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Recent advances in high-throughput technologies are bringing the study of empirical genotype-phenotype (GP) maps to the fore.

Here, we use data from protein-binding microarrays to study an empirical GP map of transcription factor (TF) -binding preferences.

In this map, each genotype is a DNA sequence. The phenotype of this DNA sequence is its ability to bind one or more TFs. We study

this GP map using genotype networks, in which nodes represent genotypes with the same phenotype, and edges connect nodes

if their genotypes differ by a single small mutation. We describe the structure and arrangement of genotype networks within the

space of all possible binding sites for 525 TFs from three eukaryotic species encompassing three kingdoms of life (animal, plant,

and fungi). We thus provide a high-resolution depiction of the architecture of an empirical GP map. Among a number of findings,

we show that these genotype networks are “small-world” and assortative, and that they ubiquitously overlap and interface with

one another. We also use polymorphism data from Arabidopsis thaliana to show how genotype network structure influences the

evolution of TF-binding sites in vivo. We discuss our findings in the context of regulatory evolution.
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Evolution can be abstracted as an exploration of genotype space—

the space of all possible genotypes (Maynard Smith 1970). This

space is populated by intersecting sets of genotypes that each

correspond to a distinct phenotype. The organization of geno-

type space into such genotype sets is described by the genotype-

phenotype (GP) map (Burns 1970; Alberch 1991), an object

of central importance in developmental and evolutionary biol-

ogy, with important implications for medicine (Pigliucci 2010;

Wagner and Zhang 2011; Lehner 2013).

Most of what we know about GP maps comes from compu-

tational models of biological systems (Lipman and Wilbur 1991;

Schuster et al. 1994; Ciliberti et al. 2007; Rodrigues and Wag-

ner 2009; Cotterell and Sharpe 2010; Salazar-Ciudad and Marı́n-

Riera 2013; Greenbury et al. 2014). These include models that

map RNA sequence genotypes onto secondary structure pheno-

types (Schuster et al. 1994; Aguirre et al. 2011), simplified amino

acid sequence genotypes onto lattice-based, structural phenotypes

(Lipman and Wilbur 1991; Bornberg-Bauer and Chan 1999),
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regulatory circuit genotypes onto gene expression phenotypes

(Ciliberti et al. 2007), and metabolic genotypes onto nutrient

utilization phenotypes (Rodrigues and Wagner 2009). GP maps

have also been studied in nonbiological systems, including self-

replicating computer programs (Fortuna et al. 2017), evolutionary

algorithms (Hu et al. 2012), and field programmable gate arrays

(Raman and Wagner 2011). Despite all that differentiates these

systems, their GP maps have much in common (Ahnert 2017).

First, they are many-to-one, meaning that multiple genotypes

have the same phenotype. Second, the distribution of genotypes

per phenotype is heavily skewed, such that most phenotypes are

realized by few genotypes, and a few phenotypes are realized

by many genotypes. Third, genotypes with the same phenotype

tend to be mutationally interconnected, meaning that it is possi-

ble to transform any one of these genotypes into any other via a

series of small mutations that preserve the phenotype. Such sets

of mutationally interconnected genotypes are known as genotype

networks (aka neutral networks (Schuster et al. 1994)). A fourth

commonality is that the genotype networks of different pheno-

types tend to overlap and interface with one another (Wagner

2008; Barve and Wagner 2013; Payne and Wagner 2013; Wagner

2014). We refer to the comprehensive description of the structure

and arrangement of genotype networks within genotype space as

the architecture of a GP map (Ferrada 2014).

The architecture of a GP map has important implications

for evolution, influencing the rate of adaptation (Draghi et al.

2010; Manrubia and Cuesta 2015), the “findability” of geno-

types and phenotypes in evolutionary searches (Cowperthwaite

et al. 2008; McCandlish 2013; Schaper and Louis 2014), as

well as their robustness and evolvability (Wagner 2008). It is

therefore important to move beyond the study of GP maps de-

rived from computational models, and to begin to study the

architecture of GP maps that are derived from experimental

data.

