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Declines in mental health associated with air
pollution and temperature variability in China
Tao Xue1, Tong Zhu1, Yixuan Zheng2 & Qiang Zhang2

Mental disorders have been associated with various aspects of anthropogenic change to the

environment, but the relative effects of different drivers are uncertain. Here we estimate

associations between multiple environmental factors (air quality, residential greenness, mean

temperature, and temperature variability) and self-assessed mental health scores for over

20,000 Chinese residents. Mental health scores were surveyed in 2010 and 2014, allowing

us to link changes in mental health to the changes in environmental variables. Increases in air

pollution and temperature variability are associated with higher probabilities of declined

mental health. Mental health is statistically unrelated to mean temperature in this study, and

the effect of greenness on mental health depends on model settings, suggesting a need for

further study. Our findings suggest that the environmental policies to reduce emissions of air

pollution or greenhouse gases can improve mental health of the public in China.
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Mental disorders, the second leading contributor to the
global disease burden, accounts for 7~13% of disability-
adjusted life-years1. With improved medical services,

many epidemiological studies have suggested an increasing trend
toward longevity, but also a higher prevalence of morbidity and
disability among the global population2. As mental illness has
been ranked as the top risk factor for years lived with disability
(YLD), accounting for 21~32% of the global YLD1, it is among
the major driver of the global disease burden, which is transfer-
ring from mortality to disability/morbidity2.

A comprehensive understanding of relevant risk factors is
required to mitigate mental disorders. The roles of conventional
factors, such as drug abuse, maternal infection, perinatal
depression, physical inactivity, hormonal changes, lifestyle,
urbanization, and so on, have been well studied3. The epide-
miological links between mental health and environmental factors
are being increasingly examined in the context of the global
challenges associated with climate change4. However, most extant
studies have been performed in developed countries4–11. Indeed,
there is limited evidence, particularly on a national scale, about
such associations in developing countries, including China, where
the adjusted prevalence of mental disorders has been reported as
high as 17.5%12.

There are many psychological mechanisms that also make an
epidemiological linkage between environmental factors and
mental health biologically plausible. First, lack of greenness has
been widely linked to mental disorders, including depression and
anxiety in adults5, and cognitive dysfunction in children6,7. Many
theories have been posited to explain these findings, including
biogenics theory, the biodiversity hypothesis, restriction of phy-
sical activity, and social stressors13. Second, it has been shown
that ambient pollutants, particularly fine particles, can cross the
blood–brain barrier and thus damage the neurological system
through introducing neuro-inflammation, neuronal signaling
dysfunction, and immune responses14. Third, the mechanism
underpinning the maintenance of body temperature suggests that
mental health may be affected by ambient temperature. As some
neurotransmitters, such as biogenic amines, play roles in both
emotional and thermal regulation15, patients with mental dis-
orders (e.g., schizophrenia) are prone to disturbances in ther-
moregulation16 and thus may find it difficult to maintain body
temperature when exposed to highly fluctuating temperatures.

Although recent epidemiological studies have associated risk of
mental disorders with individual environmental variables
including high temperature8,9, poor air quality17–20, and lack of
residential greenness5–7, questions about whether these associa-
tions are confounded by collinearity between factors remain
unanswered. For instance, previous studies partially explained the
link between mental health and residential greenness in terms of
the superior air quality in greener places21. However, research
that simultaneously incorporates multiple indicators is needed to
identify the actual environmental risk factors. In addition, the
health effects of long-term level of temperature have been well
studied, whereas the potential risks of increased variability in the
temperature to the health of the general public have to date only
been suggested, i.e., by a recent epidemiological study22 that
linked temperature variability with total mortality; however, these
relationships have not yet been examined from the perspective of
mental health.

This study used self-rated mental health scores (MHSs) from the
China Family Panel Studies (CFPS)23 to make individual-level
comparisons of the mental health of 21,543 adults from 25 popu-
lous provinces in China between 2010 and 2014 (Supplementary
Fig. 1); we then linked these data to multiple environmental factors,
including long-term level of temperature (μT, annual mean of
temperature), temperature variability (σT, SD of daily temperature

within a calendar year), air quality (measured by annual mean
of fine particles with diameters < 2.5 μm [PM2.5]), and residential
greenness (measured by annual mean of normalized difference
vegetation index, NDVI). Specifically, the long-term exposures were
evaluated in terms of the average annual values of the selected
parameters within the county of residence of each individual
(before the survey date), referring to previous studies on chronic
environmental exposures24. This study, which used a difference-in-
difference design25, is quasi-experimental in nature. As we com-
pared each subject with her/himself, the study design, itself,
controlled unmeasured confounders that varied inter-individually
but not longitudinally. The difference-in-difference models directly
regressed changes in MHSs with environmental variations, after
multiple adjustments.

