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ABSTRACT Adventitious agent detection during the production of vaccines and
biotechnology-based medicines is of critical importance to ensure the final product
is free from any possible viral contamination. Increasing the speed and accuracy of
viral detection is beneficial as a means to accelerate development timelines and to
ensure patient safety. Here, several rapid viral metagenomics approaches were tested
on simulated next-generation sequencing (NGS) data sets and existing data sets
from virus spike-in studies done in CHO-K1 and HeLa cell lines. It was observed that
these rapid methods had comparable sensitivity to full-read alignment methods
used for NGS viral detection for these data sets, but their specificity could be
improved. A method that first filters host reads using KrakenUniq and then selects
the virus classification tool based on the number of remaining reads is suggested as
the preferred approach among those tested to detect nonlatent and nonendoge-
nous viruses. Such an approach shows reasonable sensitivity and specificity for the
data sets examined and requires less time and memory as full-read alignment
methods.

IMPORTANCE Next-generation sequencing (NGS) has been proposed as a comple-
mentary method to detect adventitious viruses in the production of biotherapeutics
and vaccines to current in vivo and in vitro methods. Before NGS can be established
in industry as a main viral detection technology, further investigation into the vari-
ous aspects of bioinformatics analyses required to identify and classify viral NGS
reads is needed. In this study, the ability of rapid metagenomics tools to detect
viruses in biopharmaceutical relevant samples is tested and compared to recom-
mend an efficient approach. The results showed that KrakenUniq can quickly and
accurately filter host sequences and classify viral reads and had comparable sensitiv-
ity and specificity to slower full read alignment approaches, such as BLASTn, for the
data sets examined.

KEYWORDS next-generation sequencing, viral metagenomics, Chinese hamster ovary
cells, HeLa cells, adventitious agent testing, vaccine, virus detection

While virus identification and clearance are required during the manufacturing of
vaccines, biologics, and biotechnology-based medicines, several virus contami-

nation events have occurred in both vaccine and biotherapeutic protein production.
Since 1988, at least 14 contamination events in Chinese hamster ovary (CHO) cells, the
preferred platform for monoclonal antibody production, have been reported (1). These
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included contamination with minute virus of mice (MVM) at several different companies
(2, 3), including an event at Genentech in 2010 that cost millions of dollars (www
.sigmaaldrich.com/technical-documents/articles/biology/viral-invaders.html). Other con-
tamination events involved Cache Valley virus (4), vesivirus 2117 (5), reovirus (4), and epi-
zootic hemorrhagic disease virus (6). The predicted sources of contamination in these
cases were raw materials (4, 7, 8). Four major cases of viral contamination in vaccines
have been reported since 1960 (9), including simian virus 40 found in polio vaccines in
1960, bacteriophages found in measles and polio vaccines in 1973, and porcine circovi-
rus-1 (PCV1) DNA which was found, using sequencing and microarrays, in a rotavirus vac-
cine in 2010 due to PCV1 contamination (10). In addition, a novel rhabdovirus has been
previously identified in Sf9 cell lines, which are used for the production of two vaccines in
the United States (11). Although these contamination events are rare, they can have sig-
nificant economic consequences when they do occur and highlight the need for more
frequent and more accurate viral testing during the production of biologics.

Currently, different stages of the manufacturing process are tested for viral contami-
nants using either in vivo or in vitro assays (12–14). While beneficial and well estab-
lished, these traditional viral detection methods have several disadvantages. First,
most methods are time-consuming, taking 14 to 28 days to complete (13, 15, 16).
During in vitro testing, bulk harvest material is inoculated onto detector cells that are
then observed after 2 to 4weeks for signs of viral infection (13, 15). In vivo tests are
also lengthy processes where the sample of interest is inoculated into virus-free ani-
mals, and the animals are then observed over several weeks. There are also in vivo spe-
cies-specific antibody production tests where the serum antibody levels are measured
after a specified period of time (12, 13, 17). Second, an alternate method, PCR-based
identification, requires the design of primers for a specific type of virus before it can be
identified, and therefore, this method requires prior knowledge of possible contami-
nants (1, 18). To overcome these challenges, next-generation sequencing (NGS) meth-
ods have recently been proposed as an alternative virus detection strategy (19–23).
NGS can be much faster, with the sequencing only taking 1 to 2 days, although the
sample processing and bioinformatics analysis can take anywhere from a few hours to
weeks depending on what methods are used. NGS also does not depend on virus-spe-
cific primers and supports the “replacement, reduction, and refinement” recommenda-
tions regarding animal testing (24, 25).

NGS approaches have great potential to replace or complement traditional meth-
ods for virus identification in biotherapeutic and vaccine production. However, there
are many possible options for the experimental and computational methods that can
be used in an NGS experiment. To converge toward consensus approaches, these var-
iations should be thoroughly tested and compared against each other and to the tradi-
tional virus detection procedures. Here, we investigate several different approaches for
performing the bioinformatics analysis that is required to assign taxonomic informa-
tion to sequencing reads. In brief, this analysis often involves finding homology
between the sequencing reads from a sample and known viral sequences. There are
several important decisions to consider before starting this analysis, including which vi-
ral reference database to use and whether or not to filter out host reads. There has
been previous work in building databases that cover the diversity of viral sequences
(different virus types, transposons, retroviral sequences, etc.), do not contain host
sequences, and maintain a reasonable size for querying (26). In addition, host filtering
is often recommended because it decreases the background noise caused by host ge-
nome reads when identifying virus sequences and speeds up the following classifica-
tion of nonhost reads (27, 28).

