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Abstract: This study reports the isolation of three new C20 diterpenoid alkaloids, Chitralinine A–C
(1–3) from the aerial parts of Delphinium chitralense. Their structures were established on the basis of
latest spectral techniques and single crystal X-rays crystallographic studies of chitralinine A described
basic skeleton of these compounds. All the isolated Compounds (1–3) showed strong, competitive
type inhibition against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in comparison
to standard allanzanthane and galanthamine however, chitralinine-C remained the most potent
with IC50 value of 11.64 ± 0.08 µM against AChE, and 24.31 ± 0.33 µM against BChE, respectively.
The molecular docking reflected a binding free energy of −16.400 K Cal-mol−1 for chitralinine-C,
having strong interactions with active site residues, TYR334, ASP72, SER122, and SER200. The
overall findings suggest that these new diterpenoid alkaloids could serve as lead drugs against
dementia-related diseases including Alzheimer’s disease.

Keywords: diterpenoids; X-ray structure; acetylcholinesterase (AChE); butyrylcholinesterase (BChE)
inhibition; Delphinium chitralense

1. Introduction

Delphinium chitralense is a high altitude (1520 to 1830 m) annual herb, belonging to
the family Ranunculaceae. The roots of D. denudatum have been found to possess anticon-
vulsant properties are commonly utilized in Pakistan in the Unani system of medicine [1].
Phytochemically, the genus Delphinium is reported to be a rich source of pharmacologically
active diterpenoid alkaloids that pronounce potent antipyretic and analgesic activities.
The nor-diterpenoid alkaloids have been found to show ten times more toxic effects as
compared to any of the tested alkaloids [2]. A large number of natural products acting
as cholinesterase inhibitors, especially diterpenoids and norditerpenoids alkaloids, have
been investigated and isolated from different plant species as described extensively in
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recent studies [3–6]. In the past decade, a large number of alkaloids possessing C20 and C19
diterpenoid skeletons (Figure 1) have been isolated from different species of Delphinium [7].
Some of delphinium alkaloids are strong inhibitors of cell death, caused by oxidative stress
in H9C2 cells [8]. A C-20 diterpenoid alkaloid, deoxylappaconitine, showed very strong
analgesic activities, higher than the standard drug, lappaconitine [9]. Moreover, these
alkaloids have been under investigation for their cardiac, relaxant, and anti-inflammatory
properties, as well as antiproliferative activities against numerous cancer cell lines [7]. Some
of the effects have been well documented using the structural activity relationship as it
has been observed that the OH groups at positions 1, 8, and 14, as well as N-CH3 or N-H
are necessary for their various therapeutic cardiac effects [10]. In the early 1990s, methyl-
lyconitine, a major constituent, was found to be an effective ligand for neuronal nicotinic
acetylcholine receptor which prompted the scientists to find suitable natural cholinesterase
inhibiters to treat cerebral dementia as well as Alzheimer’s diseases (AD) [7].
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Alzheimer’s disease (AD) is considered to be one of the most closely related forms
of dementia to neurodegeneration disorders. The main cause of AD is the presence of
the AChE enzyme which hydrolyzes acetylcholine and is present in at the neuromuscular
junction of brain synapses [11]. The abnormal decrease in brain activity with regards to
cholinergic function can cause memory defacement in senile dementia disease [12]. In
AD, the decline of cognition is connected to the immediate loss of cholinergic neurons
and shortage of ACh, which is enhanced by the neuronal ACh. The AChE generally
regulates the quantity of ACh in the brain. Consequently, the deficiency of ACh in cells
is redressed by the inhibition of the AChE enzyme to improve cognitive abilities. In se-
vere cases of AD, the AChE level is decreased by up to 90% in comparison to a normal
healthy brain [12], leading to uncontrollable alterations in the last stages of AD. Most
of the literature reports show that a sufficient quantity of BChE is stored in Alzheimer’s
plaques in comparison to the quantity of plaques present in normal healthy brains. A
number of synthetic compounds such as donepezil, tacrine, and rivastigmine have been
applied for the treatment of memory impairment and cognitive dysfunction [13], but these
compounds were found to have antagonistic effects, including gastrointestinal compli-
cations and problems related to bioavailability [14]. Cholinesterase inhibitors obtained
from plants such as jadwarine-A, jadwarine-B, 1β-hydroxy,14β-acetyl condelphine [15],
swatinine-C, hohenackerine, aconorine, and lappaconitine [16] are found to be potent and
demonstrate competitive and non-competitive enzyme inhibition. The investigation of
natural cholinesterase inhibitors is a big task in the area of drug development, particularly
for the treatment of Alzheimer’s and other related diseases [17,18].

