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Abstract: Biofilm formation in healthcare is an issue of considerable concern, as it results in
increased morbidity and mortality, imposing a significant financial burden on the healthcare system.
Biofilms are highly resistant to conventional antimicrobial therapies and lead to persistent infections.
Hence, there is a high demand for novel strategies other than conventional antibiotic therapies
to control biofilm-based infections. There are two approaches which have been employed so far
to control biofilm formation in healthcare settings: one is the development of biofilm inhibitors
based on the understanding of the molecular mechanism of biofilm formation, and the other is to
modify the biomaterials which are used in medical devices to prevent biofilm formation. This review
will focus on the recent advances in anti-biofilm approaches by interrupting the quorum-sensing
cellular communication system and the multidrug efflux pumps which play an important role in
biofilm formation. Research efforts directed towards these promising strategies could eventually lead
to the development of better anti-biofilm therapies than the conventional treatments.
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1. Introduction

Biofilms are surface-attached groups of microbial cells that are embedded in a self-produced
extracellular matrix and are highly resistant to antimicrobial agents [1–3]. Biofilms can attach to all
kinds of surfaces, including metals, plastics, plant and body tissue, medical devices and implant
materials [4]. Biofilm formation on indwelling medical devices and implants such as heart valves,
pacemakers, vascular grafts, catheters, prosthetic joints, intrauterine devices, sutures and contact
lenses poses a critical problem of infection [5]. The use of intravascular catheters for patient care can
give rise to central line-associated blood stream infection (CLABSI), and approximately 250,000 cases
of primary blood stream infections are reported each year in the USA [6]. Thus, CLABSI results in
significant morbidity and mortality and huge increases in healthcare costs. The bacteria most frequently
associated with healthcare-associated infections include Staphylococcus aureus, Staphylococcus epidermidis,
Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa
and Acinetobacter spp. [5,7]. Among the biofilm-forming bacteria, S. aureus and S. epidermidis are
predominantly isolated from cardiovascular devices [8,9]. It has been estimated that S. aureus
and S. epidermidis contribute to 40–50% of prosthetic heart valve infections and 50–70% of the
catheter biofilm infections [10]. In recent years, Acinetobacter spp. have emerged as the most
important nosocomial pathogens involved in a variety of nosocomial infections, including bacteremia,
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urinary tract infection, soft-tissue infections and secondary meningitis [11–14]. The Acinetobacter spp.
have the ability to colonize and form biofilms on medical devices such as implants, cardiac valves,
artificial joints, catheters, etc. [11,15].

Biofilm formation is initiated when the cells attach and adhere to surfaces. The attachment of
microbial cells to biomaterials can be facilitated by factors such as bacterial motility, increased shear
forces, and hydrodynamic and electrostatic interactions between the microorganism and surface [16].
The adherence of bacteria to biomaterials through cell-surface and biomaterial-surface interactions is
mediated by multiple factors, which include cell surface proteins, capsular polysaccharide/adhesin,
protein autolysin, etc. [17,18]. For example, Staphylococcal species display cell-surface proteins, namely
staphylococcal surface protein-1 and -2 (SSP-1 and SSP-2) [17], which are essential for adhesion of
S. epidermidis to polystyrene [19]. In addition, host factors can also mediate the adherence of bacterial
cells to implants, as the implant surfaces are usually covered by host plasma and other extracellular
components [20]. Once attached to the surfaces, the bacterial cells will proliferate, aggregate and
differentiate into biofilm structures [21]. Bacterial cells can detach from mature biofilms and spread to
other organ systems, thereby contributing to persistent chronic infections [21,22].

Biofilms are complex structures with customized living environments with differing pH, nutrient
availability and oxygen [23]. A worrying feature of biofilm-based infections is the increased tolerance
of biofilm cells to biocides compared to planktonic bacteria [24]. The increased drug resistance could
be attributed to plasmids containing genes for multidrug resistance, as biofilms form an ideal niche for
plasmid exchange [25]. The mechanisms by which biofilms represent increased drug resistance also
include slow or incomplete penetration of antimicrobial agents through the extracellular polymeric
matrix, the formation of persister or dormant cells in a spore-like non-dividing state, slow growth rate
of cells in the biofilm, thereby reducing the number of targets for antimicrobial molecules, etc. [26–28].
In addition to the difficulty in treating biofilm with conventional antimicrobial therapy, the treatment is
further hindered by increased antibiotic resistance, as bacterial cells acquire resistance under antibiotic
selective pressure [29]. For example, it has been reported that more than 70% of hospital isolates of
S. epidermidis are methicillin resistant [30]. Thus, there is a high demand for alternative strategies to
control biofilm-based infections other than antibiotic therapy. Considering the number of patients
suffering from biofilm-based device-related infections, several strategies have been developed in the
past few decades. This review will discuss the most successful antibiofilm approaches so far, as well as
some of the more promising prospects for the control of these biofilm-based infections.