Another key decision is whether to use full sequence alignment methods to find
homology or to use k-mer-based approaches. Tools that rely on the full alignment of
reads to a database of sequences include tools which use BLAST (29) or Bowtie (30) for
alignment such as IMSA (31), PathoScope (32), VirusSeeker (33), and VirFind (34). In
contrast, k-mer-based methods, including Kraken (35), Kraken2 (36), KrakenUniq (37),
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Clark (38), and Centrifuge (39), find exact matches between small substrings (k-mers)
from the sequencing reads and sequences in a viral reference database. These short,
exact matches can be computationally identified much faster than full read length
nonexact alignments. As expected, k-mer-based approaches are often less sensitive
and specific when identifying species in diverse metagenomics samples but are signifi-
cantly faster than the full sequence alignment methods (28). The speed increase of
these tools will shorten the overall time needed to detect a contaminant in the bio-
therapeutic production process, increasing the potential application of these methods
as in-process tests performed throughout process development. Kraken-derived tools
(Kraken, Kraken2, and KrakenUniq) and Centrifuge (using custom databases) have
shown high precision and recall metrics in previous benchmarking studies (40, 41).
Although these studies have compared the performance of k-mer classifiers on meta-
genomics samples containing tens to hundreds of bacterial species, the authors are
unaware of any comparison among these tools for adventitious virus detection. Tool
performance could vary between detecting viruses versus bacteria due to length and
compositional differences between their genomes. For instance, virus genomes can be
significantly shorter than bacterial genomes and often have slightly higher gene den-
sities (42, 43), impacting the k-mer signatures created and used during read
classification.

In addition, these metagenomic tools are traditionally used for the discovery and
classification of microbes in environmental and medical samples. Samples from the
biotherapeutic or vaccine production processes will contain many fewer unique spe-
cies than these environmental or medical metagenomics samples, which can contain
up to thousands of microbial species (44). Therefore, it is possible that these faster NGS
approaches could reach suitable levels of sensitivity and specificity for this application,
although detecting low-level contaminants, novel viruses, and viruses distantly related
to known viruses could remain a challenge. Any virus that goes undetected during the
production of biologics poses a potential risk, and the sensitivity of these methods
thus requires further investigation using samples with lower levels of virus contamina-
tion than the ones used in this study.

Here, we test several existing metagenomics tools to see how well they perform on
NGS data sets from viral spike-in studies (simulated and real) and to assess their time
and memory requirements. Samples from these viral spike-in studies imitate samples
that could be taken during a contamination event in the biotherapeutic production
pipeline and contain up to five virus species. First, several tools were tested on simu-
lated NGS data sets to evaluate their performance and speed. A reduced number of
tools with the addition of host filtering were then applied to NGS data from viral spike-
in studies done with HeLa cells (45), enabling comparison to other bioinformatics anal-
ysis methods. We also applied the tools to spike-in studies done in CHO-K1 cells (46),
which allowed us to examine the impact of using different host reference genomes
(Chinese hamster versus CHO-K1) for read filtering.

RESULTS
NGS simulation of viral spike-in data. Four tools were assessed on simulated NGS

data, where various amounts of viral reads were simulated within a Chinese hamster
(CH) host cell background. Read counts and percent abundances were visualized for
each simulation data set for comparison across tools. We defined abundance as the
number of reads classified for a species divided by the total reads after quality control.
The results across simulation sets were generally consistent with all tools classifying
the majority of reads correctly (Fig. 1a; see also Fig. S1 in the supplemental material).
For simulation 1, which can be considered a negative control, Kraken2 and KrakenUniq
had no reads mapping to off-target sequences, i.e., sequences from species that were
not simulated, in the Reference Viral Database (RVDB), while Centrifuge only had one
off-target read and PathoScope had 54 off-target reads. For the other simulations,
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PathoScope often incorrectly identified the most off-target species, while Kraken2 gen-
erally had the most reads without a taxonomic assignment (“unclassified”).

We further evaluated the four tools by calculating the sensitivity, specificity, preci-
sion, accuracy, and the classification runtime of each tool (Table 1). KrakenUniq
showed significantly higher sensitivity (0.93) than the other tools. Kraken2 showed per-
fect precision and specificity on the simulation data sets but had much lower

FIG 1 (A) Estimated abundances from various virus classification tools for the simulation 2 (a) and simulation 6 (b) data sets. The “Expected” category
reflects the simulated abundance of each virus. The “Off-target Hits” category are reads that mapped to species that were not simulated.
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sensitivity (0.13) than the other tools. KrakenUniq, Centrifuge, and PathoScope also
maintained high specificity and precision (all .0.97). KrakenUniq, closely followed by
Centrifuge and then PathoScope, had the highest average accuracy. The fastest tools
were Kraken2 and KrakenUniq, followed by Centrifuge. The runtime of PathoScope
was significantly higher than that of the other tools, taking 20 times longer than
Centrifuge.

While we focused on how well the tools could identify viruses at the species level,
we briefly investigated if they were able to distinguish between virus serotypes by run-
ning them on the simulation 6 data set. Simulation 6 consisted of reads from three dif-
ferent serotypes of influenza A, and PathoScope appears to be the best at distinguish-
ing them (Fig. 1b), with the most reads classified at the strain level (59.64%).
KrakenUniq classified 37.85% of the reads at strain level, whereas Centrifuge classified
20.90%.

Based on these results, KrakenUniq and Centrifuge were selected for further study
on existing NGS data sets from viral spike-in studies performed in HeLa cells and CHO
cells. Kraken2 was excluded from further tests due to its low sensitivity on the simula-
tion data sets, and PathoScope was excluded due to its significantly longer computa-
tional time requirement than the other tools. KrakenUniq and Centrifuge also demon-
strated reproducibility, producing consistent results when run on the same NGS data
set multiple times (Centrifuge seed parameter set to the same value for each run).

Analysis of HeLa cell spike-in study data. Read counts and estimated percent
abundances from KrakenUniq, Centrifuge, KrakenUniq after host filtering (KrakenUniq-
HF), and BLASTn after host filtering (BLAST-HF) were compared to the results reported
by Khan et al. (45). In that study, three different labs were requested to do their own
sample preparation, sequencing, and bioinformatics analysis on virus spiked HeLa cells.
This enabled a comparison to three different bioinformatics approaches.