Statistical examinations of our data suggest that MHS decrease
is robustly related to increase in PM2.5 or σT, weakly related to
NDVI decrease, and unrelated to μT, among Chinese adults.
According to the findings, the efforts to mitigate climate change
and air pollution can bring extra benefits in aspect of human
mental health.

Results
Summary statistics. This study involved 9474 (44.0%) urban
adults and 12,069 (56.0%) rural ones. We found that more adults
(40.5%) reported poorer mental health than unchanged (23.0%)
or improved (36.5%) mental health from 2010 to 2014 (Supple-
mentary Table 1). Indeed, the statistics (Supplementary Table 2)
indicate that the decreasing trend in mental health was correlated
with the feeling of depressed (Q1), nervous (Q2), and upset (Q3).
Consistent with the trend toward global warming, the average μT
increased by 0.98 °C, whereas the σT decreased by 0.55 °C.
Probably benefiting from the land-use management26, the indi-
cator of residential greenness, NDVI (∈ [−1, 1]) increased by
0.03. Co-determined by meteorological changes and the reduction
in anthropogenic emissions resulting from China’s Clean Air
Act27, the major species of ambient pollutant, PM2.5, decreased by
0.66 μg m−3.

Mean temperature. Our results revealed a weak and complex
association between μT and mental health. The nonlinear effect
model indicated that either increased μT or decreased μT was
associated to MHS decrease (Fig. 1). However, the pointwise
confidence intervals (CIs) suggested the association was not
statistically significant, which was consistent with the results of
linear models (Fig. 2 and Supplementary Table 3). According to
the fully adjusted model (i.e., model 5 in Supplementary Table 3),
a 1 °C increase in μT was associated with a 3% (−11%, 15%) extra
risk of MHS decrease. Both subregion and subgroup analyses
(Supplementary Fig. 2) suggested the homogeneity of the weak
association.

Temperature variability. We found a significant association
between the σT increment and MHS reduction, which remained
robust after various adjustments (Supplementary Table 3) or
model settings (Supplementary Table 4). The data showed that a
15% (3%, 25%) risk of MHS decrease was correlated with a 1 °C
increase in σT (fully adjusted model; Supplementary Table 3). The
nonlinear model further confirmed the negative association
between changes in σT and changes in mental health status
(Fig. 1). Based on the question-specific models, incremental
changes in σT tended to be strongly linked to a higher probability
of feeling nervous (Q2), upset (Q3), hopelessness (Q4), and
meaninglessness (Q6) (Fig. 2). Although neither subregion nor
subpopulation analyses revealed significant heterogeneity in the
effect of σT, this association may nonetheless vary slightly by
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geographical region (e.g., it may be weaker in Northern China
than in Southeastern China) or inter-individually (e.g., it may be
weaker in urban than in rural residents); these differences may be
attributable to socioeconomic factors related to temperature
maintenance facilities (e.g., owning an air conditioner). The
results of double-exposure models indicated that the effect of σT
was not considerably confounded by other environmental factors.

Greenness. Our results are comparable to previous findings on
the association between NDVI and mental health5. According to
the fully adjusted models, every 0.05 decrease in the NDVI was
associated to 19% (8%, 30%) risk of MHS decrease. Although this
association was not considerably affected by adjustments for
other environmental factors (Fig. 3), its significant level was
sensitive to model settings, including adjusted covariates (Sup-
plementary Table 3) and model assumptions (Supplementary
Table 4). In addition, subgroup analyses suggested that some
individual-level factors can modify the effect of the NDVI. Spe-
cifically, physical activity significantly enhanced this association
(Supplementary Fig. 2), possibly because physically inactive
adults may be relatively unaffected by the outdoor environment.
Similarly, the question-specific results (Fig. 2) showed that
increases in the NDVI may significantly alleviate feelings of
depressed (Q1) and nervous (Q2).