2. Strategies for the Control of Biofilms

There have been three major strategies considered so far to control biofilm formation or to target
different stages of biofilm development. The first approach is inhibiting the initial attachment of
bacteria to biofilm-forming surfaces, thereby reducing the chances of biofilm development. The second
approach targets the disruption of biofilm during the maturation process [31]. The third strategy is the
signal interference approach, in which the bacterial communication system or the quorum sensing (QS)
system is interfered with as QS coordinates biofilm formation/maturation in pathogenic bacteria [32].
The different antibiofilm strategies and agents discussed in this review are summarized in Table 1.

Table 1. Various strategies for the control of biofilms.

Strategy Methods/Agents Examples References

Inhibition of
initial biofilm

attachment

(i) Altering chemical
properties of biomaterials (i) Antibiotics, biocides, iron coatings (i) [33–43]

(ii) Changing physical
properties of biomaterials

(ii) Use of hydrophilic polymers, superhydrophobic
coatings, hydrogel coatings, heparin coatings (ii) [44–49]
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Table 1. Cont.

Strategy Methods/Agents Examples References

Removal of
biofilms

(i) Matrix degrading
enzymes

(i) Polysaccharide-degrading enzymes (Dispersin B,
Endolysins); Nucleases (Deoxyribonuclease I) and
Proteases (Proteinase K, trypsin)

(i) [50–55]

(ii) Surfactants
(ii) Sodium dodecyl sulfate (SDS),
cetyltrimethylammonium bromide (CTAB), Tween 20
and Triton X-100, surfactin, rhamnolipids

(ii) [56–60]

(iii) Free fatty acids, amino
acids and nitric oxide donors

(iii) Cis-2-decenoic acid, D-amino acids, nitric oxide
generators such as sodium nitroprusside (SNP),
S-nitroso-L-glutathione (GSNO) and
S-nitroso-N-acetylpenicillamine (SNAP)

(iii) [61–64]

Biofilm inhibition
by quorum
quenching

(i) Degradation of QS signals (i) Lactonases, acylases and oxidoreductases (i) [65–71]

(ii) Inhibition of signal
synthesis

(ii) Use of analogues of AHL precursor
S-adenosyl-methionine (SAM),
S-adenosyl-homocysteine (SAH), sinefugin,
5-methylthioadenosine (MTA), butyryl-SAM; SAM
biosynthesis inhibitor cycloleucine, AHL synthesis
inhibitors such as nickel and cadmium

(ii) [72–79]

(iii) Antagonizing signal
molecules

(iii) AHL analogues (bergamottin,
dihydroxybergamottin, cyclic sulfur compounds,
phenolic compounds including baicalin hydrate and
epigallocatechin); AI-2 analogues (ursolic acid,
isobutyl-4,5-dihydroxy-2,3-pentanedione (isobutyl-DPD)
and phenyl-DPD); AIP analogues (cyclic peptides such
as cyclo (L-Phe-L-Pro) and cyclo(L-Tyr-L-Pro), RNAIII
inhibiting peptide (RIP) and its homologues)

(iii) [80–96]

(iv) Inhibition of signal
transduction

(iv) Use of halogenated furanone or fimbrolide,
cinnamaldehyde, virstatin (iv) [97–103]

(v) Inhibition of signal
transport

(v) Use of copper or silver nanoparticles,
Phe-Arg-β-naphthylamide (PAβN) (v) [104–106]

2.1. Inhibition of Initial Attachment

The initial attachment of cells to the biofilm-forming surfaces happens within an average of the
first 2 days of biofilm formation. Inhibition of initial attachment of cells to the surfaces is a potential
strategy to prevent biofilm formation rather than targeting the dispersal of established biofilms.
The attachment of bacteria to surfaces is mediated by several factors, including adhesion surface
proteins, pili or fimbriae, and exopolysaccharides [107,108]. The surfaces that are rough, coated with
surface conditioning films and more hydrophobic are prone to ease biofilm formation [109–111].
Thus, the initial attachment of cells can be prevented by altering the chemical or physical properties of
indwelling medical devices.