In the current work, we describe the isolation, structure elucidation, and in vitro and
in silico anticholinesterase inhibitory potential of three new C20 diterpenoids alkaloids
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isolated for the first time from D. chitralense. The crystal structure determination and DFT
calculations of Compound 1 have also been discussed.

2. Results and Discussion
2.1. Structure Elucidation and Identification

Three new Compounds (1–3) were isolated by the procedures (see material and meth-
ods section) from the aerial parts of D. chitralense (Figure 2).
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Figure 2. Structures of Compounds 1–3.

The molecular formula for Compound 1 (C21H27NO5) was established on the basis of
its molecular peak in HR-EIMS [M+] at m/z 373.4405 (calcd. 373.4417) and NMR spectral
data including single X-ray crystallography.

The NMR spectral data of Compound 1 displayed signals of N-methyl at δH 2.25 (3H,
s, CH3-N); δC 48; methyl group at δH 1.17 (3H, s, H-18); δC 27.3 (C18); a terminal methylene
proton at δH 5.07 (H-17a) and 4.80 (H-17b), δC 110.3 (C-17), two oxygenated methines at δH
4.22 (H-1); δC 78.4 (C-1), and δH 4.67 (H-2); δC 75.9 (C-2) along with additional signals of
five methylene, four methines, and seven quaternary carbons. These structural features
were suggestive of the structure of C20 diterpenoid alkaloid. Long-range 1H-13C correlation
of 1 (Figure 3) was obtained through the heteronuclear multiple bond correlations (HMBC)
experiment which suggested that H-15 (δH 2.59) signal interacted with C-9 (δC 78.6), C-10
(δC 39.7) and C-1 (δC 78.4), as well as signal of H-5 (δH 2.44) correlated to C-4 (δC 36.7)
and C-6 (δC 209.4) (Table 1). The chemical shifts of C-6 and C-13 suggested two ketonic
carbonyls in the molecules.
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Table 1. 13C NMR data of Compounds 1–3 in CDCl3.

Position Compound 1
(150 MHz)

Compound 2
(150 MHz)

Compound 3
(125 MHz)

1 78.4 75.4 75.7
2 75.9 73.3 73.3
3 40.7 34.0 34.0
4 36.7 32.5 32.6
5 59.9 49.7 48.9
6 209.4 209.4 209.6
7 49.7 44.0 44.2
8 44 36.7 36.7
9 78.6 78.3 83.8
10 39.7 43.6 44.0
11 32.3 80.7 80.7
12 53.4 89.3 78.3
13 209.4 209.5 34.8
14 57.9 48.7 40.7
15 34.9 30.8 26.9
16 142 141.9 142
17 110.3 110.4 110.4
18 27.3 29.4 29.7
19 63.1 94.2 94.2
20 70.3 70.1 70.1
21 48 38.7 38.7



Molecules 2022, 27, 4348 5 of 15

2.1.1. Crystal Structure Determination

Finally, the structure and relative stereochemistry of Compound 1 was established by
the study of X-ray diffraction technique (Figure 4).
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Figure 4. Structural representation of Compound 1, with 50% probability of thermal ellipsoids,
hydrogens were emitted for clarity.

Compound 1 was crystallized as monoclinic unit of crystal system with C2 space
group. The crystal determination and refinement data of isolated natural product (1) are
tabulated in Table 2 and Supplementary Materials.

Table 2. Crystal data and structure refinement of Compound 1.