(i) KrakenUniq-HF is the most specific, while BLAST-HF is the most sensitive
approach. The first lab, Lab A, used BLASTn to query the raw reads against a viral data-
base from BioReliance/Millipore Sigma and confirmed viral hits against the NCBI nr/nt
database. The estimated abundances from our methods for Lab A’s mixed spike-in
sample, where virus was spiked-in at one genome copy per cell, show that the metage-
nomics tools work almost as well as using BLASTn on the full set of reads, even on rela-
tively small sequencing data sets (Fig. 2). Most comparable were our results from using
BLASTn to align the reads remaining after host (human) filtering to U-RVDB16, followed
by Centrifuge and KrakenUniq without host filtering. All tools, though, were able to
identify the expected viruses in approximately 2 million sequences, which is equivalent
to the number of sequences produced from a typical MiSeq run. This suggests that bio-
pharmaceutical companies may be able investigate a viral contaminant event using
the less expensive and faster Illumina MiSeq platform, rather than the NextSeq or
NovoSeq platforms, and detect viruses at the one or more genome copy per cell level.

TABLE 1Mean sensitivity, specificity, precision, accuracy, and runtime for each
metagenomics tool across the simulated data setsa

Metric Kraken2 KrakenUniq Centrifuge PathoScope
Sensitivityb 0.1339 0.9261 0.5924 0.4977
Specificityc 1.0000 0.9996 0.9977 0.9780
Precisiond 1.0000 0.9999 0.9994 0.9979
Accuracye 0.9704 0.9992 0.9986 0.9921
Time (h:min:s)f 00:00:25 00:01:45 00:05:59 01:45:55
aEach simulated data set consisted of approximately 10 million reads.
bReads correctly classified as one of the expected viruses divided by the total reads classified at the species level.
cReads correctly classified as not one of the expected viruses divided by the total reads classified as not one of
the expected viruses.
dReads that are correctly classified as one of the expected viruses divided by the total viral classifications made
(unclassified reads are not included).

eCorrectly classified reads divided by the total reads classified at the species level.
fReal time elapsed using 16 processors.
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However, it is important to note that MiSeq would not have the depth of coverage to
reach the limit of detection (LOD) needed for testing before cell bank or viral seed/
product release.

For the no spike-in sample from Lab A, there were no off-target hits for either
KrakenUniq or BLASTn with host filtering and a five-read cutoff (see Data Set S1, LabA-
5). However, the rapid metagenomics methods for all spike-in samples resulted in off-
target virus hits, i.e., they classified some of the reads as virus species that were not
spiked-in (Table 2; see also Data Sets S1 to S3). KrakenUniq-HF was frequently the most
specific with the fewest number of off-targets hits (Table 2; see also Data Sets S1 to
S3), followed by BLAST-HF (see Data Sets S1 to S3). For each tool and sample combina-
tion, several hits were classified as nonviral, which is most likely due to misannotations
in the reference database. There were also often viruses that were either closely related
to the viruses expected or were human endogenous viruses (Table 2). Further investi-
gation into the remaining off-target hits would be needed to determine whether they
were due to misannotations in U-RVDB16, the mapping approach of the tool, or were
actually present in the sample due to accidental contamination. Off-target read hits

FIG 2 Estimated species abundances from various virus classification tools for the Lab A mixed sample (HeLa cell lysate with
virus spiked in at 1 genome copy per cell) from Khan et al. (45). “HF” in the legend signifies that host filtering with KrakenUniq
was done before classification against U-RVDB16. The “Unclassified” category refers to reads that could not be mapped to the
host genome or U-RVDB16. The “Viral Off-targets Hits” category are reads that mapped to viruses other than the spiked-in viruses
and human endogenous viruses. The “Host (Homo sapiens)” category for Centrifuge and KrakenUniq are reads that mapped to the
human genome that was used in the reference database along with U-RVDB16. For KrakenUniq-HF and BLAST-HF, the “Host
(Homo sapiens)” category are reads that mapped to the human genome during the filtering step.

TABLE 2 Number of species identified by each classification tool for the Lab A mixed sample (HeLa cell lysate with virus spiked in at 1 genome
copy per cell) from Khan et al. (45)

Categorya

No. of species identifiedb

KrakenUniq Centrifuge BLAST† KrakenUniq†
Total species 80 184 121 58
Total species* 34 41 51 30
Total viral species* 26 32 43 24
Viruses that are not closely related to those expected* 19 26 30 16
Viruses that are not closely related to those expected and are not human
endogenous viruses*

19 26 29 16

Viruses that are not closely related to those expected, not human endogenous
viruses, and not in an RVDBv16 misannotated sequence list*

9 15 17 9

a*, A five-read cutoff was used, meaning that a species required five or more read hits to be counted.
b†, After human filtering.

MacDonald et al.

March/April 2021 Volume 6 Issue 2 e01336-20 msphere.asm.org 6

https://msphere.asm.org


that are unique to a certain tool are most likely caused by the mapping approach of
that tool. For Lab A mix, the majority of off-target viruses overlapped between tools
suggesting that they are either real contaminants in the sample or due to misannota-
tions in the RVDB. Examination of known misannotated sequences, i.e., sequences la-
beled with the incorrect species, in RVDB16 (https://rvdb.dbi.udel.edu/) suggested that
several of the viral off-target hits for each tool were due to misannotations, such as the
Semliki Forest virus, high island virus, white spot syndrome virus, and CRESS virus
(Table 2). Another indication that these viruses were most likely identified due to mis-
annotations was that they were identified across different samples from the three labs.