2.1.1. By Altering the Chemical Properties of Biomaterials

The commonly used chemical methods to modify the surface of biomedical devices in order
to prevent biofilm formation include antibiotics, biocides and ion coatings [33]. Catheters coated
with antibiotics such as minocycline and rifampin have been shown to decrease the incidence
of biofilm-associated bloodstream infection by S. aureus in healthcare [34]. In addition, catheters
impregnated with different antibiotics, including nitrofurazone, gentamicin, norfloxacin, etc.,
are suggested to have a role in preventing biofilm-associated urinary tract infections [35].

High-throughput screening of chemical libraries has led to the identification of several small
chemical molecules as potential drug candidates for controlling biofilm formation and infection.
These molecules do not elicit antimicrobial activity, and thus decrease the likelihood of the development
of resistance due to the absence of selective pressure against biofilm formation. In Streptococcus pyogenes
and S. aureus, a series of small molecules inhibited the expression of many key virulence factors that
are involved in biofilm formation and infection [112,113]. The early stages of biofilm formation in
S. aureus, S. epidermidis and E. faecalis were inhibited by several aryl rhodamines [114]. In Vibrio cholerae,
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small molecules inhibited the induction of cyclic di-GMP, which is a second messenger controlling
the switch between planktonic and sessile lifestyle of bacteria [115,116]. In addition, N-acetylcysteine,
a mucolytic agent, was reported to inhibit the production of exopolysaccharides in biofilms in
S. epidermidis [36].

Several antimicrobial peptides are also known to interfere with biofilm formation in different
bacterial pathogens. For example, peptide 1018 is considered to be a biofilm inhibitor in P. aeruginosa,
E. coli, A. baumannii, K. pneumoniae, S. aureus, Salmonella typhimurium, Burkholderia cenocepacia [37].
In addition, lantibiotics (nisin, subtilin, epidermin and gallidermin), a class of peptide antibiotics,
are reported to inhibit biofilm formation in S. aureus, Lactococcus lactis and S. epidermidis [38,39].

Chelators that interfere with the function of metal ions in biofilm formation are also considered to
be biofilm inhibitors [117]. Metallic silver, silver salts, and silver nanoparticles have been widely used
as antimicrobial agents in medical implants against bacteria such as E. coli, S. aureus, Klebsiella species,
P. aeruginosa, S. typhimurium, and Candida albicans [118,119]. The silver treatment inhibits the replication
of DNA, expression of ribosomal and cellular proteins, and respiration process, leading to cell
death [40–42]. It has been reported that silver ion-coated implants inhibited S. aureus biofilm formation
without causing silver accumulation in host tissues [120]. In addition, in the presence of nanoparticles,
antibiotics such as penicillin G, amoxicillin, erythromycin, clindamycin, and vancomycin displayed
increased antibacterial activity against S. aureus [121].

The antibacterial agent coatings on medical devices are typically effective for a short time
period due to the leaching of the agent over the course of time [33]. Thus, the immobilization of
antimicrobial agents on device surfaces using long, flexible polymeric chains has been an effective
contribution in controlling biofilm formation in the long run. For example, the attachment of
N-alkylpyridinium bromide, an antibacterial agent, to a polymer, poly(4-vinyl-N-hexylpyridine)
was capable of inactivating 99% of S. epidermidis, E. coli, and P. aeruginosa on medical devices [43].

