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ABSTRACT. Stable reference genes are important for gene expression analyses such as 
quantitative PCR. The stability of 15 candidate reference genes that can be used to developing 
mouse gonads was thoroughly verified using combinations of multiple algorithms. The expression 
of these genes fluctuated greatly depending on the analysis period and/or gender. Peptidylprolyl 
isomerase A (Ppia) and polymerase (RNA) II (DNA directed) polypeptide A (Polr2a) were the 
reference genes that were used stably for a wide analysis period in developing mouse gonads. 
Furthermore, the stable reference genes corresponding to the analysis period and/or gender were 
ranked. These results are useful for the selection of the optimal reference gene required for high-
precision measurements.
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Testes in males (XY) and ovaries in females (XX) are the organs that generate gametes (germ cells). They arise from an 
undifferentiated bipotential gonad replies on the expression of the sex-determining region of the Y chromosome (SRY/Sry). In XY 
gonads that differentiate into testes, cell differentiation and proliferation occur under the influence of Sry-expressing Sertoli cells 
[15]. In this process, various kinds of genes are expressed in a specific spatiotemporal manner. As a result, the cell types in the 
gonad increase and their ratio change. Both expressed genes and developmental stages of germ cells differ in the gonads of males 
and females. Gene transfer and gene knockout methods in mice are important for elucidating these mechanisms. In particular, the 
C57BL/6 strain, which is referred to as a mouse reference sequence, is frequently used, and the expression of many genes has been 
measured [15]. In order to elucidate the developmental process of gonads, both histological methods to examine localization of 
expression and molecular biological methods to examine the expression level are essential.

Stably expressed genes called housekeeping genes, such as actin, beta (Actb), glyceraldehyde-3-phosphate dehydrogenase 
(Gapdh), and 18S ribosomal RNA (Rn18s), are commonly used to normalize mRNA expression levels between different samples 
in quantitative polymerase chain reaction (qPCR) studies [4, 11]. Nucleic acids used for measurement include experimentally 
generated errors such as cell number, mRNA extraction degree, and transcription efficiency into complementary DNA (cDNA), 
and are normalized by dividing by the value of the stably expressed gene (reference gene). The expression levels of these genes 
may vary depending on cell type, tissue, gender, and developmental stage, and may change further under experimental conditions 
[11]. Adjusting the cell number or reverse-transcription efficiency using fluctuating genes produces large errors [19]. Therefore, the 
selection of reference genes is crucial for gene expression studies [4, 11]. However, the information on stable reference genes in 
mouse gonads has been reported only at the early development stage (11.5–14.5 days post coitum (dpc)) [17] and at the postnatal 
stage (neonate to 5 months) [8].

Today algorithm-based ranking methods, such as geNorm (https://genorm.cmgg.be/) [21], NormFinder (https://moma.dk/
normfinder-software) [2], and BestKeeper (https://www.gene-quantification.de/bestkeeper.html) [13], are commonly used for the 
selection of reference genes. GeNorm repeats the procedure of eliminating the lowest stability gene, using the correlation of gene 
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expression [21]. NormFinder determines the stability of genes using intragroup and intergroup gene expression variance [2]. The 
feature of BestKeeper is to use the Ct (threshold cycle) value, and the stability is determined based on the variance of the cycle 
number [13]. However, because the results of each calculation algorithm are different from each other, it is difficult to decide which 
to adopt [11]. Several reports have merely described the results for each method [5, 14, 23], while other reports decided the final 
ranking from the arithmetic mean or geometric mean of ranks on each test [3, 18]. In the present study, we calculated the stability 
of reference genes from three different algorithms and identified stable reference genes in the gonads from the undifferentiated to 
adult stages.

C57BL/6NCrSlc mice were purchased from SLC Japan (Hamamatsu, Japan) and maintained as described elsewhere [20]. Male 
and female mice or their fetuses were used at 10.5, 11.5, 12.5, 13.5, 14.5, 15.5, 16.5, 17.5, 18.5 dpc, neonate, 5-week-old, and adult 
(male: 39 weeks; female: 29 weeks). This study was approved by the Institutional Animal Care and Use Committee (Permission 
#22-8-03) and carried out according to the Kobe University Animal Experimental Regulations.