In addition to the results of Lab A, the results of the rapid viral detection tools on
the other sequencing data sets showed the benefit of using BLASTn after host filtering
(BLAST-HF) over using KrakenUniq after host filtering (KrakenUniq-HF). For instance,
BLASTn abundance estimates and read counts were more similar to those from the
bioinformatics analysis provided by Lab C, which involved mapping raw reads using
BWA-MEM (47) for HPV18, Reo1, FeLV, and RSV (Fig. 3). However, the computational
time requirement of BLASTn increases significantly as the number of reads increases
(Fig. 4) and therefore using BLASTn for the viral identification portion is not always
practical. BLASTn with fewer than 5 million sequences (reads or read pairs) required
less than 20 min to run and therefore may be acceptable for a rapid turnaround appli-
cation, but at higher sequencing depths the runtime of BLASTn could become prohibi-
tive. If there are more than 5 million sequences after host filtering, KrakenUniq could
be used instead. BLASTn and KrakenUniq both have linear increasing runtimes and
thus linear regressions of the data shown in Fig. 4 can be used to extrapolate how long
each tool will take for larger amounts of sequencing reads. Extrapolation to 1 billion
reads predicts that KrakenUniq’s runtime will remain under an hour and half, while
BLASTn will take 86 days. Although the number of parallel core jobs used to run
BLASTn could be increased if the computer resources were available, for BLASTn to
take the equivalent time KrakenUniq takes to analyze 100 million reads, BLASTn would
need ;64-fold more threads. This means that to get comparable times between run-
ning KrakenUniq with 16 threads and running BLASTn, BLASTn would need to be run
using just over 1,000 parallelized core jobs.

KrakenUniq mapped slightly fewer reads (0.8 to 2.7%) to the expected viruses after
host filtering (Fig. 3) compared to KrakenUniq without host filtering. One reason for
this could be that there were host reads that were not filtered out and then

FIG 3 Estimated species abundances from various virus classification tools for LabC-1 sample (HeLa whole cells with viruses
spiked in at 100 genome copies per cell) from Khan et al. (45). The “Unclassified” category refers to reads that could not be
mapped to the host genome or RVDBv16.
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erroneously mapped to one of the viruses. However, it is possible that some viral reads
mapped to the host during host filtering and therefore were not available for mapping
to the viruses. The latter, if true, could result in a slight loss of sensitivity for
KrakenUniq-HF versus KrakenUniq for the identification of viruses at low abundances.
For instance, at one genome copy per cell, the decrease in reads mapping between
KrakenUniq and KrakenUniq-HF is 4.3 to 46.3% (see Data Set S3, LabC-3). This equates
to a decrease of about 0.000008 to 0.00006 in percent abundance (8 to 60 reads per
million), meaning that loss of detection of a virus would only happen if its percent
abundance is less than this decrease which occurs at ;0.86 genome copies per cell.

(ii) Limit of detection of the rapid metagenomics approaches meet current
industry standards. Labs B and C in the Khan et al. study (45) systematically decreased
the amount of viral spike-in in the samples to determine the LOD of their approaches.
Therefore, we could compare the LOD of our bioinformatics analyses to each of these
labs. For example, Lab B spiked in the four viruses in both HeLa whole cells (to simulate
cell bank testing) and HeLa cell lysate (to simulate crude harvest) at 0.1, 3, and 100 ge-
nome copies per cell resulting in six different sequencing data sets. They used a bioin-
formatics approach that identified assembled contigs and remaining unassembled
reads based on their phylogenetic distance from a set of reference sequences. The
LOD for FeLV for our bioinformatics methods, as well as Lab B’s method, was between
0.1 and 3 genome copies per cell because no reads were identified as FeLV in the
LabB-6 HeLa cell lysate sample which had viruses spiked-in at 0.1 genome copies per
cell (Fig. 5a). The LODs of RSV and EBV for our approach and that of Lab B were ,0.1
genome copies per cell as RSV and EBV reads were still identified in this sample. The
LOD of Reo1 in HeLa lysate across all bioinformatics approaches, including that of Lab
B, was between 3 and 100 genome copies per cells (Fig. 5b). For the HeLa whole cell
samples, the results showed that the viruses had the same LODs as they did in the
HeLa cell lysate samples, except that Reo1 was identified at three genome copies per
cell (Fig. 6). These LODs are comparable to ones previously reported for detection of
adventitious viruses using NGS (48) and fall within current industry standards for viral
detection (13). The LODs are also similar to that of quantitative PCR (45, 49–51) in
some cases, which is considered the gold standard technique for adventitious virus
detection due to its low sensitivity (45). However, direct comparison among LODs of vi-
ral detection assays is difficult because LODs depend on the type of virus, the host
background, and variations in the experimental protocol, including primer design,

FIG 4 Runtimes for the tested tools when applied to samples from the HeLa cell viral spike-in study (45). Each
tool was run three times on each sample using 16 threads on an AMD Opteron 6386 SE processor with 256 GB
of RAM. KrakenUniq-HF and BLAST-HF are the times required by the KrakenUniq and BLAST, respectively, after
host reads were filtered.
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cycle parameters, reagents, and nucleic acid extraction methods for PCR-based assays
(50, 52).

(iii) Total viral read count correlates with spike-in concentration as expected.
There is a clear downward trend in total estimated viral abundance as the amount of
viral spike-in decreases as shown by Lab B whole cell spike-in samples 1 to 3 (Fig. 7).
There is about a 45-fold difference in the number of reads classified as viral by the
rapid metagenomics tools between the 0.1 viral genome per cell spike-in (;20,000
reads) and the three viral genomes per cell spike-in (;900,000 reads), and an ;50-fold
difference for Lab B’s bioinformatics approach. The number of reads classified as viral
for the 100 viral genomes per cell spike-in (;3,600,000 reads) was ;4-fold higher than
that of the three viral genomes per cell spike-in for both the approaches tested here
and that of Lab B. Assuming the abundances from Lab B are the most accurate,
BLASTn with filtering slightly out performs KrakenUniq without filtering, followed by
KrakenUniq with filtering. Results from the tools on the other NGS data sets from Khan

FIG 5 Estimated species abundances from various virus classification tools for the LabB-6 HeLa cell lysate sample with 0.1 genome copies of each virus
per cell (a) and the LabB-5 HeLa cell lysate sample with 3 genome copies of each virus per cell (b). The “Unclassified” category refers to reads that could
not be mapped to the host genome or RVDBv16.
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et al. (45) can be found in the supplemental material (see Data Sets S1 to S3 and
Fig. S2 to S4).