2.1.2. By Changing the Physical Properties of Biomaterials

Biofilm formation begins with a weak reversible adhesion of bacterial cells to the surface of
medical devices. If bacteria are not immediately detached from the surface of devices, they anchor
permanently, using cell adhesion structures such as pili, and form biofilms [44]. Hydrophobicity
and surface charge of implant materials play an important role in determining the ability of
bacteria to anchor to surfaces [43]. Thus, modification of the surface charge and hydrophobicity
of polymeric materials using several backbone compounds and antimicrobial agents has proven
to be effective for biofilm prevention [43]. Hydrophilic polymers such as hyaluronic acid [45] and
poly N-vinylpyrrolidone [46] on polyurethane catheters and silicone shuts, respectively, have been
known to reduce the adhesion of S. epidermidis. In addition, various hydrogel coatings which
reduce bacterial adhesion due to their hydrophilic properties have also been developed especially
for ureteral stents [47]. Superhydrophobic surfaces are reported to reduce bacterial adhesion
and biofilm formation due to their extremely low wettability [49,122,123]. Tang et al. observed
reduced adherence of S. aureus on superhydrophobic titanium surfaces [124]. Also, the adhesion
of S. aureus and P. aeruginosa was significantly reduced on superhydrophobic fluorinated silica
coating [125]. Crick et al.demonstrated reduced adhesion of S. aureus and E. coli on AACVD (aerosol
assisted chemical vapor deposition)-coated superhydrophobic surfaces compared to uncoated plain
glass [123]. It has been reported that heparin interferes with bacterial adhesion and colonization [48].
The heparin coating makes the vascular catheter negatively charged, thereby preventing thrombosis
and microbial colonization, eventually contributing to reduction of catheter-related infections [126,127].
Surface roughness can also influence biofilm formation, as rough, high-energy surfaces are more
conducive to biofilm formation compared to smooth surfaces [128]. It is noted that the surface
roughness can alter the hydrophobicity, thus in turn affecting bacterial adherence [128].
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2.2. Biofilm Removal

Mature biofilms are highly tolerant to antimicrobials due to the altered growth rate of cells
in the biofilm and the emergence of resistant subpopulations [129,130]. Also, biofilms favor the
horizontal transfer of antibiotic resistance genes among cells [131]. Thus, it is of utmost importance
to understand the antibiotic resistance properties of strains in biofilms when designing new drug
treatments. Though conventional antibiotics have been proven to be critical in eliminating bacterial
pathogens, they extensively damage the host microbiota, making the environment favorable for
opportunistic pathogens. Hence, the agents that interfere with the initial biofilm development or
biofilm structure have great potential in controlling biofilm-related infections.

2.2.1. Matrix-Degrading Enzymes

The biofilm matrix is usually composed of exopolysaccharides (EPS), extracellular DNAs (eDNAs),
and proteins [132–134]. The EPS and eDNAs contribute to antibiotic resistance by preventing
the diffusion of antimicrobials or by inducing antibiotic resistance [135,136]. Dissociation of the
biofilm matrix is an effective antibiofilm approach, as the matrix accounts for more than 90% of
dry mass, and dissociation of the same will expose the sessile cells to antibiotics and host immune
defence [137]. Biofilm matrix-degrading enzymes fall into three categories: polysaccharide-degrading
enzymes, nucleases and proteases [50]. Dispersin B is a bacterial glycoside hydrolase produced by
Actinobacillus actinomycetemcomitans which hydrolyzes poly-N-acetylglucosamine (PNAG), a major
matrix exopolysaccharide of Staphylococcus spp. and E. coli [138]. In addition, the application
of Dispersin B in combination with triclosan effectively reduced biofilm formation in S. aureus,
S. epidermidis, and E. coli [51]. Endolysins, a class of peptidoglycan hydolases produced by
bacteriophages are reported to digest the cell wall of bacteria thereby disrupting biofilms [52].
Deoxyribonuclease I which is capable of digesting eDNA is known to disperse biofilms in
several bacteria including Staphylococcus strains, A. baumannii, E. coli, Haemophilus influenzae,
Klebsiella pneumoniae, Psuedomonas aeruginosa, etc. [53,54]. The matrix proteins can be effectively cleaved
by Proteinase K contributing to biofilm prevention and biofilm dispersal [55]. It was demonstrated
that the treatment with dispersin B followed by Proteinase K or trypsin successfully eradicated
Staphylococcus biofilms [55]. The in vivo application of matrix-degrading enzymes is limited, as the
treatment can elicit inflammatory and allergic reactions in the host against these enzymes [139].

2.2.2. Surfactants

Surfactants are reported to have antimicrobial and antibiofilm activities [140]. The surfactants
sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (CTAB), Tween 20 and Triton X-100
are known to promote either biofilm dispersal or detachment [56–58]. A biosurfactant, surfactin,
which is a cyclic lipopeptide produced by B. subtilis, is reported to inhibit biofilm formation and induce
biofilm dispersal in S. typhimurium, E. coli and P. mirabilis [59]. Rhamnolipids are principal glycolipids
produced by many bacteria, including P. aeruginosa, and cause biofilm dispersal in a number bacterial
strains [57,60].