Crystal Parameter Compound 1

Empirical formula C21H27NO5 Density (mg m−3) 1.153
Formula weight 373.43 (h, k, l) min (−31, −5, −15)
Temperature (K) 29.6 (h, k, l) max (31, 9, 15)
Wavelength (Å) 0.71073 Theta (max) 26.0
Crystal system Monoclinic R (reflection) 0.053(2408)

Space group C2 wR2 0.185

A 25.726 (5) Å

No of measured,
independent and

observed [I > 2σ(I)]
reflections

8474, 3521, 2408

B 7.5766 (12) Å Rint 0.053
C 12.654 (2) Å (sin θ/λ)max (Å−1) 0.617

Volume Å3 2150.4 (6) Å3 No. of reflections 3521
µ (mm−1) 0.08 No. of parameters 270

Z 4 No. of restraints 1

Crystal size (mm) 0.43 × 0.22 × 0.18 Absolute structure
parameter −0.7 (10)

Compound 1 contains six main cyclic rings (A–F) (Figure 5). The rings A–E are six-
membered rings whereas ring F is five-membered ring. Analyzing the basic/core skeleton,
the junction of ring A/E [C-5—C-10—C-20 = 113.4 (4)0 ] and B/C [C-8—C-9—C-11 =106.8
(4)0 ] are trans fused while rings A/B [C-5—C-10—C-1 =107.2 (4)0] and rings E/F [C-5—
C-10—C-9 = 110.6 (4)0] are cis-fused. The bond lengths and angles were in observed in
predicted ranges [19]. The two-hydroxyl group at C-2 and C-9 are β-oriented while the
other hydroxyl groups at C-1 was noticed to be α-oriented. In observing stereochemistry,
all the rings showed chair, boat, and half boat conformations. The absolute configuration of
Compound 1 cannot be constituted by Mo-Kα diffraction data, although it can be assumed
to be equivalent as reported for other isolated C20-diterpenoid alkaloids [19]. Keeping in



Molecules 2022, 27, 4348 6 of 15

view, the above mentioned spectral and crystal data, the structure of Compound 1 was
deduced as 9β-hydroxy hetidine (named Chitralinine-A).
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2.1.2. DFT Calculation of Compound 1

The DFT simulations are necessary to gain deeper insights into the molecular structure
and electronic properties as it was recently reported in many examples in the literature
that DFT simulations were used along with experimental study to obtain the electronic
properties which are harder to obtain through experimental analysis. Therefore, we per-
formed the DFT calculations and studied different properties for the studied compound
such as HOMO-LUMO analysis, reactivity, global hardness, and optimized structure etc.
DFT calculations were generally accomplished on a single unit cell of the molecule [20].
The geometry of Compound 1 with appropriate orientation and spatial arrangement was
optimized by using B3LYP-631G (p) and 6-311 + G(d,p)/wB97XD basis sets [21]. The opti-
mized geometry and structure of the compound under investigation is shown in Figure 6.
The electronic properties, calculated energy and other relevant parameters are given in
Table 3.

HOMO-LUMO energy gaps for Compound 1 were obtained as 0.191 au at 6-31G(d)/
B3LYP while 0.292 au at 6-311 + G(d,p)/wB97XD, the values obtained through 6-311
+ G(d,p)/wB97XD are higher than 6-31G(d)/B3LYP level because the wB97XD theory
has high Hartree–Fock (HF) character and can effectively capture co-relations factors. The
values of the EH-L gaps of the studied compound obtained through wB97XD functional with
a larger basis set is higher than that of B3LYP functional with a smaller basis set. Because
B3LYP functionals overestimated the electronic properties due to lower HF character, this
cannot effectively capture electronic co-relation factors. The values of the EH-L gaps studied
at wB97XD/6-311 + G(d,p) functional are reported in Table 3.
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Table 3. Calculated chemical parameters of Compound 1 computed at various level of DFT and basis
sets, with values shown in atomic unit (au).