We currently know very little about the architecture of such

empirical GP maps. The reason is that the genotype spaces of

most biological systems are so large that it is not possible to ex-

perimentally assay a phenotype for all possible genotypes (Louis

2016). This is especially problematic when studying the architec-

ture of a GP map, where it is necessary to assay a large number of

phenotypes. Recent advances in high-throughput sequencing and

chip-based technologies are beginning to mitigate this problem by

providing localized descriptions of GP maps for macromolecules

such as RNA and proteins (Fowler et al. 2010; Rowe et al. 2010;

Hinkley et al. 2011; Jiménez et al. 2013; Melamed et al. 2013;

Buenrostro et al. 2014; Findlay et al. 2014; Olson et al. 2014; Pod-

gornaia and Laub 2015; Julien et al. 2016; Li et al. 2016; Puchta

et al. 2016; Qiu et al. 2016; Sarkisyan et al. 2016). While insight-

ful, these empirical GP maps still only describe a small subset

of the genotype networks of a small number of phenotypes, and

therefore cannot be used to characterize the architecture of a GP

map.

In contrast, protein binding microarrays (Berger et al. 2006)

provide comprehensive descriptions of transcription factor (TF)

binding preferences to all possible, short DNA sequences (eight

nucleotides in length), and such data are available for a large num-

ber of TFs (Weirauch et al. 2014). These data can therefore be used

to describe the architecture of an empirical GP map at high res-

olution, in which each genotype is a DNA sequence (TF binding

site), and the phenotype of this DNA sequence is its ability to bind

one or more TFs. These are biologically important phenotypes,

because TF binding is integral to the transcriptional regulation

of gene expression, which underlies fundamental developmental,

behavioral, and physiological processes in species as different as

bacteria and humans (Ptashne and Gann 2002). What is more,

DNA mutations that affect transcriptional regulation, including

those in TF binding sites, may lead to evolutionary adaptations

and innovations (Prudhomme et al. 2007; Wray 2007). Examples

include binding site mutations that affect body plans in snakes

(Guerreiro et al. 2013) and the discrimination of optical stimuli

in fruit flies (Rister et al. 2015).

Characterizing the architecture of a GP map helps us to

understand how such adaptations and innovations may arise.

For example, genotype network structure provides information

about how genetic diversity accumulates in an evolving popu-

lation (van Nimwegen et al. 1999). Combined with an under-

standing of how genotype networks interface with one another,

this information provides insight into how mutations may bring

forth new phenotypes. Similarly, by characterizing the overlap

of genotype networks with one another, it is possible to study

biological phenomena as different as exaptation (Barve and Wag-

ner 2013), plasticity (West-Eberhard 2003), and multifunction-

ality (Payne and Wagner 2013). In the context of TF binding

sites, such overlap is indicative of “crosstalk,” a phenomenon in

which multiple TFs compete for the same binding site, which

may lead to incorrect gene activation or repression, as well as the

titration of TFs away from their target sites (Friedlander et al.

2016).

In previous work, protein binding microarray data were used

to characterize the topologies and topographies of genotype net-

works of TF binding sites (Payne and Wagner 2014; Aguilar-

Rodrı́guez et al. 2017). The goals of these studies were to char-

acterize the relationship between robustness and evolvability in

TF binding sites (Payne and Wagner 2014), and to understand

how mutation and natural selection might navigate such net-

works toward high-affinity binding sites (Aguilar-Rodrı́guez et al.

2017). To accomplish these goals, the genotype networks of TF

binding sites were constructed and studied individually, provid-

ing localized characterizations of genotype space. Here, we ex-

tend this earlier work by providing a global and more detailed
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Table 1. Data analyzed in this study.