2.2.3. Free Fatty Acids, Amino Acids and Nitric Oxide Donors

Free fatty acids are shown to have antibiofilm activity against several pathogenic bacteria. It was
reported that P. aeruginosa produces an organic compound cis-2-decenoic acid which is capable
of dispersing the already established biofilms by E. coli, K. pneumoniae, P. mirabilis, S. pyogenes,
B. subtilis, S. aureus, and C. albicans [61]. The diffusible signal factor, cis-11-methyl-2-decanoic
acid produced by Xanthomonas campestris induces biofilm dispersal by controlling the production
of exopolysaccharide-degrading enzyme [141]. However, it has also been reported that fatty acids play
an important role in the initial stages of biofilm formation in B. subtilis, as the lipids form structural
component of extracellular matrix of biofilms [142]. In S. aureus, B. subtilis and P. aeruginosa, a mixture
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of D-amino acids triggered the disassambly of biofilm by releasing amyloid fibers, which are the
proteinaceous component of the extracellular matrix [62,63]. While many L-amino acids promote
biofilm formation in P. aeruginosa, in the case of tryptophan, both D- and L-isoforms inhibited biofilm
formation and caused biofilm dispersal [143,144]. Nitric oxide (NO) generators such as sodium
nitroprusside (SNP), S-nitroso-L-glutathione (GSNO) and S-nitroso-N-acetylpenicillamine (SNAP)
are reported to induce biofilm dispersal in P. aeruginosa [64]. A low dose of NO generators dispersed
P. aeruginosa biofilms both in vitro and in cystic fibrosis sputum, and enhanced the effect of antibiotics
on biofilm-dispersed cells [145].

2.3. Biofilm Inhibition by Quorum Quenching

Quorum sensing (QS) is an important cellular communication system in many Gram-negative
and Gram-positive bacteria. QS mediates the regulation of various genes according to the density of
signaling molecules in the surrounding environment [146]. The signaling molecules of the QS system
are denoted as autoinducers [147]. Based on signaling molecules, the QS system is categorized into
three; N-acyl homoserine lactones (AHLs)-based (Gram-negative bacteria), autoinducing peptide
(AIP)-based (Gram-positive bacteria), and autoinducer-2 (AI-2)-based (both Gram-negative and
Gram-positive bacteria) [148,149]. During biofilm formation, following the initial attachment, the cells
secrete QS molecules, which modulate bacterial gene expression, transforming planktonic lifestyle into
a sessile form [150–152]. Since QS plays a crucial role in biofilm formation [153], it has been suggested
that QS inhibition (quorum quenching; QQ) would be an interesting strategy to prevent biofilm
formation [154]. In addition, QS regulates the production of virulence factors and pathogenesis factors
in most pathogens, and thus the QS system can be considered a potential target for the development of
new antimicrobial agents [155,156]. The various quorum-quenching strategies that can be beneficial for
controlling biofilm formation are depicted in Figure 1. The major advantage of controlling biofilm by
QQ is that this strategy reduces the risk of multidrug resistance, making the strategy of great clinical
interest for use in the prevention of biofilm-based infections.
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Figure 1. Schematic representation of various quorum-quenching strategies to control biofilm formation.
LuxI and luxR genes encode AHL signal synthase and AHL receptor/activator protein respectively.
AHL signal synthase is responsible for the production of AHLs, which are diffused (short chain) or
pumped (long chain) out of the bacterial cell to the surrounding medium before being taken up into the
nearby bacterial cells. The AHL binds to the receptor protein and the AHL-receptor complex activates
the expression of quorum-sensing target genes. The quorum-quenching strategies that have been
used for attenuating AHL-mediated phenotypes include the inhibition of AHL synthesis, inhibition of
signal transport, degradation of signal molecules, inhibition of AHL receptor synthesis, inhibition of
AHL-receptor complex formation, inhibition of the binding of AHL-receptor complex to the promoters
of target genes etc.
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2.3.1. Degradation of QS Signals

AHLs can be degraded by specific enzymes such as lactonases that hydrolyze the lactone ring in
the homoserine moiety and acylases that cleave off the acyl side chain, and the activity can be altered
by reductases and oxidases [157]. Most of the AHL-degrading enzymes were discovered in bacterial
species [158], though some are found in eukaryotes [159,160]. It has been reported that the application
of QQ enzymes inhibits biofilm formation in several bacterial strains [65–70]. Quorum-quenching
enzymes disrupt the biofilm architecture, which increases the antibiotic susceptibility of the cells [71].
Significant reduction of biofilm formation and increased sensitivity to antibiotics was noticed in
P. aeruginosa after treatment with lactonase [71]. The oxidoreductases reduced the signaling molecules
AHL and AI-2 to QS-inactive hydroxy-derivatives in K. oxytoca and K. pneumoniae [70].