Compound-1 6-31G(d)/B3LYP 6-311 + G(d,p)/wB97XD

EHOMO (au) −0.225 −0.319
ELUMO (au) −0.034 −0.027

∆E = (ELUMO-EHOMO) (au) 0.191 0.292
IE = = −EHUMO (au) 0.225 0.319
EA = −ELUMO (au) 0.034 0.027

Global Hardness(η) = 1/2
(ELOMO-EHOMO) 0.095 0.146

Chemical Potential µ = 1/2
(EHOMO + ELUMO) −0.095 −0.146

Global Electrophilicityω =
µ2/2η 0.048 0.073

Moreover, it was observed that the stability of LUMO was mainly due to the electron-
accepting properties while the HOMO orbital is usually responsible for the electron-
donating ability of inhibitor molecule. Moreover, the greater values of HOMO are signs of
electrons donation to the un-occupied orbital of the receptor.

Compound 2 showed specific rotation [α]D
30: −250 (c = 1, CHCl3). Its molecular

formula (C21H27NO8) was deduced by HR-EIMS (m/z 421.4550; calcd. 421.4396), higher
than chitralinine-A, probably due to the presence of additional hydroxyl groups NMR
spectrum of Compound 2 displayed a terminal methylene group at δH 5.02 (H-17a) and
4.85 (H-17b); δC 110.4 (C-17), methyl protons at δH 1.16 (H-18); 29.4 (C-18), four oxygenated
methines at δH 4.16 (H-1); δC 75.4 (C-1), δH 4.64 (H-2); δC 73.3 (C-2), δH 3.36 (H-11); δC
80.7 (C-11) and δH 5.0 (H-19); δC 94.2 (C-19), respectively. The 1H and 13C-NMR data
were very similar to those of Compound 1, suggesting that Compound 2 should also be a
diterpenoid and structurally related to Compound 1. While comparing the chemical shifts
of skeletal carbons in Compounds 1 and 2, the main differences between their 13C-NMR
data (Table 1) are that there were three more oxygenated functionalities, and additional
hydroxyl groups appeared in Compound 2. To verify further the locations of groups and
functionality, HMBC experiment was performed (Figure 3). The hydroxyl group on C-1
was assigned by the HMBC correlations of H-1 (δH 4.16) to C-2 (δC 73.3) and C-10 (δC 43.6).
Similarly, other correlations were observed between H-7 (δH 2.05) to C-6 (δC 209.4) and C-8
(δC 36.7); H-14 (δH 2.26) to C-8 (δC 36.7) and C-20 (δC 70.1). On the basis of above physical
and spectroscopic data, the structure was deduced as 9,11,12,19β- tetrahydoxy hetidine
(chitralinine-B).

The molecular formula (C21H29NO7) for Compound 3 was deduced from its HR-EIMS
at m/z 407.4550 (calcd. 407.4563) which was consistent with its 1H and 13C NMR data
(Tables 1 and 2).

From the NMR spectrum of Compound 3, the terminal methylene group as existing
in Compounds 1 and 2 was inferred on the basis of signals for C-17 methylenic protons
singlets at δH 5.02 (H-17a) and 4.85 (H-17b), δC 110.4 (C-17) (Tables 1 and 2). From the
1H-NMR spectrum, two oxymethine protons displayed singlets separately at δH 4.97 (H-19);
δC 94.2 (C-19), δH 3.27 (H-11); δC 80.7 (C-11), confirmed the presence of hydroxyl groups in
Compound 3 at C-19 and C-11. The 13C-NMR spectrum of Compound 3 showed twenty-
one signals for primary, secondary, tertiary and, quaternary carbon atoms. Compared to
the chemical shifts of skeletal carbons in Compounds 2 and 3, the main difference between
their 13C NMR data (Table 1) is that Compound 3 lacked ketonic functionality at C-13. After
describing the skeleton of Compound 3, long range HMBC interaction (Figure 3) permitted
the placement of the hydroxyl substituent at their respective positions, as the H-1 (δ4.19)
shows 2J correlations with C-2 (δ 73.3) and C-10 (δ 44.0). Similarly, the HMBC coupling of
terminal methylinic protons (δ 5.02 & 4.85) exhibited 1J interaction with C-16 (δ 142) and 2J
interaction with C-12 (δ 78.3) and C-15(δ 26.9). All of the above spectral evidence led to the
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establishment of C20 diterpenoid structure of 3 as 1α, 2, 9,11,12,19β-hexahydoxy atisinone
(Chitralinine-C).