Species
Number of
TFs

Number of DNA-binding
domains

Arabidopsis thaliana 217 25
Neurospora crassa 118 16
Mus musculus 190 25

characterization of this genotype space for hundreds of TFs across

three kingdoms of life, thus describing the architecture of an em-

pirical GP map at high resolution. Moreover, we do so at two levels

of granularity: that of individual TFs and of entire DNA-binding

domain structural classes.

Materials and Methods
IN VITRO DATA

We studied data from protein binding microarrays (Berger et al.

2006), a chip-based technology that measures the in vitro binding

preferences of a TF to all possible 32,896 double-stranded DNA

sequences of length eight. There are 48−44

2 + 44 = 32, 896 such

sequences, because each is merged with its reverse complement

and because there are 44 sequences that are identical to their

reverse complement and therefore cannot be merged. We refer

to these DNA sequences as TF binding sites (or simply “sites”)

because we study the capacity of these sequences to bind TFs.

The binding preferences of a TF are reported as a list of protein

binding microarray enrichment scores (E-scores), one per

binding site (Berger et al. 2006). The E-score is a nonparametric,

rank-based variant of the Wilcoxon–Mann–Whitney statistic

that ranges from −0.5 to 0.5. It correlates with a TF’s relative

dissociation constant, and is therefore used as a proxy for relative

binding affinity (Berger et al. 2006; Badis et al. 2009). We

used this proxy to discriminate sites that specifically bind a

TF via hydrogen bond donors and acceptors (E-score > 0.35),

from unbound sites or sites that bind a TF non-specifically,

for example via the TF’s affinity for the DNA backbone

(E-score ≤ 0.35). We chose the threshold τ = 0.35, which has

been used in previous studies (Nakagawa et al. 2013; Payne

and Wagner 2014; Aguilar-Rodrı́guez et al. 2017), because it

corresponds to a low false discovery rate (below 0.001 for 104

mouse TFs (Badis et al. 2009)). To assess the robustness of

our results to this choice of affinity threshold, we also carried

out a sensitivity analysis by varying τ within the interval

(0.35, 0.45).

We consider 525 TFs from three kingdoms of life: animal,

plant, and fungi (Table 1, Table S1). Specifically, we downloaded

E-scores from the CIS-BP database for 86 TFs from Mus muscu-

lus, 217 TFs from Arabidopsis thaliana, and 118 TFs from Neu-

rospora crassa (Weirauch et al. 2014). We downloaded E-scores

of 104 additional M. musculus TFs from from the UniPROBE

database (Badis et al. 2009; Newburger and Bulyk 2009). We

chose to study these three species because they have more TFs

characterized in the CIS-BP database than any other in their re-

spective kingdoms. The TFs we study collectively represent 45

unique DNA-binding domains, which can be thought of as dis-

tinct biophysical mechanisms by which TFs interact with DNA. A

Venn diagram of the DNA-binding domains in the three species is

shown in Fig. S1A. In our dataset, several domains are common

to all three species, whereas others are unique to one species.

For example, Homeodomain TFs are found in all three species,

but the family of Zinc cluster TFs is exclusive to N. crassa. This

feature of our dataset provides an opportunity to discern whether

the architecture of a GP map is governed by the peculiarities of

particular binding domains or by the commonalities of TF–DNA

interactions across binding domains. This is particularly useful

in the context of TF-DNA interactions, because the set of TFs

studied in a given species partly depends upon the interests of the

field (e.g., cancer-associated TFs in humans vs stress-responsive

TFs in plants). By studying multiple species, we can ameliorate

the potential effects of this bias.

A Venn diagram of the sites that bind TFs from the three

species is shown in Fig. S1B. While many sites bind at least one

TF in all three species (21.6%), many others bind TFs from just

a single species. Specifically, 8.5%, 13.2%, and 9.6% of sites

uniquely bind TFs from A. thaliana, M. musculus, and N. crassa,

respectively. The TFs bound by such sites do not preferentially

belong to binding domains that are exclusive to a single species

(Fig. S1C). In total, 14.4% of the 32,896 sites do not bind any of

the TFs in our dataset.