Air quality. Consistent with the existing evidences10,11, we found
a significant association between higher levels of PM2.5 and MHS
decrease. A 28% (16%, 39%) extra risk of reduction in MHS was
associated with a 10 μg m−3 increase in PM2.5 (Supplementary
Table 3, the fully adjusted model) and this effect remained robust
after adjustment for different sets of covariates (Supplementary
Table 3) and other environmental parameters (Fig. 3). Analo-
gously, the association was not sensitive to different regression
presumptions (Supplementary Table 4). Meanwhile, nonlinear
analysis revealed a complex association for PM2.5 (Fig. 1). We
found an effect threshold of ~ 5 μg m−3 for every increment in
PM2.5 and the PM2.5 changes from 2010 to 2014 were above 5 μg
m−3 for 8.5% of the study population. Subgroup analyses also
reflected the complex effect of PM2.5 (Supplementary Fig. 2). For
instance, our results suggest that PM2.5 had a significantly higher
effect among the physically active adults. Potential heterogeneity
in health effects of ambient particles has also been reported by
previous studies18 and may be caused by variation in toxicity
among different species of PM2.5, which may partially explain the
apparent geographic variation in the effect (Supplementary
Fig. 2).

Discussion
In summary, according to our quasi-experimental population-
level study on the effects of multiple environmental changes,
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Fig. 1 Exposure–response curves. The curves (the solid lines) with 95% confidence intervals (dashed lines) are estimated by the fully adjusted nonlinear
effect models. The covariates include changes in alcohol consumption, education, migration, obesity, physical activity, and smoking status, as well as
baseline age, alcohol consumption, education, diet type, gender, income, marital status, nationality, physical activity status, obesity status, area of
residence, and smoking status in 2013. The histograms (gray bars) present the distributions of the environmental changes among the studied adults. For
the exposure–response curves, please refer to the left y-axis; for the distributions, please refer to right y-axis
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declines in mental health of Chinese adults was strongly and
robustly associated with increased σT or PM2.5, and plausibly
related to decreased NDVI. Environmental changes have been
evidenced as additional risk factors, which can impact on mental
health, together with the well-studied factors, such as lifestyle and
urbanization3. From 2010 to 2014, the overall trend of poorer
mental health suggested that benefits from less variability of
temperature and improved air quality did not offset the negative
impacts from changes in other factors. For instance, the asso-
ciation between obesity and mental disorders is well known28,
and there was an increased trend of obesity among our study
population. The level of body mass index increased for 10.3%
subjects, decreased for 5.6% subjects, and remained unchanged
for the rest (Supplementary Table 1). However, the continuing
efforts to mitigate environmental changes, such as clean air
action27 and land-use management26 in China, is expected to
improve mental health considerably. For instance, during
2013–2015, the national average of PM2.5 exposure was reported

to decrease by 4.51 (3.12, 5.90) μg m−3 year−1, which was
remarkable, compared with the PM2.5 reduction (0.66 μg m−3,
Supplementary Table 1) in this study29.

The associations between mental health and environmental
indicators in China have been explored. However, previous
studies are based on data from local areas14,17–20,30–32 and their
results have been mixed. For instance, a statistically significant
association between hospital admissions for mental disorders
and ambient exposure to PM2.5 was identified in Shijiazhuang18

but not in Shanghai19 or Beijing20. This divergence may derive
from the heterogeneity of study populations, the use of different
epidemiologic designs or statistical models, differences in the
quality of the data, and so on. A national study, like this one, is
needed to reevaluate the representative exposure–response
curves among the general population. Taken together with
these existing evidences, our findings confirm the epidemiolo-
gical link between environmental changes and human mental
health.
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Fig. 2 Environmental effects on different dimensions of mental health. The effects are evaluated by fully adjusted associations between the question-
specific mental health scores and the four environmental factors. Black dots and black solid polygons: estimated odds ratios (ORs); black dashed polygons:
corresponding 95% confidence intervals; gray polygons: references of no effect (OR= 1); gray radial lines: different dimensions of mental health; Q1: feeling
depressed and incapability to cheer up no matter what you are doing; Q2: feeling nervous; Q3: feeling upset; Q4: feeling hopeless about the future; Q5:
feeling that everything is difficult; Q6: thinking life is meaningless. Along a gray radial line, its interaction with a polygon presents the corresponding
estimate or no-effect reference, for the dimension of mental health
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However, our findings are not conclusive because of the fol-
lowing limitations. First, mental health status was evaluated using
a simple self-report questionnaire, which may call the quality of
the data into question. The health outcome (MHS decrease or
not) might be misclassified due to the potential errors in the
questionnaire. Moreover, health outcome misclassification has
been reported to bias the estimated association33. Analogously,
misclassification may also have arisen from our approximation of
long-term exposure levels according to annual and county-level
averages. Any such exposure misclassification could lead to
underestimation of the associations33. For instance, although the
averaged exposure during the previous year might be repre-
sentative to capture the environmental effects on mental health
according to a sensitivity analysis (Supplementary Fig. 3), we
might still ignore some risks from environmental changes in a
longer term (e.g., lifelong exposure). Furthermore, although the
difference-in-difference design could control unmeasured con-
founders, it has limited statistical power to detect weak associa-
tions, because variations in environmental changes (e.g., SD of
ΔPM2.5: 4.0 μg m−3) were smaller than the overall spatiotemporal
variations of those factors (e.g., SD of PM2.5= 19.8 μg m−3).
Finally, although this study examined and compared the psy-
chological effects of four well-studied environmental factors, we
may nonetheless have overlooked other associations between
climate change and mental health.

