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Differently expressed microRNA 
in response to the first Ig 
replacement therapy in common 
variable immunodeficiency 
patients
Bruna De Felice1*, Ersilia Nigro1,2, Rita Polito1,2, Francesca Wanda Rossi5, 
Antonio Pecoraro3,4, Giuseppe Spadaro3,4,5 & Aurora Daniele1,2

Common variable immunodeficiency (CVID) is a complex primary immunodeficiency disorder 
characterized by a high clinical and genetic heterogeneity. The molecular underlying causes of CVID 
are not still now clear and the delays in diagnosis and treatment worsen the prognosis of the patients. 
MicroRNAs are non-coding, endogenous small RNAs often deregulated in human diseases, such as 
autoimmune and other immune-based disorders. In the present study, we aimed to evaluate miRNAs 
associated with the CVID and, in particular, with the response to the first Ig replacement therapy. To 
this aim, we compared miRNA profile obtained by serum samples of treatment-naïve CVID patients 
before and 24 h after the first Ig replacement therapy. For the first time, using a microarray assay 
followed by an integrated bioinformatics/biostatistics analysis, we identified five microRNAs (hsa-
miR-6742, hsa-miR-1825, hsa-miR-4769-3p, hsa-miR-1228-3p, hsa-miR-1972) differently modulated 
in CVID patients by Ig infusion. All of them were down-regulated, excepted miR-6742 which was 
up-regulated. The latter may be of particular interest, since its functions are related to pathways 
involving Class I MHC mediated antigen processing and adaptive as well as innate Immune System. 
In conclusion, this study shows for the first time the modulation of miRNAs involved in CVID patients 
after the first Ig replacement therapy. Further studies are needed to assess whether such miRNAs 
could represent novel potential biomarkers in management and therapy of CVID patients.

Common variable immunodeficiency (CVID) is one of the most prevalent Primary Antibody Disorders char-
acterized by marked  hypogammaglobulinemia1. The real incidence of CVID is not simple to ascertain, but the 
estimated prevalence of CVID in Caucasians ranges between 1:10.000 and 1:50.000 and the prevalence rate may 
continue to  increase1.

CVID is a complex heterogeneous disease characterized by deficiencies in immunoglobulin (Ig) quantity 
and quality, normal or decreased B-cell counts, and lack of response to protein or polysaccharide  antigens2. The 
phenotypes of patients are highly heterogeneous due to different time onsets and to a high variety of related 
 complications2.

The standard CVID therapy is the replacement administration of IgG as it reduces the frequency and severity 
of infections. However, there are some limitations of IgG replacement therapy such as the absence of treatment 
for non-infectious  complications3. In addition, cancer mortality rates of CVID patients have not changed after 
IgG replacement  therapy2.
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Various studies have been devoted to characterize the cytokines profile in CVID, albeit with conflicting 
 results4–6. We recently reported that adiponectin is decreased in CVID and correlated to the first Ig infusion, 
representing a serum biomarker of functional changes taking place in the adipose and related to the replace-
ment  therapy7.

The patients affected by CVID are characterized by highly heterogeneous and variable clinical conditions. The 
underlying causes of CVID in the majority of patients are still unknown, but it is likely that in the development 
and establishment of the  disease7 the environmental factors have a decisive role also via epigenetic  mechanisms8. 
On the other hand, the genetic influences in CVID are believed to be mutations in genes involved in the devel-
opment and function of immune B cells (…). At least 13 genes have been associated with CVID, but the most 
frequent mutations occur in the TNFRSF13B gene that plays a role in the survival and maturation and in the 
production of antibodies from of B cells leading to immune  dysfunction2. However, despite an extensive genetic 
analysis, most patients do not have a monogenetic diagnosis and therefore additional biological alterations par-
ticipate (are at the basis) of the etiopathogenesis of the disease (Front Immunol. 2019; 10: 2678. Ameratunga). 
On the other hand, in the last decades, emerging evidence has demonstrated that miRNAs take part in many bio-
logical processes among which the immune functions (MicroRNAs: new regulators of immune cell development 
and function. D Baltimore). Indeed, modulation of miRNAs was observed in the B-cells and T-cells activation, 
differentiation and homeostasis, cellular processes that are important for the immune  response9.