2.3.2. Inhibition of Signal Synthesis

Several reports have shown that mutations affecting AHL synthesis have an adverse effect on biofilm
formation. For example, P. aeruginosa strain that lacked the production of 3-oxo-C12-HSL resulted in
impaired biofilm formation [161]. The mutation in the gene encoding for AHL synthesis enzyme in
B. cenocepacia K56-2, B. cenocepacia J2315, Aeromonas hydrophila and Serratia liquefaciens led to defective
biofilm formation [162–165]. In addition, the mutants of several Vibrio spp., Streptococcus spp. and
Staphylococcus spp. that are deficient in AI-2 synthesis were not able to produce biofilms properly.
Thus, blocking signal production has been considered as a promising strategy to control biofilm formation.
Analogues of AHL precursor molecule, S-adenosyl-methionine (SAM), such as S-adenosyl-homocysteine
(SAH), sinefugin, 5-methylthioadenosine (MTA), and butyryl-SAM, are known to inhibit biofilm formation
in P. aeruginosa [72]. Also, the SAM biosynthesis inhibitor cycloleucine is reported to inhibit AHL
production [73]. The antibiotic azithromycin interferes with signal synthesis in P. aeruginosa, and thus
significantly clears biofilm in mouse model of cystic fibrosis [74,75]. In addition, several inhibitors
for the key enzymes (5′-methylthioadenosine/S-adenosylhomo-cysteine nucleosidase (MTAN) and
S-ribosylhomocysteinase (LuxS) involved in AI-2 synthesis are shown to reduce biofilm formation [76,77].
In B. multivorans, nickel (Ni2+) and cadmium (Cd2+) inhibited the expression of genes responsible for AHL
production thereby inhibiting cell-cell signaling and subsequently biofilm formation [79]. The inhibitory
effect of Cd2+ in quorum sensing was also reported in Chromobacterium violaceum [78].

2.3.3. Antagonizing the Signal Molecules

Researchers have screened for many signal analogues that antagonize QS signaling, thereby
preventing biofilm formation [166–168]. AHL analogues in which the lactone ring was replaced by
a cyclopentyl or a cyclohexanone ring adversely affected biofilm formation in Serratia marcescens
and P. aeruginosa [169,170]. Many natural compounds are also reported to antagonize AHL-based QS
signaling, and those include bergamottin and dihydroxybergamottin from grapefruit juice, cyclic sulfur
compounds from garlic, patulin, and penicillic acid from a variety of fungi, etc. [80–82]. Treatment with
patulin, ajoene and garlic extracts resulted in increased antibiotic susceptibility of P. aeruginosa biofilms
and increased clearance of P. aeruginosa in in vivo pulmonary infection model [83–85]. In addition,
some phenolic compounds including baicalin hydrate and epigallocatechin blocked AHL QS and
affected biofilm formation of B. cenocepacia, B. multivorans and P. aeruginosa [86–88]. It was noted that the
antibiotic susceptibility of B. cenocepacia and P. aeruginosa increased after treatment with baicalin hydrate
in different in vitro biofilm models [86–88]. Thus, the concept of combining QS inhibitor (QSI) and
antibiotics would be a better strategy to control biofilm formation by pathogenic bacteria. In addition,
it has been noticed that biofilm formation can be effectively controlled by combining QSIs and
QQ enzymes. Recently, Fong et al. reported the synergistic effect of a QS inhibitor, G1, which competes
with AHL to bind to the response regulator and QQ enzyme, AHL lactonase, to effectively control
biofilm formation and virulence by P. aeruginosa [171].
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Several compounds that antagonize AI-2 signaling have also been reported to exhibit
antibiofilm activity. The AI-2 analogues ursolic acid, isobutyl-4,5-dihydroxy-2,3-pentanedione
(isobutyl-DPD) and phenyl-DPD inhibited biofilm formation and removed preformed biofilms in
E. coli and P. aeruginosa [89,90]. Although other compounds, including pyrogallol and its derivatives,
some nucleoside analogues, boronic acids, and sulfones have been identified to antagonize AI-2
signaling, only a few have been investigated for their antibiofilm activity [172,173].