Based on a nation-scale quasi-experimental study of Chinese
adults, we derive representative exposure–response functions for
indicators of air pollution and temperature variability, which can

support the public health interventions for better mental health in
China. Our results also reveal complexities underlying the epi-
demiological linkage between mental health and environmental
changes, in the aspects of inter-individual susceptibilities, mutual
confounders, and nonlinear curvatures, which should be explored
by future studies.

Methods
Analytical diagram. The datasets utilized in our study are visualized in a diagram
(Supplementary Fig. 4) with the data preparation procedures. Detailed steps in the
diagram are illustrated in the following subsections.

Study population. Our study population was drawn from the CFPS, an ongoing
national survey on demographic and socioeconomic factors in China. The CFPS
drew a representative sample of Chinese population using a multi-stage probability
strategy with stratification, for multiple study purposes23. The CFPS surveyed >
30,000 adults and ~9,000 children from 25 provincial regions of China from 2010.
Data on personal characteristics (e.g., age), socioeconomic status (e.g., education
and income), behavior patterns (e.g., physical activity), lifestyle (e.g., diet type),
mental health status, and so on were collected by trained interviewers using
standard questionnaires. The study has been approved by the institutional review
board at Peking University (Approval IRB00001052-14010). Although the CFPS
collected the personal characteristics longitudinally, the surveyed variables slightly
varied between years23. For instance, the surveys utilized the same mental health
questionnaire in 2010 and 2014, but different ones in other years, which makes this
study not qualified as a prospective cohort study.

In 2010, baseline mental health status was measured by a brief questionnaire
based on the Center for Epidemiologic Studies Depression Scale test, consisting of
six questions related to the following domains: feeling depressed and incapability to
cheer up no matter what you are doing (Q1), feeling nervous (Q2), feeling upset
(Q3), feeling hopeless about the future (Q4), feeling that everything is difficult (Q5),
and thinking life is meaningless (Q6). Respondents were asked to rate the frequency
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Fig. 3 Results of the double-exposure models. In each panel, the fully adjusted odds ratios of an environmental factor with their 95% confidence intervals
(black dots with error bars) estimated by the double-exposure models are compared with the estimate of the corresponding single-exposure model (black
circles with error bars)
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with which they experienced these feelings on a scale ranging from 1 to 5 (1: almost
every day, 2: 2–3 times a week, 3: 2–3 times a month, 4: once a month, and 5:
never). Therefore, higher scores reflect better mental health. According to the CFPS
user manual, the total score for the six questions constitutes an index of mental
health status. In 2014, the mental health of subjects was examined using the same
questionnaire. In total, 25,618 of the 33,600 adults surveyed in 2010 and 37,147
adults surveyed in 2014, participated in both evaluations. After excluding surveys
with (1) incomplete answers to the mental health questionnaire or (2) a failure of
geocoding (which will be described in following sections), the data obtained from
21,543 adults from 25 provinces (as shown in Fig. 1) during the first and second
surveys were included in the final analysis. The characteristics of the involved
samples were also compared with those of the total surveyed subjects in 2010
(Supplementary Fig. 5). The comparison showed that the data exclusion did not
considerably changed the structures of the CFPS population, a representative
sample of Chinese adults.