Delays in diagnosis and treatment worsen the prognosis of CVID patients lead to permanent organ structural 
 damage1–3. Although few studies reported miRNAs regulation in response to Ig replacement therapy in immu-
nodeficiencies, to our knowledge, there are no studies about miRNAs dosage and changes in CVID  patients10–12.

Taking into account these observations, we evaluated the potential different regulation of miRNAs in CVID 
naïve-treatment patients after the first Ig replacement therapy to find new potential biomarker for CVID therapy. 
To this aim, have been recruited nine CVID naïve-treatment patients from which serum samples were obtained 
before and after the first Ig replacement therapy. The microRNA expression profile was performed by high-
throughput microarray followed by extensive reverse transcription quantitative real-time PCR (RT-qPCR) vali-
dation. We identified and compared the serum miRNA pool profile of CVID patients before and after the first 
Ig replacement therapy.

Results
Anthropometric and laboratory investigations. The anthropometric and biochemical parameters of 
CVID naïve patients are shown in Table 1. IgG, IgM and IgA levels have been measured before and after the first 
Ig replacement therapy: the increase of levels of IgG is statistically significant as previously reported in patients 
with common variable immunodeficiencies and patients with X-linked  agammaglobulinemia13 (Table  1). To 
verify the specific changes that taken place after the first IgG infusion therapy, we measured Adiponectin after 
24  h as we previously reported that modification in the adiponectin levels are already evident at 24  h post-
infusion and therefore we considered adiponectin as a marker of functional changes post-infusion5,6. We con-
firmed that adiponectin but not leptin was statistically different at T0 and T1 post- IgG infusion (4.3 ± 4.53 vs 
12.84 ± 8.78, respectively, p < 0.01).

MicroRNAs distribution in microarray libraries from CVID patients’ sera. By microarray technol-
ogy, it was possible to identify differentially expressed miRNAs in naïve CVID patients at basal T0 level (before 
any treatment) compared to the same CVID patients, 1 day after Ig infusion (T24). We used jointly a statistical 
test (t-test with cutoff set to 0.05, without applied FDR correction), together with a criterion based on the regula-
tion entity (fold change). Experimental replicates (pool of CVID patients to create a biological triplicate for each 
experimental condition T0 and T24) were used. A fold change value of 1.5 was used to define a miRNA as differ-
entially expressed. Two different bioinformatics tools from Affimetrix, PARTEK and TAC have been used here. 

Table 1.  Biochemical and anthropometrical data of CVID patients before (T0) and after (T24) the first 
replacement therapy with Ig infusion.

CVID Naive Patients T24 h post-Ig treatment p-value

Sex M/F = 6/3

Body Mass Index (kg/m2) 24.08 ± 4.41

IgG (mg/dl) 1.25 ± 1.38 6.92 ± 1.43 2.4E-7

IgA (mg/dl) 0.089 ± 0.07 0.063 ± 0.00 0.57

IgM (mg/dl) 0.09 ± 0.06 0.14 ± 0.13 0.32

Iron (µg/dl) 52.75 ± 20.07

Glycemia (mg/dl) 77.71 ± 10.75

Albumin (g/L) 4,2 ± 0.31

Total Proteins (g/dl) 5.83 ± 0.54

Fibrinogen (mg/dl) 301.5 ± 66.44

C-reactive protein (mg/dl) 3.35 ± 1.87

ESR (mm) 6 ± 4.83

Adiponectin (µg/ml) 4.3 ± 4.53 12.84 ± 8.78  < 0.01
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TAC software uses hybridization background normalization and identification systems slightly different from 
those used by Partek. This is why the miRNA lists identified as differentially expressed with the same stringency 
parameters (fc1.5 and pvalue < 0.05) are in total number of 26 or greater, while with PARTEK there are 10 plus 2 
Small nuclear RNAs (see Figs. 1,2,3,4).

qRTPCR validation of microarray expression. Microarray expression results were validated by qPCR 
from serum and blood samples. miRNAs that showed a significant difference in expression (p < 0.05 and 1.5 fold 
change) between naïve CVID patients (T0) compared to the same patients 1 day after the first Ig replacement 
therapy (T24h) were selected for further Real-Time PCR analysis (see Fig. 5).