IN VIVO DATA

We studied nucleotide diversity in putative TF binding sites in

Arabidopsis thaliana. To do so, we gathered digital footprints

from a DNase I hypersensitivity assay applied to root tissue

(Sullivan et al. 2014). These data demarcate protein-bound open

chromatin regions of the genome at single-nucleotide resolution,

and can therefore be used to predict TF binding sites. We fil-

tered the footprints to only include those that are at least eight

nucleotides in length and that overlap the promoter regions of the

27,416 annotated protein-coding genes in the TAIR10 build of the

A. thaliana genome, where a promoter is defined as the 500 bp

upstream of a gene’s transcription start site (Sullivan et al. 2014).

This resulted in 123,330 footprints, which range in length from 8

to 40 bps (mean 16.56 bps). We used protein binding microarray

data to determine whether the DNA sequence of each footprint

has the potential to bind any of the 217 A. thaliana TFs. Specifi-

cally, for each TF, we determined whether the footprint contained

a DNA sequence with an E-score > 0.35. If it did, we assigned

1 2 4 4 EVOLUTION JUNE 2018



THE ARCHITECTURE OF AN EMPIRICAL GP MAP

the sequence to the TF as a putative binding site. If the footprint

contained more than one binding site for a TF, we randomly chose

one of the sites and assigned it to the TF. The number of binding

sites thus assigned to a TF ranged from 142 for the TF LEC2 to

55,167 for the TF HMGA.

NOMENCLATURE

We consider a genotype space of TF binding sites for each of

the three species we study. This space comprises the set of all

possible 32,896 double-stranded DNA sequences of length eight.

The structure of this space can be described as a network, in which

nodes represent TF binding sites and edges connect nodes if their

corresponding sites differ by a single small mutation, specifically

by a point mutation or by an indel (Payne and Wagner 2014). We

refer to this network, which contains all possible genotypes, as �.

If two nodes are connected by an edge in �, we refer to them as

neighbors.

Within this genotype space, we study a GP map in which

each genotype is a DNA sequence (TF binding site), and the

phenotype of this DNA sequence is its ability to bind one or

more TFs (Payne and Wagner 2014). The set of genotypes with

a particular phenotype is a genotype set. A single genotype may

belong to multiple genotype sets, if the site binds multiple TFs.

Each genotype set comprises one or more genotype networks,

in which nodes are genotypes from the genotype set, and edges

connect nodes that differ in a single small mutation, as in �. If

a genotype set is fragmented into multiple genotype networks

(connected components), it is usually the case that one network

is much larger than the others (Payne and Wagner 2014; Aguilar-

Rodrı́guez et al. 2017). We refer to this network as the dominant

genotype network (Fig. S2).

Genotype networks are subnetworks of �, in which all geno-

types have the same phenotype. We refer to mutations that do

not change the phenotype as neutral, and to mutations that do

change the phenotype as non-neutral. Thus, neutral mutations

define the edges within genotype networks, whereas non-neutral

mutations define the edges between genotype networks, or be-

tween a genotype network and unbound sequences. If two nodes

are connected by an edge in a genotype network, we refer to them

as neutral neighbors. We emphasize that we use the term “neu-

tral” with respect to a specific phenotype, knowing full well that

such mutations may not be neutral with respect to fitness.

Non-neutral mutations bridge the genotype networks of dis-

tinct phenotypes, thus helping to form the edges of a phenotype

network. In such a network, each node represents the dominant

genotype network of a specific TF, and edges connect nodes if (i)

the associated genotype networks can be reached from one an-

other by at least one non-neutral mutation, or (ii) these genotype

networks share at least one genotype. In the latter case, we also

say that the genotype networks overlap.