Analysis of CHO cell spike-in study data. KrakenUniq, Centrifuge, KrakenUniq after
host filtering, and BLASTn after host filtering were applied to NGS data sets from CHO
cell viral spike-ins from Chiang et al. (46). This allowed us to gain insights on how well
these tools work identifying viruses in samples with CHO cell host DNA, which is rele-
vant for adventitious virus testing during the production of biotherapeutic proteins.
We also investigated potential benefits of using both a CHO cell line-specific genome
and the CH reference genome to filter out host reads.

All tools were able to identify the viruses spiked into each sample (see Data Set S4
and Fig. S5). This includes reovirus, which was spiked-in at only 13 virus particles for ev-
ery 10,000 CHO cells (Fig. 8). Interestingly, the tools also identified some potential
cross-contamination of viral spike-ins. For instance, for the Reo3 spike-in (experiment
1), encephalomyocarditis virus (EMCV) and vesicular stomatitis virus (VSV) were also
identified, albeit at low abundances (Fig. 8). In addition, while each tool estimated simi-
lar abundances of reovirus at the species level, they did vary on how well they

FIG 6 Estimated species abundances from various virus classification tools for the LabB-2 HeLa whole cell sample with three
genome copies of each virus per cell. The “Unclassified” category refers to reads that could not be mapped to the host genome
or RVDBv16.

FIG 7 Viral read counts per million of the total sequencing reads for the HeLa whole cell samples from Lab B that received different amounts of viral
spike-ins (Lab B samples 1 to 3). These spike-in samples consisted of RSV, FeLV, EBV, and Reo1, each spiked-in at the concentration on the x axis.
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identified the reovirus 3 serotype. KrakenUniq and BLASTn correctly identified the ma-
jority of reovirus reads as Reo3 (ca. 60 and 99%, respectively), while Centrifuge could
only identify approximately 5.5% of the reovirus reads as the correct serotype (see
Data Set S4).

The results for each sample also show the benefit of using the CHO-K1 genome in
addition to the 2018 CH genome. These two genome assemblies share about 95% cov-
erage with 99.3% identity (https://www.ncbi.nlm.nih.gov/genome/annotation_euk/
Cricetulus_griseus/103/). For all methods, the number of unclassified reads decreased
almost 10-fold when using both genomes rather than just the 2018 CH genome. When
using both genomes to filter out host reads, there is also a corresponding increase in
reads identified as CH/CHO as expected. While the differences in read counts/abundan-
ces when using both genomes did not usually impact the final species counts for the
tools, it did for the Reo3 experiment 1 spike-in sample. KrakenUniq with filtering using
both genomes had one less off-target species identified than KrakenUniq using only
the 2018 CH PICR genome (Table 3), suggesting that using both genomes for host fil-
tering may reduce false positives. We also observed only a small increase in execution
time and maximum memory usage when filtering with both genomes (see Data Set

FIG 8 Estimated percent abundances from various virus classification tools for the reovirus-3 spike-in (experiment 1) NGS data
set (46). The host reference genome was either the 2018 CH genome (CriGri-PICR, GCF_003668045.1) or both the 2018 CH and
2011 CHO-K1 (CriGri_1.0, GCF_000223135.1) genomes as distinguished in parentheses in the legend. “HF”’ in the legend signifies
that host filtering with KrakenUniq was done before classification against U-RVDBv16. The “Viral Off-target Hits” category are
reads mapping to viruses other than the spiked-in virus (reovirus) and the possible cross-contamination viruses (EMCV and VSV).

TABLE 3 Number of species identified by each classification tool using the RNA sequencing data (SRR7779195) generated from the Reo3
experiment 1 spike-in sample (46)a

Categoryb

No. of speciesc

KrakenUniq Centrifuge BLAST† KrakenUniq† KrakenUniq‡ Centrifuge‡ BLAST§ KrakenUniq§
Total species 66 158 59 41 59 114 59 38
Total species* 39 53 23 21 34 47 23 19
Total viral species* 35 48 20 18 30 41 20 17
Viruses not closely related to reovirus* 33 46 17 16 28 39 17 15
aThe host reference genome is either just the 2018 CH genome or both the 2018 CH genome and the 2011 CHO-K1 genome (see footnotes). The viral reference database
used for all tools is U-RVDBv16.

b*, A five-read cutoff was used, meaning that a species required five or more read hits to be counted.
c†, After CH filtering; ‡, with CHO-K1 added to the reference database; §, after CH and CHO-K1 filtering.
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S4) with an average real-time increase of about 40 s with 16 threads and an average
memory increase of 1.08 gigabytes.

Assessment of divergent match sensitivity. To further examine the read mapping
sensitivity of KrakenUniq and BLASTn, reads were simulated from sequences that var-
ied from an initial viral genome to reflect biodiversity that could be seen within a virus
species. These reads were then mapped to the initial viral genome, which was the only
sequence in the reference database for the two tools. The trends in read mapping
counts were similar for the three viruses tested (see Data Set S5). For each virus ge-
nome, KrakenUniq was able to map more than 97% of the reads from sequences that
were 95% or more similar to the viral genome. KrakenUniq also performed well for
reads from sequences with 93% similarity, correctly mapping more than 85% of the
reads. BLASTn had a higher sensitivity than KrakenUniq and was able to map more
than 99% of the reads from sequences with 95% or more similarity. For reads from
sequences with 93% similarity, BLASTn could map more than 93% of the reads to the
viral genome.

The simulated reads from the three viruses were also mapped to U-RVDB16 using
KrakenUniq and BLASTn to examine the tools’ sensitivity when off-target sequences
exist in the reference viral database (Table 4; see also Data Set S5). Overall, BLASTn
showed better sensitivity than KrakenUniq for read mapping against the U-RVDB16,
but KrakenUniq was still able to classify more than 90% of reads, simulated from
sequences with approximately 95% similarity, as the correct species for all three
viruses. In addition, at the 95% similarity level, 99% or more of the reads were mapped
to the correct viral family. Even at the 90% similarity level, all reads either mapped to
the expected viral family or they could not be classified, meaning that no reads were
mapped to viruses outside the expected viral family. One unexpected result was the
percentage of reads that mapped to the HIV-1 species by KrakenUniq using simulated
reads from the sequence with 100% similarity to the HIV-1 genome (see Data Set S5).
This percentage of reads was 80% rather than the 91 to 99% from sequences with the
other similarity levels. This was the case for several simulated read sets and each time
about 20% of the reads were classified into the correct genus but could not be further
classified at the species level. These results suggest that both KrakenUniq and BLASTn
are sensitive enough to classify the large majority of reads as the correct virus species,
even when reads are from virus sequences with only 95% similarity to the correspond-
ing viral sequence in RVDB.