2.2. Acetylcholinesterase and Butyrylcholinesterase Inhibition Activities

All the natural products isolated from D. chitralense, were tested for their enzyme
inhibition activity against AChE and BChE, respectively, and showed promising inhibitory
potential against both the tested enzymes in vitro. Therefore, it might be concluded that the
compounds isolated from D. chitralense could be optimized as lead candidates in AD and
related ailments. The Compounds (1–3) were found to be potent against AChE and BchE
as compared to standard drugs, showing competitive types of inhibition. The IC50 values
of Compounds 1–3 against AChE were 13.86 ± 0.35, 11.64 ± 0.08 µM and 12.11 ± 0.82 µM
while against BChE the values were 28.17 ± 0.92 µM, 24.31 ± 0.33 µM and 26.35 ± 0.06 µM,
respectively (Table 4).

Table 4. AChE and BChE inhibitory activities of alkaloids from D. Chitralense.

S. No Compounds AChE ± SEM a

(µM)
BChE ± SEM a

(µM)
Type of

Inhibition

1 Chitralinine A 13.86 ± 0.35 28.17 ± 0.92 Competitive
2 Chitralinine B 11.64 ± 0.08 24.31± 0.33 Competitive
3 Chitralinine-C 12.11 ± 0.82 26.35± 0.06 Competitive
6 Allanzanthane A 8.23 ± 0.01 18 ± 0.06
7 Galanthamine b 10.12 ±0.06 20.62 ± 0.08

a Standard error of mean of five assays; b Positive control used in the assays.

These significant results highlighted the interest in isolation and reputation of this
class of secondary metabolites present in D. chitralense.

2.3. Molecular Docking Study

The ligand base docking result of Compound 1 against the acetylcholinesterase target
showed binding free energy of −14.457 Kcal/mol (Table 5). The visual inspection of docked
compound revealed that it interacts with four residues, i.e., SER200, GLY119, GLY118, and
SER122 of acetylcholinesterase (Figure 7).

Details regarding chemical activity of Compound 1 were determined based on the
correlation between calculated energies and quantum parameters. Quantum parameters,
i.e., electronegativity (χ), electrophilicity (ω), hardness (η), and softness (S), are universal
descriptors which are used to explain the chemical behavior of the molecules [22]. The
hardness (η) value decides the resistance of an atom for the charge transfer to another atom.
The electron-receiving ability of an atom is determined by the softness value. Electronega-
tivity χ is the ability of molecules to attract electrons. The electrophilicity indexω is related
to the electrophilic property of a molecule.

Table 5. Interaction features of Compounds 1–3 against Cholinesterase.

Inhibitors MOE Score MOE Interactions
Residues

Gorge Site Residues
of Target

1 −14.457 Ser200, Gly119,
Gly118, Ser122

121(288)297(290)
120(118)121(119)
204(201)447(440)
334(327)203(200)

86(84)72(70)
124(121)286(279)

2 −15.591 Tyr121, Ser122,
His440, Ser200

3 −16.400 Tyr334, Asp72, Ser122,
Ser200
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The significant orbitals found in molecules that affect the biological activity, molecular
reactivity, and other electronic properties are HOMO and LUMO [23–25]. Deep insight
into the biological mechanism of the active molecules can also be deduced on the basis of
frontier orbital energy studies. Figure 5 shows that both HOMO and LUMO are localized at
the tertiary nitrogen atom and hydroxyl group of Compound 1. This makes it clear that the
activity related to this molecule could be attributed to the hydroxyl and tertiary nitrogen.
Thus, HOMO and LUMO orbitals that penetrate the hydroxyl group will form interactions
with active sites of the enzyme, giving rise to its reported biological activity.