Among ten microRNAs, miR-6742, hsa-miR-1825, hsa-miR-4769-3p, hsa-miR-1228-3p, hsa-miR-1972, 
showed a significant expression between CVID patients (T0) compared to the same patients (T24h).

Computational predictions of the putative mRNAs target. MicroRNAs are particularly interest-
ing for potential Target Genes, analyzed with the criterion that miRNAs can bind the 3′-UTR sequences of 
mRNAs. We explored putative miRNA target genes by searching them on three distinct web-accessible miRNA 
target databases, including TargetScan, PicTar, and miRDB. Numerous target mRNAs were identified using the 
results obtained by intersecting three different bioinformatics tools. In particular, we submitted the target genes 
obtained from this approach to the KEGG pathway and Gene Ontology tools both implemented in String data-
base (Fig. 6, 7).

Regarding the Gene Ontology analysis, as shown in Fig. 6, we obtained general terms enriched for the Molecu-
lar function. However, as shown in Ingenuity Canonical Pathway (Fig. 7), we observed a statistically significant 
enrichment of a subgroup of genes involved in immune-system pathways as TNFR, IL-1 and IL-10 signalling, 
cytokine production and regulation and communication between innate and adaptive Immune System. Those 
genes have also been associated with Type 1 diabetes mellitus signalling, an autoimmune disease. Figure 8 shows 
an example of the resulted molecular networks outputs that includes miRNAs isolated in this research (and target 
genes involved in the immune response functional categories.

In particular, in the Table 2 are listed all the pathways related to the immune system compartment in which 
this set of microRNA and mRNA target genes is involved.

Figure 1.  microRNA expression heat map. Differential miRNA expression in CVID serum patients after 
the first Ig replacement therapy (t24).The heat-map showing the differential expression pattern of miRNAs 
compared to CVID serum patients before the first Ig replacement therapy (t0). Blue represents low expression 
and red high expression. Transcriptome Analysis Console (TAC) Software from Affymetrix was used with 
filtering fold change = 1.5 and p-value = 0.05.
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Discussion
Our study is the first to identify miRNAs involved in Ig response pathways of CVID patients. Currently, the 
diagnosis and therapy of CVID is complex and expansive to conduct; therefore, the identification of non-invasive 
specific potential markers is necessary. On the other hand, the Ig replacement therapy represents the most value 
therapeutic approach for CIVD patients. In the current study, we used microarray assay and qPCR validation 
to screen miRNAs differentially expressed in serum from naïve patients with CVID, before (T0) and 24 h after 
(T1) the first IgG replacement therapy. In the clinical practice, patients are recalled at 24 h post-infusion as this is 
the optimum timing to observe IgG levels and/or adverse effects. In addition, we previously  demonstrated5 that 
adiponectin levels are modulated by the Ig treatment specifically in CVID patients already at 24 h considering 
this cytokine as a biomarker for the replacement therapy in CVID patients. Finally, Quinti et al. demonstrated 
that an IgG dose higher than 6 mg/dL is effective in conferring immune protection; in our patients, at 24 h post-
infusion, IgG levels were 6.92 ± 1.43 mg/dL indicating that 24 h is the timing to observe modification induced 
by Ig treatment and search for  biomarkers13.

miRNAs have been extensively studied in many diseases, including immune disorders. Indeed, in the immune 
system, miRNAs have a wide range of significant functions, such as B cell proliferation, survival and  maturation13. 
On the other hand, literature data demonstrated that the IgG therapy alters the expression of micro RNAs in 
different diseases both in vitro and in vivo10–12.

In the pathogenesis of CVID, in extensive genetic analysis, most patients do not have a monogenetic diag-
nosis however, familial aggregation of cases was  reported14. Therefore, CVID might be considered an epigenetic 
 phenomenon15.

The investigation of the clinical impact of microRNAs in human CVID is at a very initial point. In mice 
models, miR-142 has been found highly expressed in immune cells, and miR-142 mice knock-out models 
show phenotypic similarities to CVID with immunodeficiency, hypogammaglobulinaemia, and polyclonal 
 lymphoproliferation16 supporting the significance of microRNAs in the regulation of B-cell functions. Further-
more, bic/miRNA-155-deficient mice display phenotypic similarities to CVID patients with adaptive immuno-
deficiency, hypogammaglobulinaemia, lung disease, and enteric  inflammation17.