The gonad-mesonephros complex (only at 10.5 dpc) or gonads were collected from three animals at each time point immediately 
after euthanasia, which was accomplished under deep anesthesia with isoflurane. Bilateral samples of each individual were 
collected and used together. Total RNA was extracted with the ReliaPrep RNA Cell Miniprep System (Promega, Madison, WI, 
U.S.A.), including on-column DNaseI treatment. For cDNA synthesis, a PrimeScript RT reagent Kit (Takara Bio, Kusatsu, Japan) 
with both random hexamer primers and oligo (dT) primers was used according to the manufacturer’s procedures. The cDNA 
samples were diluted 10 times with EASY Dilution (Takara Bio) and divided into small amounts to avoid freeze-thaw cycles. 
Real-time PCR was performed on a Thermal Cycler Dice TP-860 system (Takara Bio) using SYBR Premix EX TaqII (Takara Bio). 
The cycling parameters were as follows: thermal activation for 10 sec at 95°C and 50 cycles of PCR (melting for 5 sec at 95°C, 
annealing for 10 sec at 60°C, and extension for 120 sec at 72°C). The applied primers are listed in Table 1. Melting temperature 
analysis and electrophoresis of the PCR products were performed for each experiment to verify that only single products were 
amplified. The second derivative maximum method was used to determine the Cycle quantification. Each run was designed to 

Table 1. Primer sequences for reference genes

Gene 
symbol

Accession 
number Gene name Primers (5′-3′) Size 

(bp)

References 
of primer 
sequences

Actb NM_007393 Actin, beta F: CTAAGGCCAACCGTGAAAAG 104 [17]
R: ACCAGAGGCATACAGGGACA

B2m NM_009735 Beta-2 microglobulin F: TGCTACTCGGCGCTTCAGTC 200 [9]
R: AGGCGGGTGGAACTGTGTTAC

Gapdh NM_008084 Glyceraldehyde-3-phosphate dehydrogenase F: CGTCCCGTAGACAAAATGGT 110 [17]
R: TTGATGGCAACAATCTCCAC

Gusb NM_010368 Glucuronidase, beta F: CACGGCGATGGACCCAAGAT 86 -
R: CCCATTCACCCACACAACTGC

Hprt NM_013556 Hypoxanthine guanine phosphoribosyl transferase F: AGGCCAGACTTTGTTGGATTTG 136 -
R: CTTAGGCTTTGTATTTGGCTTTTCC

Pgk1 NM_008828 Phosphoglycerate kinase 1 F: CTGACTTTGGACAAGCTGGACG 110 [22]
R: GCAGCCTTGATCCTTTGGTTG

Polr2a NM_009089 Polymerase (RNA) II (DNA directed) polypeptide A F: ATCAACAATCAGCTGCGGCG 144 -
R: GCCAGACTTCTGCATGGCAC

Ppia NM_008907 Peptidylprolyl isomerase A F: CGCGTCTCCTTCGAGCTGTTTG 150 [22]
R: TGTAAAGTCACCACCCTGGCACAT

Rn18s NR_003278 18S ribosomal RNA F: GATCCATTGGAGGGCAAGTCT 103 [17]
R: CCAAGATCCAACTACGAGCTTTTT

Rplp0 NM_007475 Ribosomal protein, large P0 F: AGATTCGGGATATGCTGTTGGC 109 [25]
R: TCGGGTCCTAGACCAGTGTTC

Sdha NM_023281 Succinate dehydrogenase complex, subunit A, 
flavoprotein (Fp)

F: TGTTCAGTTCCACCCCACA 66 [17]
R: TCTCCACGACACCCTTCTGT

Tbp NM_013684 TATA box binding protein F: GCTCTGGAATTGTACCGCAG 130 -
R: TGACTGCAGCAAATCGCTTG

