus LF, Corti M, Loy A,
Naylor G, Slice DE, editors. Advances in Morphometrics, Plenum Press, New

York. 23–49.

48. Zelditch M, Swiderski D, Sheets H, Fink W (2004) Geometric Morphometrics
for Biologists: A Primer. Elsevier Academic Press, London.

49. Foster D, Podos J, Hendry A (2007) A geometric morphometric appraisal of

beak shape in Darwin’s finches. J Evol Biol 21: 263–275.
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