The docking result of Compound 2 showed binding free energy of −15.591 Kcal/mol and
selective interactions with TYR121, SER122, HIS440, and SER200 residues (Figure 8). Likewise,
the docking result of Compound 3 showed binding free energy of −16.400 Kcal/mol and
interactions with TYR334, ASP72, SER122, and SER200 (Figure 9). All the Compounds
1–3 were found to develop interactions with the key residues of the gorge site of the
acetylcholinesterase target and the in silico results are congruent with experimental findings,
suggesting the competitive nature of Compounds 1–3. The differences in protein-ligand
interaction and binding energies among these compounds are due to differences in basic
chemical structures and receptor binding affinities.
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3. Materials and Methods
3.1. General Procedures

The optical rotations ([α]25
D) were obtained through a “JASCO DIP 360 polarimeter

(Tokyo, Japan)” while the melting points (mps) were measured using “BioCote Stauart
SMP10 (Tokyo, Japan)” melting point instrument. The mass spectral assignments were
made from EI-MS/HR-EIMS spectra obtained through “JEOL JMS HX 110 (Tokyo, Japan)”
while 1H-NMR/13C-NMR spectral measurements were carried out by using “Bruker NMR,
Germany (500, 600 MHz for 1H-NMR; 125, 150 MHz for 13C-NMR (δ, ppm)), respectively.
FT-IR analyses were determined on “JASCO-320-A spectrophotometer in KBr” as well as
“Perkin–Elmer spectrophotometer”. All the solvents used in extraction and isolation of
compounds were distilled before use, while the deuterated solvents were used for NMR
analysis. Thin layer chromatography (TLC) was carried out using “silica gel F254 pre-coated
aluminum sheets”. Visualization of TLC was conducted through a UV lamp at both 254 &
366 nm (λmax) as well as “Dragendorff’s reagent”. The solvent system; 20% acetone-hexane:
10 drops of diethylamine was used as developing solvent for TLC.

3.2. Plant Material

The aerial parts of D. chitralense were collected from Kumrat Valley (Latitude = 35.560654;
Longitude = 72.200846; Altitude is 8100 feet) of Dir (U). A voucher specimen with number
H.UOM. BG-161 was deposited in the herbarium of University of Malakand, Dir (L).

3.3. Extraction and Isolation

Standard procedure was adopted in the extraction and isolation processes with some
modifications [15]. The shade dried powdered material of (10 kg) of D. chitralense was
extracted for seven days with 80% methanol; thrice (3 × 20 L) in closed glass containers.
This combined methanolic extract was filtered and concentrated in a vacuum on a rotary
evaporator (Buchi, Flawil, Switzerland) at 40 ◦C to obtain 890 g methaloic crude. This
methaloic crude was first pooled with 5% HCl solution (pH = 1–2) and then extracted
with CHCl3 to separate the non-alkaloidal portion from acid-aqueous alkaloidal solution.
This acidic portion was basified with 5% NaOH (pH= 8–10) to obtain free alkaloids in the
solution. This solution was again re-extracted with CHCl3 to obtain alkaloidal portion
(18 g). This alkaloidal portion was fractionated though a silica gel (360 g) column, which
was eluted with increasing polarities of n-hexane (100%, DX-1) and n-hexane-chloroform
and chloroform-methanol (up to 20% methanol) in gradient manner that afforded eight
sub-fractions (DX-1 to DX-8). The sub-fraction DX-4 obtained from solvent system n-hexane-
chloroform (50:50) showed interesting spots on TLC and was re-chromatographed on the
flesh silica gel column eluted with n-hexane:acetone (80:20) with 10 drops of diethylamine
(DEA/100 mL) to produce Compound 1 (top fraction) and Compound 2 (tail fraction). The
fraction DX-5 which was obtained from major column with n-hexane-chloroform (60:40)
yielded a semi pure compound, which was subjected to a flash column using gradient
solvent system of n-hexane-acetone-10 drops of DEA. Elution with n-hexane-acetone (80:20)
resulted in the isolation of pure Compound 3.