In our research, for the first time, we identified microRNAs in naïve CVID patients involved in the response 
to the therapy with Ig infusion. In particular, has-miR-6742, hsa-miR-1825, hsa-miR-4769-3p, hsa-miR-1228-3p, 
hsa-miR-1972, resulted modulated by Ig infusion in CVID patients. All of them are down-regulated except for 
miR-6742 that is up-regulated. Previous studies demonstrated an association between some alleles encoded in 
the MHC region and CVID; the presence of these alleles can influence disease  susceptibility18. In this context, 
the different expression of miR-6742 (related to pathways involving Class I MHC mediated antigen processing 
and adaptative and Innate Immune System) could confirm the important role of the MHC genes in  CVID19. In 
addition, miR-6742 has been associated with an autoimmune disease, Type 1 diabetes mellitus, strengthening 
its involvement in the immune system  regulation20.

Figure 2.  microRNA expression heat map. Differential miRNA expression in CVID serum patients after 
the first Ig replacement therapy (t24). The heat-map showing the differential expression pattern of miRNAs 
compared to CVID serum patients before the first Ig replacement therapy (t0). Blue represents low expression 
and red high expression. PARTEK Genomic Suite Software from Affymetrix was used with filtering fold 
change = 1.5 and p-value = 0.05.
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hsa-miR-1825, hsa-miR-4769-3p, hsa-miR-1228-3p, hsa-miR-1972 are all down-regulated after infusion with 
Ig in CVID patients. In accordance with our results, hsa-miR-1825 has been associated with immune disorders 
as systemic lupus erythematosus and rheumatoid arthritis where it is down-regulated21.

Recently, hsa-miR-4769-3p has also been found related to  psoriasis22. Although additional studies are needed 
to clarify its biological functions in this pathology, it is clearly known that psoriasis has an immune basis, and 
that the immune system deregulation plays a central role in the development and severity. Interestingly, psoriasis 
has also been reported as an autoimmune manifestation in CVID  patients23.

hsa-miR-1972 has also been involved in the immune disorders rheumatoid Arthritis and Type I Diabetes 
Mellitus; in particular, the hsa-miR-1972 is related to signaling pathways as altered T and B Cell Signaling, 
and TNFR1 signaling (Table 2). In Chronic myeloid leukemia has been shown that over expression of miR-
1972 resulted in the cell cycle arrest at G2-M  stage24. Earlier, it was proposed that global miRNA expression 
may reflect the state of cellular differentiation and miRNAs can prevent the cell division and drive the cellular 
 differentiation25.

In conclusion, the identification of miRNAs modulated by Ig replacement therapy might help to understand 
the molecular mechanism of CVID etiopathogenesis. In addition, miRNAs could represent a valid target to 
develop potential biomarkers for the management of CVID patient therapy. Identification of the molecular cause 
underlying CVID is important due to the increasing availability of precision medical  interventions9,10. Similarly, 
epigenetic therapies developed may also be utilized if epigenetic etiologies for CVID will be  elucidated11,12. Many 
therapies are nowadays targeting microRNAs and some of them are already in clinical trials.

One limitation of this study is the absence of healthy controls as well as a different immunodeficiency popula-
tion needing the Ig replacement therapy, to unequivocally relate the identified miRNAs to the therapy in CVID. 
Further studies are necessary to clarify the functional role of microRNAs isolated here in CVID patients and 
we speculated that in the future, epigenetic and genetic information could help guide more effective targeted 
therapeutic intervention in CVID.