Several AIP analogues, such as truncated forms of AIP, and probiotic bacteria-producing natural
cyclic dipeptides, such as cyclo(l-Phe-l-Pro) and cyclo(l-Tyr-l-Pro), have been developed to antagonize
QS signaling in Gram-positive bacteria. However, the experimental evidence on the anti-biofilm
activities of these compounds is highly limited [91–93]. The most investigated QS inhibiting peptide
is the RNAIII inhibiting peptide (RIP), which is produced by coagulase-negative Staphylococci.
RIP interferes with the QS response by inhibiting the production of RNAIII, a key component of
QS response in S. aureus [94]. RIP and several RIP homologues have been reported to have anti-QS
and anti-biofilm activity against Staphylococcus spp. A RIP analogue, FS3, prevented S. aureus biofilm
formation in a rat vascular graft model [95]. In addition, a non-peptide RIP analogue, hamamelitannin,
blocked QS in Staphylococcus spp., and potentially inhibited biofilm formation in in vitro and in vivo rat
model of graft infection [96]. Several natural compounds, including phytol, anthocyanidins, extracts
from Ricinus communis, freshwater bryozoan Hyalinella punctata and selected sponges, and ricinine
derivatives, are also known to exhibit anti-biofilm or anti-microbial and anti-quorum sensing activities
in P. aeruginosa [174–178]. However, the exact mechanisms by which these compounds display
anti-quorum sensing activities are not known.

2.3.4. Inhibition of Signal Transduction by Interfering with Response Regulator Activity

The QS system can also be hindered at the level of signal transduction cascade. The natural
compounds, halogenated furanone or fimbrolide and cinnamaldehyde which are isolated from red
algae Delisea pulchra and cinnamon bark, respectively, interfere with signal transduction and affect
biofilm formation, thereby increasing antibiotic susceptibility in several pathogenic bacteria [97–100].
Both compounds block AI-2 and AHL-type QS systems, and thereby affect biofilm formation in
V. harveyi [101,102]. The halogenated furanone and cinnamaldehyde inhibits AI-2 QS and AHL QS
by decreasing the DNA-binding ability of the response regulator LuxR, which is important for the
signal transduction cascade, or by displacing AHL from its receptor, respectively [101,102,179,180].
In addition, the natural furanone inactivates LuxS and accelerates LuxR turnover, thereby blocking
AI-2 and AHL QS signaling system, respectively [181,182]. Cinnamaldehyde is widely used as
a flavoring agent in food and beverages, while the application of furanones is limited because of their
toxicity [100,183]. We reported previously that virstatin, a small organic molecule, prevents biofilm
formation by interfering with the QS system in A. nosocomialis [103]. It was noticed that virstatin
inhibits the expression of the response regulator, AnoR, which is a positive regulator of the AHL
synthase gene, anoI in A. nosocomialis [103]. The repression of AnoR leads to decreased synthesis
of AHL (Figure 2), adversely affecting the signal transduction cascade. Virstatin or its derivatives
can be considered potential agents to inhibit the QS system and to control biofilm-based infections,
and further studies in this direction could lead to the development of better antibacterial therapeutics.
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Figure 2. Effect of virstatin on the production of AHL. Bioassay was carried out to check the effect of
virstatin on the production of AHLs in A. nosocomialis. For this, the strain was cultivated overnight in
Luria Bertani (LB) medium at 30 ◦C, and the cells were washed with LB and diluted to an OD600 of 1.
The cells were treated with different concentrations of virstatin (20, 50, 100 mM), which was dissolved
in dimethyl sulfoxide (DMSO), and 5 µL of the samples were spotted onto chromoplate overlaid with
A. tumefaciens NT1 (pDCI41E33) [184,185]. Synthetic N-(3-hydroxy-dodecanoyl)-L-homoserine lactone
(OH-dDHL) was spotted as a positive control. The plates were incubated at 30 ◦C for 22 h, followed
by the detection of the color zone surrounding the bacteria. A representative chromoplate image
with 100 mM virstatin and images of color zones from different concentrations of virstatin are shown.
WT, A. nosocomialis wild type; +ve C, OH-dDHL; vir20, vir50 and vir100; wild-type cells treated with
20, 50 and 100 mM virstatin respectively.