3.4. Physical and Spectroscopic Data of New Compounds
3.4.1. Chitralinine-A (1)

White crystal; m.p: 224–227
◦
C; [α]D

30: −350 (c = 1, CHCl3); IR (υmax cm−1): 1720
& 1650 (C = O), 988 (C = CH2), 3460, 3422 (OH); 1HNMR (600 MHz, CDCl3): δ 5.07, 4.80
(2H, s, -CH2), δ 4.67, (1H, t, J = 4.7Hz, H-2), δ 4.22 (1H, brd s, H-1), δ 3.59 (1H, br s, H-20),
δ 3.04 (2H, s, H-19), δ 2.66, (1H, t, J = 11 Hz, H-12), δ 2.59 (2H, d, J = 4 Hz, H-15), δ 2.44
(1H, s, H-5), δ 2.31 (2H, t, J = 2.1 Hz, H-11), δ 2.25 (3H, s, -NCH3), δ 2.19 (1H, d, J = 3 Hz,
H-14), δ 2.08 (2H, s, H-7), δ 1.82 (2H, m, H-3), δ 1.17 (3H, s, H-18), HR-EIMS m/z: 373.4405
(C21H27NO5, calcd. 373.4417); 13C-NMR (150 MHz/CDCl3): See Table 1.
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3.4.2. Chitralinine-B (2)

White powder; m.p: 252–255
◦
C; [α]D

30: −250 (c = 1, CHCl3); IR υmax cm−1: 1660, 1450
(C = O), 3480, 3360, 3280 (OH) 1030 (C = CH2); 1HNMR (600 MHz, CDCl3): δ 5.02, 4.85 (2H,
s-CH2), δ 5.0 (1H, s, H-19), δ 4.64 (1H, t, J = 4.9 Hz, H-2), δ 4.16 (1H, brd s, H-1), δ 3.59 (1H,
br s, H-20), δ 3.36 (2H, s, H-11), δ 2.84 (1H, s, H-5), δ 2.46 (3H, s, -NCH3), δ 2.26 (1H, d, J
= 2.5 Hz, H-14), δ 2.05 (2H, s, H-7), δ 1.92 (2H, m, H-3), δ 1.89 (2H, s, H-15), δ 1.16 (3H, s,
H-18) HR-EIMS m/z: 421.4380 (C21H27NO8, calcd. 421.4396); 13C-NMR (150 MHz/CDCl3):
See Table 1.

3.4.3. Chitralinine-C (3)

Amorphous powder; m.p: 233–238 ◦C; [α]D
30: −230 (c = 1, CHCl3); IR υmax cm−1:

1658, 1446 (C = O), 3500, 3350 (br OH), 1032 (C = CH2
1HNMR (500 MHz, CDCl3): δ 5.02,

4.85 (2H, s-CH2), δ 4.97 (1H, s, H-19), δ 4.64 (1H, t, J = 4.8 Hz, H-2), δ 4.19 (1H, brd s, H-1), δ
3.57 (1H, br s, H-20), δ 3.27 (2H, s, H-11), δ 2.45 (3H, s, -NCH3), δ 2.30 (2H, s, H-7), δ 2.24
(1H, s, H-5), δ 1.95, 1.93 (2H, dd, 2H), δ 1.91 (2H, m, H-3). δ 1.89 (2H, s, H-15), δ 1.63 (1H, m,
H-14), δ 1.15 (3H, s, H-18); HREI-MS m/z: 407.4550 (C21H29NO7, calcd. 407.4563); 13C (125
MHz/CDCl3): See Table 1.

3.5. X-ray Crystallography

The crystal structure data for Compound 1 was obtained from Single crystal X-ray crys-
tallographic analysis using “STOE-IPDS II (Darmstadt, Germany); Graphite-monochromator
at room temperature and Mo-Kα radiation (λ = 0.71073 Å)”. Data were captured by using
charge-coupled device (CCD) area detector. The structure was solved and refined though
SIR97 [26], SHELXL97 [27] and WinGX [28] programs.

3.6. Density Functional Theory (DFT) Calculations

The crystallographic data were used in the DFT calculations of 1 by means of two
models of theory; “B3LYP-631G (p) and 6-311 + G(d,p)/wB97XD” [20,26,29]. Furthermore,
the same methods were applied in obtaining other related information including HOMO-
LUMO energy gap, optimized geometries, electron affinity, electrophilicity, ionization
potential, and global hardness [30]. The data were manipulated through “Gauss-view
molecule visualizer and GAUSSIAN-03 programs (Wallingford, CT, USA)”. Recently,
this procedure has also been applied for DFT calculations and obtaining data of other
parameters in C19 and C20 alkaloids [30].