Materials and methods
Recruitment of patients. Nine CVID treatment-naïve patients (six men and three women), diagnosed 
according to European Society for Immunodeficiencies diagnostic criteria of 2014, were recruited by the Division 
of Allergy and Clinical Immunology of the Department of Translational Medical Sciences, Università di Napoli 
“Federico II”. The height and weight of patients were measured using standard techniques and the BMI was cal-

Figure 3.  Scatter plot visualization of miRNAs identified using PARTEK Genomic Suite Software from 
Affymetrix. Filtering fold change = 1.5 and p-value = 0.05.
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culated as body weight (kg) /height2  (m2). Blood samples (5 ml) were obtained (after 12 h of fasting) before and 
24 h after the first Ig and replacement therapy (0.4 g/kg). In all patients, the levels of Ig G, IgA, Ig M were meas-
ured before and after Ig replacement. Biochemical parameters (Total Cholesterol, Triglycerides, Glucose, Total 
Proteins, Iron, Fibrinogen, CRP and ESR) were determined by standard enzymatic methods (Hitachi Modular, 
Roche, Mannheim, Germany) (see Table 1). The patients received Ig replacement therapy (IgVena 50 mg/ml by 
Kedrion S.p.A. at the dose of 0.4 g/kg/21 days). From the medical files of CVID patients, we recorded clinical 
history of recurrent infections, chronic diarrhea, bronchiectasis, autoimmune diseases (autoimmune hemolytic 
anemia, immune thrombocytopenia, neutropenia), polyclonal lymphoproliferation (splenomegaly, lymphade-
nopathy, and granulomatous disease), and  malignancies5. Clinical phenotypes of patients were: 88.8% of patients 
have lymphocytic hyperplasia, 33.3% autoimmune cytopenias, 55.5% chronic enteropathy.

The research protocol was approved by the Ethics Committee of the School of Medicine, Università di Napoli 
“Federico II” and was conducted in accordance with the principles of the Helsinki II Declaration. Written 
informed consent was obtained from all participants.

Figure 4.  The barplot shows the most deregulated miRNAs and Small RNAs from microarray experiments 
in comparison between CVID serum patients after the first Ig replacement therapy (t24) vs CVID serum 
patients before the first Ig replacement therapy (t0). PARTEK Genomic Suite Software was used at filtering fold 
change = 1.5 and p-value = 0.05.

Figure 5.  qRT-PCR validation of miRNAs: representative miRNAs were validated using qRT-PCR. Real-time 
PCR showing change in microRNA expression in CVID serum patients after the first Ig replacement therapy. 
Data are represented as the fold change in expression compared with control (CVID patients before the first Ig 
replacement therapy). p =  < 0.05.
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RNA extraction. The serum samples were extracted from the patients, centrifuged at 12,000 × g for 5 min 
at 4 °C and stored at -80 °C. Total RNA was extracted using Trizol reagent (Invitrogen, #15,596–026) method 
has been used for all samples in 1 h from drawing thus reducing RNA degradation. The RNA isolated with this 
protocol comes from all white cells, including polymorphonuclear leukocytes and mononuclear cells. RNA was 
isolated including an optional DNase digestion step. This standardized RNA isolation procedure guarantees high 
quality non-degraded RNA. RNA samples which were quality-checked by identification of 18S rRNA and 28S 
rRNA peaks via the Agilent 2100 Bioanalyzer platform (Agilent Technologies)26.

Target preparation. For miRNA expression analysis, the Affymetrix Genechip miRNA 4.0 array (Affym-
etrix; Thermo Fisher Scientific, Inc.) was used according to the manufacturer’s instructions. Briefly, 300 ng of 
total RNA was poly-A tailed and biotin-labeled using the FlashTag Biotin HSR RNA Labeling Kit (Affymetrix, 
Genisphere, Thermo Fisher Scientific, Inc). As suggested by manufacturer’s protocol, Poly-A RNA Controls were 
added to each sample, to allow GeneChip probe array users to assess the overall success of the  assay26.

Microarray hybridization. Hybridization of each target was performed using the GeneChip Hybridiza-
tion, Wash and Stain Kit (Affymetrix; Thermo Fisher Scientific, Inc)26. It contains mix for target dilution, DMSO 
at a final concentration of 9,7% and pre-mixed biotin-labelled control oligo B2 and bioB, bioC, bioD and cre 
controls at a final concentration of 50 pM, 1.5 pM, 5 pM, 25 pM and 100 pM, respectively. Targets were diluted 
in hybridization buffer, denatured at 99 °C for 5 min, incubated at 45 °C for 5 min and centrifuged at maximum 
speed for 1 min prior to introduction into the GeneChip cartridge. A single GeneChip miRNA 4.0 was then 
hybridized with each biotin-labeled target.