Air quality. To examine the effects of the environmental factors that affect mental
health, this study obtained data on air quality, residential greenness, and ambient
temperature. To evaluate air quality, from a well-established product29, we
obtained monthly maps of PM2.5 in China from 2000 to 2016, which had a spatial
resolution of ~10 km × 10 km (in a regular grid of 0.1° × 0.1°). The gridded PM2.5

maps were estimated based on historical satellite measurements of aerosol optical
depth and simulations of the Community Multiscale Air Quality Model based on
historical emission inventories, using a machine learning model. The estimates
have complete spatiotemporal coverage and were shown to be in good agreement
with the independent in-situ PM2.5 values, based on the cross-validation (CV)
results (R2= 0.71; root mean square error [RMSE]= 17.8 μg m−3) on a monthly
scale. In the CV, all observations of PM2.5 within a calendar year were used as the
test data to validate the estimates from a model trained by the rest of the data and
then the procedure was iterated (both retrospectively and prospectively) for all the
PM2.5 observations during 2013–2016.

Greenness. To assess residential greenness, we obtained a monthly product
(MOD13A3, version 6) of the NDVI for China for 2009–2016, which had a spatial
scale of 1 km × 1 km. As environmental exposures were evaluated at county level
(as described below) due to the limited geographic information of the CFPS sub-
jects, we did not obtain NDVI at a finer scale for computing efficiency. Satellite
NDVI is a general index (varying from −1 to 1), which indicates the richness of
green vegetation over the surface of the Earth; it has been widely used to measure
long-term exposure to residential greenness. The NDVI data used in this study
were also obtained from the moderate resolution imaging spectroradiometer
(MODIS) products, which are freely distributed by the Application for Extracting
and Exploring Analysis Ready Samples (EEARS): https://lpdaacsvc.cr.usgs.gov/
appeears/ (accessed at May 2018).

Temperature. To evaluate exposure to temperature, we obtained daily maps with a
spatial resolution of ~10 km × 10 km (in a regular grid of 0.1° × 0.1°) from a data
assimilation product for China from 2000 to 2016.

The surface temperature of the Earth can be obtained from multiple sources
including routine climate monitors, satellite remote-sensing measurements, and
climate model simulations such as the weather research forecast (WRF) model.
Monitoring data are usually considered the gold standard, but is limited in spatial
coverage, particularly in China. Although numerical outputs of climate models
have a complete spatiotemporal coverage, they are less accurate. The temperature
products of Earth-observing satellites, which scan the whole planetary surface
within a 1–2 day time period, offer moderate coverage of spatiotemporal
dimensions and have been utilized in health-related studies34. Recently, data
assimilation products of monitoring and satellite-retrieved measurements have
been derived to reduce errors in exposure assessment of ambient temperatures35.
Inspired by such studies, we used the universal kriging36 approach to combine
monitoring temperatures (Tm), WRF-simulated temperatures (Tw), and satellite
temperatures (Ts) to produce an optimal predictor of daily temperatures (Toptimal)
over China. Before universal kriging, we first prepared a product of satellite-based
temperatures with complete spatiotemporal coverage (Tsc= [Ts, Ts*]), where
missing values (Ts*) of satellite measurements for each day were interpolated using
the following equation: Ts*= Tw*+ IDW(Ts− Tw). In the equation, Tw* denotes
the WRF output at the coordinates where satellite-retrieved temperatures do not
exist and IDW(•) denotes an inverse-distance weighted average36 of the difference
between the two measurements in the neighboring coordinates. Universal kriging is
a two-stage model. In stage 1, we regressed Tm with Tsc and auxiliary variables,
including satellite nightlight, altitude, and the monthly average of NDVI. In stage 2,
we interpolated the residuals in stage 1 using kriging appraoch. The final estimates
(Toptimal) were obtained by adding the fitted values of regression in stage 1 and the
interpolated residuals in stage 2. Due to computational complexities, universal
kriging analyses were performed for each separate day. Therefore, empirical
variograms were calculated and Matérn covariance function were fitted, by days.

In-situ observations of daily mean temperature (Tm) during 2000–2016 were
obtained from 225 monitors across China, from the global historical climatology
network distributed by the National Centers for Environmental Information of the

United States National Oceanic and Atmospheric Administration. Satellite-
retrieved land surface temperatures (Ts) were collected from level 3 (MOD11C1,
version 6) MODIS products, which have a spatial resolution of 0.05° and generated
valid data after 24 February 2000. Altitude data with a spatial resolution of 1 km
were obtained from GTOPO30, which is a global digital elevation model developed
from a US geological survey (https://lta.cr.usgs.gov/GTOPO30). Nightlight data in
2013 at a spatial resolution of 1 km were produced from the visible and infrared
sensors of the Defense Meteorological Satellite Program (https://ngdc.noaa.gov/
eog/dmsp.html). We also simulated daily maps of temperature (Tw) during the
study period using a well-developed WRF model (ver. 3.5.1) in China37.