TABLE 4 Average percentages of reads mapped to U-RVDB16 at each taxonomic level for
various amounts of mutations simulated in the original virus genomes of HIV-1, MVM, and
reovirus 3 Dearing

% Similarity to virus genome Family (%) Genus (%) Species (%) Unclassified (%)
KrakenUniq
100 100 95.82 90.18 0
98.06 99.98 95.98 95.06 0.017
97.15 99.71 96.25 95.17 0.29
96.15 99.6 95.60 94.1 0.40
95.07 99.36 95.28 93.98 0.64
93.08 93.08 87.49 84.77 6.92
90.01 73.03 68.60 65.35 26.97

BLAST
100 100 100 99.87 0
98.06 99.98 99.98 99.15 0.02
97.15 99.84 99.84 99.63 0.16
96.15 99.76 99.76 99.15 0.24
95.07 99.70 99.70 99.55 0.30
93.08 96.70 96.70 96 3.23
90.01 85.23 85.20 83.26 13.77
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DISCUSSION

The use of NGS for viral detection during the production of biotherapeutics and
vaccines provides several benefits over existing viral detection methods and therefore,
has potential to complement or replace the standard methods. Here, we investigated
using metagenomics tools for the taxonomic classification of sequencing reads on
simulated and public NGS data sets. If sequencing read classification can be completed
quickly and accurately, the bioinformatics analysis portion of NGS could provide very
rapid turnaround time for virus detection and in the future, could be set up as a web-
based tool, providing a user-friendly, intuitive interface that does not require potential
users to have command-line experience.

Several of the rapid k-mer-based approaches had high accuracy, sensitivity, and
specificity metrics on the simulated data sets, which represented cases where the
metagenomics samples contain only a few viruses in a host background. KrakenUniq
and Centrifuge had the best performance metrics and were subsequently further
tested on real NGS data sets from two previously published viral spike-in studies (45,
46). Results on the real NGS data sets suggest that the best approach to classify NGS
reads quickly as viral/nonviral is to first filter host reads using KrakenUniq, followed by
classification of the remaining reads using either KrakenUniq or BLASTn depending on
the scale of remaining data. BLASTn showed slightly higher sensitivity than
KrakenUniq. However, the time BLASTn takes to query NGS reads against the RVDB sig-
nificantly increased based on the amount of NGS reads, becoming much greater than
KrakenUniq’s runtime after approximately 5 million reads. Therefore, we suggest using
a cutoff of 5 million reads to decide between using KrakenUniq or BLASTn for read
classification after host filtering.

Ideally, a high-quality genome assembly for the specific cell line being used to pro-
duce biotherapeutics would be used for host read filtering. However, these high-qual-
ity cell line assemblies are often not available. Therefore, we investigated using the
publicly available, high quality CH reference genome (53) alone and along with the
lower quality CHO-K1 genome assembly (54) for host read filtering. Using both assem-
blies gave fewer unclassified reads, a slight increase in reads identified as host, and it
decreased the amount of off-target viral hits in one of the samples examined in this
study. As the quality of a given host cell’s genome assembly is improved (55), the per-
formance of these approaches is expected to improve. There was also a minimal
increase in time and memory when using an additional genome for host filtering.
Thus, we suggest using a cell line-specific genome (such as one for CHO-K1, DG44,
etc.) in addition to the high-quality CH reference genome if available. However, if the
cell line genome is not available, using the CH genome alone to host filter is a viable
option.

There are still several challenges facing the use of NGS for adventitious virus testing,
including shortcomings that are specific to using rapid metagenomics methods to
detect and classify viruses. One main challenge facing the rapid metagenomics
approaches tested in our work will be to reduce the number of false-positive results
without reducing sensitivity. Each positive result would need to be confirmed through
additional assays, such as PCR, and thus false-positives could add to development
timelines, which might be acceptable during upstream testing during early develop-
ment but more difficult for testing of the final drug product. Thus, the false-positive
rate also suggests that NGS approaches may be best suited for in-process viral testing
rather than replacing current final release assays. Further updates to RVDB may help
decrease incorrect classification of reads since the updates will involve the removal of
nonviral sequences that may have previously been incorrectly classified as viral in the
NCBI database or other sources. In addition, more analyses would help determine the
most appropriate read cutoff, or other strategies, that could help reduce false positives.
Overall, the selection of the cutoff value causes a trade-off between specificity and sen-
sitivity with stringent cutoff values possibly filtering out viruses at low concentrations.
A future method to investigate could be to apply a less-stringent cutoff to reads after
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they have been filtered based on mapping quality and/or position, enabling species
with high quality and coverage to be highlighted. Another limitation of k-mer-based
approaches is that they do not perform as well as full-read alignment methods regard-
ing novel virus detection. If novel virus detection were of interest, using BLASTn as the
virus classifier with low stringency parameters and in-depth hit follow up would be
more suitable than using KrakenUniq as the classifier. However, PCR-based assays,
which are currently used to detect adventitious viruses, have no ability to detect novel
viruses.

Other challenges facing the use of NGS for viral detection include the fact that NGS
detects the presence of viral nucleic acids and not actively replicating virus. For
instance, NGS can detect remnant endogenous viral sequences that are often not
cause for concern unless they can produce viral particles. In addition, if a viral contami-
nant has not been sequenced before or its sequence is not in the viral database being
used in the pipeline, the virus could go undetected or be classified incorrectly.
Nonetheless, there are many benefits to NGS for adventitious agent detection that
make it an important approach for the industry.