2.3.5. Inhibition of Signal Transport

The signaling molecules need to be exported and released into the extracellular space to be
sensed by other bacteria for effective cell-to-cell communication. The role of multidrug-resistant
(MDR) efflux pumps in signal traffic was first reported in P. aeruginosa, in which AHLs with long side
chains are actively transported across the cell membrane through the MexAB-OprM efflux pump [186].
In P. aeruginosa, the expression of the autoinducer-producing gene and the genes encoding the virulence
factors is limited by the intracellular concentration of the autoinducer [187]. The involvement of the
MDR efflux pump in the QS system has also been reported in E. coli, in which the overexpression of the
QS regulator SdiA led to the increased expression of the AcrAB efflux pump [188]. In Bacteroides fragilis,
an opportunistic pathogen of the gastrointestinal tract, the BmeB efflux pump controls the intracellular
AHL concentration by effluxing AHL outside of cells [189]. In addition, the expression of the MDR
efflux pump, BpeAB-OprB, was reported to be essential for the export of six AHL inducers to the
extracellular environment in B. pseudomallei [190,191]. Thus, the inhibition of the efflux pump would be
a promising strategy to alter QS signaling cascade, thereby preventing biofilm formation and virulence.

Several studies have provided evidence to show the link between the physiological function of
efflux pump and biofilm formation. In E. coli and Klebsiella strains, the inhibition of the efflux pump
activity using efflux pump inhibitors (EPIs) reduced biofilm formation [192]. The genetic inactivation
or the chemical inhibition of efflux pump activity resulted in impaired biofilm formation in S. enterica
serovar typhimurium [193]. The effect of efflux pump inhibitors to prevent biofilm formation was also
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demonstrated in P. aeruginosa and S. aureus [105], in which copper nanoparticles work well as EPI
and anti-biofilm agents [104]. In addition, in P. aeruginosa, the MDR efflux pump, MexAM-OPrM was
disrupted by silver nanoparticles [194]. Recently, it was observed that the well-characterized EPI,
Phe-Arg-β-naphthylamide (PAβN) alter the expression of QS molecules and QS-dependent virulence
phenotypes in P. aeruginosa PAO1, as well as in clinical isolates [106]. The application of EPIs not only
helps to reduce the biofilm-forming capacity of bacteria, but also to revive the bactericidal effect of
conventional antibiotics [195].

It has been reported previously that AHLs with long side chains are exported out through the
MexAB-OprM pump in P. aeruginosa [186], and the expression of the pump is modulated by the
intracellular concentration of autoinducer molecules [196]. In addition, we have identified previously
that A. nosocomialis produces AHL with long side chain, N-(3-hydroxy-dodecanoyl)-L-homoserine
lactone (3OH-C12-AHL) as signaling molecules [103], and these AHLs might be actively transported
through the efflux pumps. Thus, it can be postulated that the QS system controls the activity of
the efflux system, contributing to the effective transport of AHLs across the cell membrane, in turn
contributing to virulence and biofilm formation. Further studies in this direction would unravel in
depth the role of the QS system in controlling the activity of these efflux pumps. The MDR efflux
pumps and the regulators modulating them would be potential targets for the development of better
therapeutics for biofilm-based infections.

3. Conclusions

In this review, we discuss the current strategies and future perspectives for developing improved
therapeutics for controlling biofilm-based infections. The various approaches for modulating biofilm
formation on medical devices are addressed in detail, with special emphasis on quorum-quenching
strategies. Significant advances have been made in understanding the role of quorum sensing in biofilm
formation in the past few years. In addition, several studies have shown that multidrug efflux pumps
play a potential role in controlling biofilm formation. However, the fundamental mechanisms by which
the QS systems exert the regulatory functions on biofilm formation are poorly understood. In this
review, we postulate that QS systems regulate the activity of multidrug efflux pumps in transporting
QS molecules across the cell membrane, thereby affecting biofilm formation. We propose that the
transcriptional factors modulating the QS system and/or efflux pumps would be potential targets for
developing QSIs. It is of utmost importance to improve our understanding of the molecular mechanism
by which QS systems regulate biofilm formation and multidrug efflux pumps, as it will eventually be
of help in developing better therapeutics for the treatment of problematic biofilm-related infections.
Furthermore, detailed research is needed to understand the effect of these QSIs on different stages
of biofilm formation and to validate their applicability on humans. Since QSIs do not induce any
antibiotic resistance, they can be of great potential in the future for the treatment of biofilm-based
infections in healthcare settings.
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