Tfrc NM_011638 Transferrin receptor F: GGCGCTTCCTAGTACTCCCT 162 -
R: TCTGCAGCCAGTTTCATCTCCA

Ubc NM_019639 Ubiquitin C F: AGGTCAAACAGGAAGACAGACGTA 80 [24]
R: TCACACCCAAGAACAAGCACA

Ywhaz NM_011740 Tyrosine 3-monooxygenase/tryptophan 
5-monooxygenase activation protein, zeta polypeptide

F: TTGATCCCCAATGCTTCGC 88 [22]
R: CAGCAACCTCGGCCAAGTAA
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include all samples to reduce variability between experiments. To evaluate the stability of candidate reference genes, commonly 
used algorithms geNorm, NormFinder, and BestKeeper were used according to the developer’s instructions.

Fifteen genes from different pathways were used as candidate genes (Table 1). We used such a large number because when the 
number of candidate genes is small, correlation may occur even if the expression of two or three genes simultaneously changes. To 
avoid this problem, many previous reports have used 8 to 15 primers [7, 10, 12, 14, 17, 25]. If multiple genes in the same pathway 
are used, correlation occurs between the candidate genes [11]. Therefore, in the selection of candidate genes, genes were selected 
from different pathways with reference to the Mouse Housekeeping Gene Primer Set (Takara Bio), TaqMan Human Endogenous 
Control Plate (Thermo Fisher Scientific, Waltham, MA, U.S.A.), and previous reports [9, 14, 17, 22, 24, 25].

The samples were assigned to one of three periods according to developmental stage: a sex determination period (10.5–
12.5 dpc), a sex differentiation period (13.5–18.5 dpc), and a postnatal period (neonate, 5-week-olds, and adults) (Tables 2–4). The 
postnatal period should be divided into before and after puberty, but since there are only three time points, they were combined 
under “postnatal”. In addition, the sex differentiation period included six time points, but the sex determination period and the 
postnatal period each have only three time points (Table 4). In order to avoid an imbalance toward the sex differentiation period, 
half of the samples in the sex differentiation period were used for the all-period and fetal-period analyses (Tables 2–4).

The results of the calculation of candidate gene stability in the all-period analysis by the three algorithms are shown in Table 
2. The order of reference genes by each algorithm was calculated. We then obtained the geometric mean of those ranks and made 
it the final rank (Table 2). Simply calculating the mean of the rank despite the existence of different judgment criteria in each 
algorithm is criticized as not being a scientific method [6]. However, it is impossible to uniformly decide which is better, because 
each algorithm has advantages and disadvantages [6, 11]. Among the 45 ranks calculated by each algorithm, there were 3 items 
with rank-order fluctuations of 3, 5 items with fluctuations of 2, and more than half were the same as the mean value (Table 2). 
This is why we think it is useful to use mean values as rough indicators to select reference genes. Interestingly, genes with a 
rank of less than 1/3 were common to each algorithm. Even simply excluding these unstable genes from the reference genes will 
stabilize gene expression analysis experiments.

Several periods commonly used for gonadal sex determination and sexual differentiation studies were analyzed, such as 10.5 to 
12.5 dpc and 10.5 to 14.5 dpc. As a result, the expression of peptidylprolyl isomerase A (Ppia) and polymerase (RNA) II (DNA 
directed) polypeptide A (Polr2a) was stable under many conditions, especially after 12.5 dpc, but the expression of tyrosine 
3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide (Ywhaz) and Gapdh was always unstable, and 
that of Rn18s, Actb, and succinate dehydrogenase complex, subunit A, flavoprotein (Fp) (Sdha) was also unstable in many cases 
(Table 3). The sexually dimorphic expression pattern was confirmed. That is, although ribosomal protein, large P0 (Rplp0) and 
beta-2 microglobulin (B2m) were stable in males, TATA box binding protein (Tbp), glucuronidase, beta (Gusb), and ubiquitin C 
(Ubc) were stable in females.