Once a rapid metagenomics pipeline is set up, further investigation into the pipe-
line’s precise LODs for the virus types frequently seen in contamination events in vari-
ous host cell backgrounds would be beneficial to provide users with an understanding
of the pipeline’s capabilities and limits. For the viruses and protocols examined here,
the LODs of the rapid metagenomics tools were all comparable to ones reported for
NGS (21, 45, 48) and were comparable or better than LODs from other viral detection
methods, including the most sensitive method currently used, qPCR (45, 49–51).
However, it is important to note that the sensitivity of KrakenUniq and BLASTn for
detecting small amounts of virus in a sample needs to be further investigated because
all of the data sets examined in this study had relatively high quantity of virus, repre-
senting high levels of viral contamination.

Further inquiry into whether viral reads are being removed during host filtering
would also be of interest. Reads from endogenous viruses would be filtered out during
the process if they exist in the host genome sequence, but this can be prevented by
masking the endogenous viral sequences. A remaining question is whether other types
of viral reads map to similar regions in the host genome and would also be filtered
out, obscuring detection of these viruses.

In conclusion, k-mer-based metagenomics approaches for read classification, specif-
ically KrakenUniq, could be used as part of a fast pipeline to detect and classify known
viruses in NGS data sets. These NGS data sets could be generated from samples taken
at multiple points, such as cell banking and crude harvest, during the biotherapeutic
production process. The specificity of these tools will continue to improve with the
curation of the viral reference database and further investigation into read filtering pa-
rameters. Overall, fast, sensitive, and specific viral detection enabled by NGS analysis
will facilitate safer and more efficient biomanufacturing of biologics.

MATERIALS ANDMETHODS
Reference database and taxonomic assignment. Sequencing reads from each data set were

assigned an NCBI viral taxonomic code at the species level by querying the unclustered Reference Viral
Database version 16 (U-RVDB16) (26). U-RVDB16 contains approximately 2.8 million viral, virus-like, or
retroviral sequences, excluding bacteriophages. The RVDB undergoes regular updates that are accessible
from https://rvdb.dbi.udel.edu/, along with a list of misannotated sequences. Taxonomy codes were
then converted into species names using the NCBI taxonomy dump files (downloaded on 15 October
2019), either by the tools themselves as described in their documentation (Kraken2, KrakenUniq, and
Centrifuge) or by a custom script (PathoScope and BLASTn).

NGS simulation of viral spike-in data. After initial review of existing metagenomics tools, Kraken2,
KrakenUniq, Centrifuge, and PathoScope were selected for testing on simulated NGS data sets. These
tools were selected since they were able to use a custom reference database and appeared to be less
computationally intensive than other available tools. Five million paired-end reads of 126 bp in length
were simulated using InSilicoSeq v1.4.3 (56) with the provided Illumina HiSeq error model for six data
sets. Reads were then trimmed using TrimGalore (www.bioinformatics.babraham.ac.uk/projects/trim
_galore/) with a Phred quality score cutoff of 24 and a minimum length of 75 bp. For each simulation,
the vast majority of reads (.99%) were created from the Chinese hamster (CH) reference genome
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(CriGri-PICR, GCF_003668045.1) (53) to simulate host background sequences. Various amounts of reads
were created from reference viral genomes to simulate viral spike-ins (Table 5). Simulation 1 contained
only reads from CH as a negative control. Simulations 2 to 4 contained reads simulated from the
genomes of MVM, epizootic hemorrhagic disease virus (EHDV), and Cache Valley virus (CVV). These three
viruses are known to infect CHO cells and have been found in previous contamination events.
Simulation 5 contained reads from the genomes of EHDV and bluetongue virus, which are both from
the Reoviridae family. Simulation 6 contained reads from three serotypes of influenza A: H3N2, H2N2,
and H1N1. Each data set was run through PathoScope, Kraken2, KrakenUniq, and Centrifuge using
default parameters and a reference database containing sequences from U-RVDB16 and the CH PICR ge-
nome. The mean sensitivity, specificity, precision, accuracy, and classification runtimes for each tool
were calculated. For calculating average runtimes, each tool was applied to each data set three times
and were run using 16 threads on machines with the same specifications (AMD Opteron 6386 SE proces-
sor, 16 cores, and 256 GB of physical memory) after reference database setup was completed. During
the initial use of the software, overhead time is required for setup of KrakenUniq (several minutes) and
PathoScope (several hours). These initial runs were not used in the calculation of runtimes.

Analysis of HeLa cell spike-in study data. The two tools that performed best on the simulation
data, KrakenUniq and Centrifuge, were used to identify viruses in NGS data sets from virus spike-in stud-
ies described in Khan et al. (45). In these studies, three different labs performed various protocols to pre-
pare and sequence virus spike-in samples, as well as unique bioinformatics methods to classify the
resulting sequencing reads. In addition to identifying reads that could be classified as the virus(es) of in-
terest, each lab identified reads that aligned to the human papillomavirus type 18 (HPV18) because it is
integrated into the HeLa cell genome (57).

In brief, Lab A carried out single spike-ins of Epstein-Barr virus (EBV), human respiratory syncytial vi-
rus A (RSV), feline leukemia virus (FeLV), reovirus-1 (Reo1), and porcine circovirus 1 (PCV1) at an approxi-
mate ratio of one viral genome copy per cell (see Data Set S1, Lab A Sample Info). Lab A also spiked-in
five viruses into a single sample. DNA and RNA in the samples were sequenced using a Roche 454 GS
FLX, producing approximately 1.5 to 2 million single-end reads per sample. Lab A used BLASTn to align
the raw reads to a proprietary virus database (BioReliance/Millipore Sigma) to classify the sequencing
reads.