Hybridizations were performed for 17 h at 48 °C in a rotisserie oven (60 RPM). GeneChip cartridges were 
washed and stained with GeneChip Hybridization, Wash and Stain Kit in the Affymetrix Fluidics Station 450 
following the FS450_0002 standard protocol, including the following steps. (1) (wash) 10 cycles of 2 mixes/cycle 
with Wash Buffer A at 30 °C; (2) (wash) 6 cycles of 15 mixes/cycle with Wash Buffer B at 50 °C; (3) stain of the 

Figure 6.  (red) Functional enrichment analysis by IPA (Ingenuity Pathway Analysis) of miRNA’ mRNAs 
target. Only those functions with B-H p-value <  = 0.05 have been considered. The length of the bars is 
inversely proportional to -log10 (p-value). The blue line indicates the threshold of B-H p-value (Benjamini 
Hochberg) <  = 0.05.
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probe array for 5 min in SAPE solution at 35 °C; (4) (wash) 10 cycles of 4 mixes/cycle with Wash Buffer A at 
30 °C; (5) stain of the probe array for 5 min in antibody solution at 35 °C; (6) stain of the probe array for 5 min 
in SAPE solution at 35 °C; (7) (final wash) 15 cycles of 4 mixes/cycle with Wash Buffer A at 35 °C; (8) fill the 
probe array with Array Holding buffer.

Image acquisition, processing and bioinformatic analysis. GeneChip arrays were scanned using 
an Affymetrix GeneChip Scanner3000 7G using default parameters. Affymetrix GeneChip Command Console 
software (AGCC) was used to acquire GeneChip images and generate .DAT and .CEL files, which were used for 
subsequent analysis with proprietary software 24. Data analysis has been performed using Partek Genomics Suite 
Software from Affimetryx and, to validate the results, Transcriptome Analysis Console (TAC) Software from 
Affimetryx with filtering fold change = 1.5 and p-value = 0.05.

Reverse transcription-quantitative polymerase chain reaction (RT-qPCR). cDNA was obtained 
by using oligo-dT primers or stem-loop reverse transcriptase (RT) primers, respectively. RNU6B was used as 
controls for microRNAs. Real-Time qPCR was performed under the following conditions: 94 °C for 4 min fol-
lowed by 40 cycles at 94 °C for 1 min, 56 °C for 1 min and 72 °C for 1 min. Relative expression levels of hsa-
miR-6742, hsa-miR-1825, hsa-miR-4769-3p, hsa-miR-1228-3p, hsa-miR-1972 were calculated using the  2-ΔΔCt 
 method26. Data were expressed as the mean ± standard deviation. A two-tailed Student’s t-test was performed for 
group comparisons and p < 0.05 was considered statistically significant.

MiRNA target prediction. The target mRNAs that have the potential binding sites for individual miRNAs 
were identified by searching them on public databases endowed with prediction algorithms, such as TargetS-
can (https ://targe tscan .org), PicTar (https ://picta r.mdc-berli n.de), miRBase (https ://www.mirba se.org), TarBase 
(https ://micro rna.gr/tarba se) and Miranda (https ://micro rna.sange r.ac.uk/seque nces)27.

We considered potential significant targets those found significant in both methods, as previously  suggested27. 
String database was used to build the Protein–Protein Interaction (PPI) network, and to perform Gene Ontology 
and functional  annotation28.

Figure 7.  (blue) Canonical Pathway analysis by IPA (Ingenuity Pathway Analysis) of miRNA’ mRNAs 
target. Only those pathways with B-H pvalue <  = 0.05 have been considered. The length of the bars is 
inversely proportional to -log10 (p-value). The orange line indicates the threshold of B-H p-value (Benjamini 
Hochberg) <  = 0.05.

https://targetscan.org
https://pictar.mdc-berlin.de
https://www.mirbase.org
https://microrna.gr/tarbase
https://microrna.sanger.ac.uk/sequences)27
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Figure 8.  Combined molecular analysis in CVID serum patients before and after the first Ig replacement 
therapy (t24 vs t0). Functional annotations of target genes together with their miRNAs are visualized as a 
network workflow (Cytoscape 3.6.0).