3.7. Acetylcholinesterase (AChE) and Butyrylcholinesterase (BChE) Inhibition Assays

All the solvents used in this assays were of analytical grade while the chemicals/
reagents such as AChE (Electric-eel EC 3.1.1.7), BChE (horse serum EC 3.1.1.8), DTNB,
Acetyl choline iodide (AChI), butyryl choline chloride (BChI) and the reference, galantamine
were purchased from Sigma–Aldrich (St. Louis, MO, USA). The inhibition was obtained
through spectroscopic measurements [31]. Standard procedures and conditions of the
assays were applied throughout the experiments [32]. Various dilutions of the tested
compounds (62.5, 125, 250, 500 and 1000 µg/mL) were used in this assay. AChI and BChl
were used as substates in this assay.

In brief, 880 µL of sodium phosphate buffer solution (62 mM, pH 8) containing 0.2 mM
DNB was mixed with 40 µL solution of compound and 40 µL AChE or BChE solutions.
This reaction mixture was incubated at 25 ◦C for 15 min followed by initiation of the
reaction through addition of acetyl choline (ACh) or butyryl choline (BCh) (40 µL) in
each experiment. The formation of yellow colored product (5-thio-2-nitorbenzoate anion)
from reaction of DTNB with acetylcholine/butyrylcholine were observed through naked
eyes, and the absorbance was measured at 412 nm using UV/Visible spectrophotometer
(BMS-USA, New York, NY, USA). All the experiments were carried out in triplicate.
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IC50 Values Determination

Various dilutions of the tested compounds (62.5, 125, 250, 500, and 1000 µg/mL) were
used in this assay for IC50 determination. The data (activity in percent vs concentration)
were fitted into a non-linear sigmoid plot using MS Excel (Microsoft, Redmond, WA, USA)
program. The non-linear concentration-dependent inhibitory concentration of compounds
were taken into account at low and high concentration leading to determination of IC50
values. The effective concentrations of Compounds 1–3 were represented in µM [33].

3.8. Molecular Docking Study

To perform molecular docking analysis, the choline esterase crystal structures (PDB ID:
1ACJ) was retrieved from the Protein Databank (PDB). The molecular docking studies were
carried out in the presence of water molecules as they play crucial role in the enzymatic
activities [34–37] while other ions were removed from the retrieved crystal structures using
the Molecular Operating Environment (MOE) software (www.chemcomp.com, accessed on
10 May 2022). Hydrogen atoms were added to the protein structures by 3D protonation and
then energy minimization was carried out using the default parameters of the MOE. The
structures of the Compounds 1–3 were built and their energy minimization was performed
using the default parameters of the MOE. The choline esterase target was allowed to dock to
the Compounds 1–3 by the default parameters i.e., Placement: Triangle Matcher, Rescoring:
London dG of MOE software. The binding pockets are identified by site-finder module of
the MOE. For each ligand ten conformations were generated. The top-ranked conformation
of each compound was used for subsequent analysis [38].

4. Conclusions

In the present research work, bioactivity-guided isolation, crystal structure determina-
tion, DFT calculation, anticholinesterase inhibitory potential, and molecular docking studies
of diterpenoid alkaloids isolated from D. chitralense have been carried out. The structures of
three new diterpenoids were established by spectral interpretation, including single X-ray
crystallography. Some structural parameters of Compound 1 were calculated by means
of DFT. All the isolated compounds were screened for their possible anticholinesterase
inhibitory potential and were found to exhibit strong, competitive types of inhibition
against cholinesterase as compared to the standard. Further in silico evaluation of isolated
compounds exhibited possible binding modes and justified the experimental results. In
addition, the negative binding energies of the isolated Compounds 1–3 showed proper
relationships to the AChE and BChE enzymes. Thus, the present study validates a potential
role of diterpenoid alkaloids from D. chitralense in the treatment of neurodegenerative
disorders and suggests that they could be good natural candidates against AD.
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