As described later, in the period of 10.5 to 12.5 dpc, the stably expressed genes were largely different from those in the other 
periods. The stability of Gusb and Ubc was high, but that of Ppia and Polr2a was relatively low. Notably, stable expression of 
Sdha was observed, especially in males. Furthermore, the expression of Gusb and Ubc after 13.5 dpc became more unstable in 
males than in females (Table 3). Rn18s, ribosomal protein S29 (Rsp29), Tbp, and Sdha are recommended for gene expression 
analysis ranging from 11.5 to 14.5 dpc [17], but this result is different from ours. This may be due to differences in calculation 
algorithms, differences in samples, differences in candidate genes, or differences in mouse strain. In the period of 11.5 to 14.5 dpc, 
the stability of the candidate gene is relatively high, and it can be used even with the low-rank Rn18s. Particularly in females, the 
expression of most genes other than Gapdh and Ywhaz was stable. However, the use of a more stable reference gene enables high-
precision measurement, so it is better to use Gusb, Ppia, and Tbp during this period.

In the postnatal period, hypoxanthine guanine phosphoribosyl transferase (Hprt), Ppia, and phosphoglycerate kinase 1 (Pgk1) 
were calculated to be stable, but Hprt and Pgk1 were relatively unstable in males compared to females. When we analyzed only 
males, Ppia, Rplp0, B2m, and Tfrc were stable and Actb, Sdha, Gapdh, and Ywhaz were unstable (Table 3). In the report that 
evaluated 11 time points from male mice after birth using six genes, Ppia, Gapdh, and Actb were very stable and Hprt and Tbp 
were unstable [8]. Since Gapdh and Actb are always unstable in our study and are not recommended for studies in adult human 
testicular cells [16], it is unknown whether these genes are stable. These differences may be primarily caused by differences in the 
number of candidate genes evaluated.

Table 2. Ranking of candidate reference genes from each algorithm in the all-period

Algorithm\gene name Ppia Polr2a Rplp0 Gusb Hprt Ubc Pgk1 Tfrc B2m Tbp Actb Rn18s Sdha Gapdh Ywhaz
BestKeeper 1 2 4 3 8 7 6 5 10 9 11 12 13 14 15

Std dev (0.51) (0.53) (0.75) (0.74) (0.93) (0.87) (0.84) (0.84) (1.09) (1.03) (1.73) (1.75) (1.91) (3) (4.35)
NormFinder 1 4 3 6 2 7 5 8 9 10 11 12 13 14 15

Stability value (0.81) (0.98) (0.87) (1.06) (0.84) (1.15) (1.05) (1.25) (1.31) (1.37) (1.48) (1.68) (1.76) (3.34) (4.26)
GeNorm 1.4 1.4 3 5 6 4 8 9 7 10 11 12 13 14 15

Stability value (0.48) (0.48) (0.59) (0.83) (0.92) (0.69) (1.05) (1.11) (0.99) (1.16) (1.29) (1.45) (1.58) (1.89) (2.23)
Geometric mean of rank 1.1 2.2 3.3 4.5 4.6 5.8 6.2 7.1 8.6 9.7 11.3 11.7 13 14 15

All-period consist of 10.5, 11.5, 12.5, 13.5, 15.5, 17.5 dpc, neonate, 5-week-old and adult.
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In our results, the ranking of recommended reference genes changed greatly depending on gender, developmental stage, 
and analysis period (Table 3). In particular, when we analyzed only a specific gender in a limited time period, it became clear 
that highly accurate measurement is possible by using a specific reference gene specialized for experiments (Table 4). In the 
developmental process of the gonads, the cell type, the number of cells, and the composition ratio contained in the gonad all 
change with time, and accordingly the expression of many genes, including the reference gene, changes greatly [8, 15, 17]. Because 
of the high risk of normalization with a single reference gene, it is recommended that multiple reference genes from different 
pathways be used [1, 11].

In this study, we ranked the stability of reference genes according to developmental stage and/or gender. This is very useful for 
selecting reference genes in gene expression analyses such as quantitative PCR in developing mouse gonads.
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