Table 2.  Ingenuity Canonical Pathways of miRNA’ mRNA target.

Ingenuity Canonical Pathways -log(p-value) Molecules miRNAs

Altered T Cell and B Cell Signaling in Rheumatoid 
Arthritis 3

IL1A,IL10,IL1F10,TNFRSF13C,TLR4,HLA-
DRB1,CD40,HLA-DMA,CSF1,LTA,IL36RN,CD86,C
SF2,TNF,HLA-DRB5

hsa-miR-597-5p, hsa-miR-6742-3p,hsa-miR-197-
5p,hsa-miR-6808-5p,hsa-miR-23b-5p,hsa-miR-1972

IL-10 Signaling 2.67 NFKBID,IKBKG,IL1A,JAK1,IL10,NFKBIE,IL36RN,B
LVRB,MAPK13,IL1F10,TNF,TAB1

hsa-miR-597-5p, hsa-miR-6742-3p,hsa-miR-197-
5p,hsa-miR-4769-3p

Type I Diabetes Mellitus Signaling 2.1
JAK1,NFKBIE,MAPK13,NFKBID,IKBKG,CASP9,
HLA-DRB1,HLA-DMA,LTA,CD86,SOCS2,CASP8,T
NF,PTPRN,HLA-DRB5

hsa-miR-4769-3p,hsa-miR-23b-5p,hsa-miR-6808-
5p,hsa-miR-1972

Granulocyte Adhesion and Diapedesis 2.01
FPR3,IL1A,PPBP,CLDN18,FPR2,ITGA5,THY1,CCL
22,IL1F10,CCL5,GNAI3,HRH1,CLDN8,CXCR2,JAM
3,IL36RN,CCL25,CLDN2,CLDN9,CX3CL1,TNF

hsa-miR-6742-3p,hsa-miR-3651,hsa-miR-6808-5p

Differential Regulation of Cytokine Production in 
Intestinal Epithelial Cells by IL-17A and IL-17F 1.77 IL1A,IL10,CCL5,CSF2,TNF hsa-miR-597-5p, hsa-miR-6742-3p,hsa-miR-197-

5p,hsa-miR-6808-5p,hsa-miR-23b-5p

IL-1 Signaling 1.71
NFKBID,GNAI3,IKBKG,IL1A,NFKBIE,PRKAR2A,G
NG13,MAPK13,GNB1L,ADCY7, TAB1,IRAK4NFK
BID,GNAI3,IKBKG,IL1A,NFKBIE,PRKAR2A,GNG1
3,MAPK13,GNB1L,ADCY7, TAB1,IRAK4

hsa-miR-197-5p,hsa-miR-4769-3p,hsa-miR-6808-5p

Agranulocyte Adhesion and Diapedesis 1.69
IL1A,PPBP,CLDN18,ITGA5,CCL22,IL1F10,CCL5,M
YL9,GNAI3,HRH1,MYH2,CLDN8,CXCR2,JAM3,IL
36RN,CCL25,CLDN2,CLDN9,CX3CL1,ACTG1,TNF

hsa-miR-597-5p, hsa-miR-6742-3p,hsa-miR-197-
5p,hsa-miR-6808-5p,hsa-miR-23b-5p,hsa-miR-1972,

T Helper Cell Differentiation 1.6 IL6ST,HLA-DRB1,CD40,HLA-
DMA,IL10,CD86,IL2RA,BCL6,TNF,HLA-DRB5 hsa-miR-6808-5p,hsa-miR-197-5p,hsa-miR-6742-3p

Differential Regulation of Cytokine Production in 
Macrophages and T Helper Cells by IL-17A and 
IL-17F

1.52 IL10,CCL5,CSF2,TNF hsa-miR-6742-3p,hsa-miR-23b-5p

TNFR2 Signaling 1.31 NFKBID,IKBKG,NFKBIE,LTA,TNF hsa-miR-23b-5p,hsa-miR-4769-3p,hsa-miR-6808-5p

TNFR1 Signaling 1.3 NFKBID,IKBKG,CASP9,PAK6,NFKBIE,CASP8,TNF hsa-miR-23b-5p,hsa-miR-4769-3p,hsa-miR-6808-
5p,hsa-miR-1972
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