The accuracy of the estimated temperature was evaluated using the tenfold CV
approach, in which the in-situ observations were randomly divided and subjected
to ten iterations of the validation procedure. According to the tenfold CV, the
estimates were in excellent agreement with the daily in-situ observations (R2=
0.96; RMSE= 2.46 °C), as shown in Supplementary Fig. 6.

Exposure assessments. To protect their privacy, the detailed addresses of
respondents were redacted from the open-access CFPS data. We obtained the six-
digit administrative code (each code identifies a county-level geographic unit) for
each subjects and then geocoded all CFPS samples into a map of county-level
administrative boundaries in 2010, through matching their administrative codes.
Finally, we identified 162 counties (Supplementary Fig. 1) that were consistent with
those identified in the official reports of CFPS. In this county-level exposure
assessments, we assumed that all residents of a county lived and commuted within
the corresponding administrative boundaries. Therefore, the within-county varia-
tions in the long-term environmental exposures can be much smaller than the
between-county variations. However, this presumption may not be valid for those
residents who lived far from the county center. Considering that, we further
validated the geographic information by comparing their reported distances from
the provincial capital cities according to the community-level questionnaire with
the calculated distances based on the geocoded county center. When the relative
difference was >10%, all records from the community were excluded.

Due to the limitations of the geographic information, exposure levels were
assessed at the county level. To evaluate long-term exposure to air pollution, we
first averaged the gridded maps of PM2.5 into monthly county-level averages. All
subjects from the same county were assigned to the same PM2.5 time series. Then,
we calculated the annual average for each subject based on the PM2.5 value for the
surveyed month and the values of the 11 preceding months (i.e., the 12-months
moving average of PM2.5). When evaluating the long-term level of residential
greenness, we processed the NDVI data in the same way as we processed the PM2.5

data, except that we calculated the population-density-weighted average instead of
the direct average in each county. The 1 km × 1 km map of the population density
in China was extracted from the 2010 Gridded Population of the World, which was
also obtained from EEARS. The use of population-density weights reduces the
misclassifications caused by the non-residential greenness of the NDVI, such as
croplands and forests. Considering the complexity underlying the association
between temperature and mental health, we prepared county-level time-series data
on temperature in the same way as we prepared the PM2.5 data, but calculated the
μT and σT during the year before the survey time to measure the long-term level of,
and variability in, the temperature, respectively.

Study design. We designed a difference-in-difference study to link changes in
mental health to changes in long-term exposure to environmental factors. The
difference-in-difference design has been widely used to explore the health effects of
risk factors, such as ambient pollutants25, and is considered to yield results that are
more relevant to causal relationships than those of cross-sectional studies. As the
outcomes and exposure levels of a single subject are associated with each other in
difference-in-difference studies, some confounders (e.g., genetic factors) that do
not change with time are inherently controlled by the design.

In this study, we first derived the changes in the MHSs from 2010 to 2014, the
long-term exposure levels to PM2.5, the NDVI, the μT and σT, and the
socioeconomic data (i.e., alcohol consumption, education, migration, obesity,
physical activity, and smoking). Under the assumption that the various subgroups
might show different mental health trends over time, we also used the baseline
values of some socioeconomic variables (e.g., age, alcohol consumption, education,
diet type, gender, income level, marital status, nationality, physical activity status,
obesity status, area of residence (urban or rural), and smoking status) obtained in
2010 as additional covariates. To control the spatial autocorrelations in the
outcomes, we first parameterized the coordinates of residential counties as a two-
dimensional thin-plate spline function and further involved the term into the
regression models. The optimal degrees of freedom for the spline term were
automatically determined by the penalized method38. Such approach has been
utilized in previous studies to examine the health effects of environmental factors
and difference-in-difference analyses25.