Lab B did two sets of low (0.1 genome copies per cell), medium (3 genome copies per cell), and high
(100 genome copies per cell) mixed spike-ins of RSV, FeLV, EBV, and Reo1 (see Data Set S2, Lab B Sample
Info). One set of spike-ins was done in HeLa whole cells, while the other set was done in HeLa cell lysate,
resulting in six samples. They sequenced DNA and RNA from their samples using an Illumina HiSeq
1500, which resulted in 200 to 300 million paired-end reads per sample. For the bioinformatics analysis,
Lab B first assembled the sequencing reads and then used the proprietary PhyloID software (58) to clas-
sify taxonomically the assembled reads, as well as any single reads that could not be assembled.

Lab C also did a low, medium, and high mixed spike-in of RSV, FeLV, EBV, and Reo1 similar to Lab B.
However, they sequenced only DNA in one set of samples and only RNA in the other set (see Data Set
S3, Lab C Sample Info). These samples were sequenced using an Illumina HiSeq 2500, which generated
250 to 400 million paired-end reads per sample. Lab C carried out targeted mapping with BWA-MEM
(47) to align raw reads to the virus genomes of interest after filtering reads that aligned to the human
reference genome. More information on the viral spike-ins and sequencing is described in Khan et al.
(45).

For our analysis, reads in each NGS data set were trimmed by TrimGalore with a minimum quality
value of 26 and minimum length of 65 bp. All data sets were run through KrakenUniq and Centrifuge
using a reference database containing sequences from U-RVDB16 and the human reference genome,
GRCh38. To test the benefits of host filtering, all data sets were also run through KrakenUniq using only
the GRCh38 genome as the reference database. Reads that were not identified as human were then run
through KrakenUniq or BLASTn using a reference database of U-RVDB16. Centrifuge was excluded from
this analysis because it did not perform as well as KrakenUniq in classifying viral reads against the U-
RVDB16 and the human reference genome. BLASTn was only used after human filtering and was not
used to search against a reference database containing both U-RVDB16 and the human reference ge-
nome due to the intensive time requirement of BLAST. Runs for benchmarking the four methods were
carried out three times for each sample on machines with the same specifications (AMD Opteron 6386
SE processor, 16 cores, and 256 GB of physical memory).

TABLE 5 Numbers of reads and resulting percent abundances generated in each NGS simulation data seta

Test set

No. of reads (% abundance)

Total (after QC) CH MVM EHDV CCV Bluetongue virus H3N2 H2N2 H1N1
Sim1 9,984,072 9,984,072 (100) 0 0 0 0 0 0 0
Sim2 9,984,202 9,884,202 (99) 98,000 (0.98) 1,700 (0.017) 300 (0.003) 0 0 0 0
Sim3 9,984,202 9,884,202 (99) 98,000 (0.98) 1,100 (0.011) 900 (0.009) 0 0 0 0
Sim4 9,984,202 9,884,202 (99) 32,948 (0.33) 33,606 (0.34) 32,948 (0.33) 0 0 0 0
Sim5 9,984,042 9,884,202 (99) 0 41,933 (0.42) 0 57,907 (0.58) 0 0 0
Sim6 9,984,200 9,884,202 (99) 0 0 0 0 24,960 (0.25) 44,929 (0.45) 29,953 (0.30)
aThe numbers of reads in simulation 2 (Sim 2) to Sim 5 for each virus were chosen to cover a range of viral abundances, while the numbers of reads in Sim 6 were selected to
determine how well the tools could distinguish between viral strains at similar abundances.
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Analysis of CHO cell spike-in study data. Similar approaches to those explained above were
applied to NGS data sets from Chiang et al. (46) (see Data Set S4, Sample Info). These data sets were
derived from sequencing cell lysate samples from CHO-K1 cells that had been infected by one of three
different RNA viruses: VSV, EMCV, or reovirus 3 (Reo3). The VSV spike-in resulted in a multiplicity of infec-
tion (MOI) of 0.003, meaning there were three virus particles for every 1,000 CHO cells. The EMCV and
Reo3 spike-ins resulted in an MOI of 0.007 and 0.0013, respectively. More information on the viral spike-
ins and RNA sequencing can be found in Chiang et al. (46).

For our analysis, reads from each data set were trimmed by TrimGalore with a minimum quality
value of 26 and minimum length of 65 bp. All data sets were run through KrakenUniq and Centrifuge
using a reference database containing sequences from U-RVDB16 and the 2018 CH PICR genome. In
addition, all data sets were run through KrakenUniq and BLASTn after host read filtering. Host filtering
consisted of using KrakenUniq with either a reference database containing only the 2018 CH PICR ge-
nome sequences or a reference database containing both CH PICR and CHO-K1 (GCF_000223135.1) (54)
sequences. The remaining reads, which were not classified as CH reads, were then queried against U-
RVDB16 using KrakenUniq or BLASTn. Again, Centrifuge was not used in this analysis because of its per-
formance against the U-RVDB16 and the CH reference genome.

Assessment of divergent match sensitivity. The read mapping sensitivity of KrakenUniq and
BLASTn was further investigated by simulating 100� coverage of reads from sequences created by gen-
erating mutations within a viral genome. The mutations were simulated using TreeToReads (59), produc-
ing sequences with various levels of percent similarity (90 to 100%) to the initial virus genome. The input
genomes were Reo3 Dearing (GCA_006298385.1), human immunodeficiency virus 1 (GCF_000864765.1),
and MVM (GCF_000838465.1). ART (60), within TreeToReads, was used to simulate 125-bp-long paired-
end reads with the Illumina HiSeq2500 error profile for each mutated sequence. These reads were then
mapped twice using KrakenUniq and BLASTn, once to a reference database containing only the initial vi-
rus genome and once to RVDBv16.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
DATA SET S1, XLS file, 0.1 MB.
DATA SET S2, XLS file, 0.1 MB.
DATA SET S3, XLS file, 0.1 MB.
DATA SET S4, XLS file, 0.1 MB.
DATA SET S5, XLS file, 0.04 MB.
FIG S1, TIF file, 0.7 MB.
FIG S2, TIF file, 1.2 MB.
FIG S3, TIF file, 1.1 MB.
FIG S4, TIF file, 1.2 MB.
FIG S5, TIF file, 1.2 MB.
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