Statistical analyses. In purpose of good interpretability, the major analysis used a
logistic model to examine the relationship between changes in total MHS and
changes in each environmental variable after adjustment for multiple covariates,
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using the following equation:

Logit yj
� �

� xjβþ zjbþ f sj
� �

; ¼ ¼ ð1Þ
yj= 1, for Qi; j; 2014 � Qi; j ; 2010,0, for Qi; j; 2014<Qi; j; 2010;or yj= 1, forP

i Qi; j; 2014 �
P

i Qi; j; 2010,0, for
P

i Qi; j; 2014<
P

i Qi; j; 2010.
In the regression model, i or j denotes the index for mental health questionnaire

or CFPS subject, respectively; Qi,j denotes the score of the ith question for the jth

subject; yj denotes a binary variable to indicate the mental health change from 2010
to 2014; xj denotes the corresponding change in an environmental factor (PM2.5,
NDVI, μT, or σT); zj denotes the individual-level covariates as described above; f(sj)
denotes the spline function of spatial coordinates (sj); β and b denote the regression
coefficients. Using the PM2.5 models as an example, the xj was calculated as ΔPM2.5,

j= PM2.5, j, 2014− PM2.5, j, 2010, where PM2.5, j, t denotes the long-term exposure
level for the jth subject at the t year. The regression coefficient (β) for an
environmental variable, x, can be interpreted as a logarithmic scale of odds ratios
(ORs) for per-unit increments in x. An OR < 1 indicates that increment of x is
associated to a lowered score (i.e., worse mental health).

Besides the models adjusted by different combinations of covariates
(Supplementary Table 3), the major results also present (1) the nonlinear
associations between mental health changes and environmental changes (Fig. 1),
and (2) the double-exposure models (Fig. 3), based on modified versions of Eq. 1.
To conduct the nonlinear analyses, we replaced the linear terms of the
environmental variables with the thin-spline terms in the regression models. In
addition, because the environmental variables were pairwise-correlated
(Supplementary Table 2), they could act as confounders for each other. We used
double-exposure models to explore these confounding effects. A double-exposure
model simultaneously linked the health outcome with two environmental
variables39. A comparison between a single-exposure model (e.g., a model of PM2.5)
and the corresponding double-exposure model (e.g., a model of PM2.5+NDVI)
can reveal whether the estimated effect of the target variable (i.e., PM2.5) is sensitive
to extra-adjustment of another variable (i.e., NDVI). A robust association suggests
that the effect on mental health is more likely attributable to the target variable
rather than its correlated variables.

In the sensitivity analyses, we first explored variations in the associations
between total MHS and environmental factors using an indicator variable for
three geographic regions and indicators for different demographic
characteristics, including age, alcohol consumption, education, gender, income,
obesity status, physical activity status, smoking status, and urban/rural residence
(Supplementary Fig. 2). The variations were examined using interaction terms
between the indicators and the environmental variables. Next, we examined
alternative time windows for exposure to PM2.5 or σT (Supplementary Fig. 3),
which had been estimated to be robustly linked with mental health in previous
analyses. Finally, we modeled the MHS as alternative types of variable
(Supplementary Table 4). In the major results, the changes in MHS were
categorized into binary outcomes, to increase the interpretability of statistical
analyses. However, the binned outcome might be insufficient to characterize the
variations in mental health. Using modified version of Eq. 1, we also modeled the
change in MHS as (1) a continuous outcome (ΔQ ∈ [−24, 24]) using a linear
regression or (2) an ordinal outcome (ΔQ ∈ |−24, −23, …, 23, 24|) using an
ordinal logistic regression (also known as the proportional odds model).
Furthermore, we also directly associated MHS to environmental variables using
the linear mixed-effect model, an alternative approach for the difference-in-
difference design (Supplementary Table 4). The details of these alternative
models are documented in Supplementary Table 4.

All statistical analyses were performed using R software (ver. 3.4.1; R
Development Core Team, Vienna, Austria). The associations were presented by
point-estimates with 95% CIs and their significances were evaluated by two-sided
Wald’s tests.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The population data (CFPS) that support the findings of this study are available from
http://opendata.pku.edu.cn/. The NDVI data that support the findings of this study are
available from https://lpdaacsvc.cr.usgs.gov/appeears/. The PM2.5 data that support the
findings of this study are available from http://www.meicmodel.org/dataset-phd.html.
The temperature data that support the findings of this study are available from https://
www.ncdc.noaa.gov/ and https://search.earthdata.nasa.gov/.

Code availability
R codes for the statistical models in the main-text are documented as the Supplementary
Software. All R codes are available from the corresponding author upon request.
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