GENOTYPE NETWORKS

To construct each genotype network of TF binding sites, we fol-

lowed the same procedure as Payne and Wagner (2014). First,

for each TF, we determined the set of sites that bind the TF

(E-score > 0.35). Second, we used an alignment algorithm to

calculate the mutational distance between all pairs of bound sites.

Third, we used these mutational distances to define the edges

of the genotype network by connecting two sites if they have a

mutational distance of one.

We considered two kinds of mutations: point mutations, and

indels that shift an entire, contiguous binding site by one base

(Fig. S3). Two DNA sequences of length eight can differ by a

single point mutation in 3 × 8 = 24 different ways, because each

of the sequence’s nucleotides can mutate into any one of the

three other nucleotides (Fig. S3A and B). In addition, there are

4 × 2 = 8 possible indels that can separate two DNA sequences

of length eight. The reason is that the indels we consider can cause

a shift in either the 5′ or 3′ direction, and in both cases the un-

aligned nucleotide can comprise any one of the four possible bases

(Fig. S3C and D). There is therefore a maximum of 24 + 8 = 32

single mutations that can separate two DNA sequences of length

eight.

We determined the mutational distance between two DNA

sequences using the Smith–Waterman alignment algorithm, pro-

hibiting gaps in all alignments. For two sequences s1 and s2,

we calculated the number of mismatches m(s1, s2) and m(s1, s
′
2),

where s
′
2 is the reverse complement of s2. We then took the mini-

mum of m(s1, s2) and m(s1, s
′
2) as the mutational distance between

s1 and s2.

INTRANETWORK MEASURES

We used several measures to characterize the internal structure of

genotype networks (Newman 2010). The diameter of a genotype

network is the longest of the shortest mutational paths between any

pair of genotypes. The characteristic path length is the average

of the shortest paths.

The clustering coefficient c measures the fraction of a geno-

type’s neighbors that are also neighbors themselves, averaged

across all genotypes in a genotype network (Watts and Strogatz

1998). Formally, the clustering coefficient is calculated as

c = 1

n

n∑
i=1

⎛
⎝ 2

ki (ki − 1)

∑
j,k

Ai j Aik A jk

⎞
⎠ , (1)

where n is the number of genotypes, ki is the degree of node i , A

is the adjacency matrix of the genotype network, and j and k are

the neighbors of node i .

The degree assortativity r of a genotype network measures

the propensity for genotypes with a similar number of neigh-

bors (i.e., vertex degree) to share an edge in a genotype network
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(Newman 2002). It corresponds to the Pearson correlation coeffi-

cient of the degrees of connected nodes, and therefore ranges in

value from −1 to 1. When r < 0, the network is disassortative;

when r = 0 it is uncorrelated; and when r > 0, it is assortative.

Assortativity is calculated as

r =
M−1 ∑

i
ji ki −

[
M−1 ∑

i

1
2 ( ji + ki )

]2

M−1
∑

i

1
2 ( j2

i + k2
i ) −

[
M−1

∑
i

1
2 ( ji + ki )

]2 , (2)

where ji and ki are the degrees of the genotypes at the ends of the

i th edge, and M is the number of edges in the genotype network.

The route factor q of a genotype network measures the av-

erage “directness” of the shortest mutational paths to a target

genotype from all other genotypes in the network, relative to the

shortest mutational paths to the target in � (the network used to

describe genotype space). It is calculated as

q = 1

n − 1

n−1∑
i=1

li,target

di,target
, (3)

where n is the number of nodes in the network, li,target is the short-

est mutational path between genotype i and the target genotype in

the genotype network, and di,target is the shortest mutational path

between genotype i and the target genotype in � (Gastner and

Newman 2006). We used the highest affinity binding site as the

target genotype. When q = 1, the genotype network is optimally

distributed in �, in the sense that all paths to the target genotype

are the shortest possible paths. When q > 1, the genotype net-

work possesses paths to the target genotype that are longer than

those in �, indicating deviations from an optimal distribution.

INTERNETWORK MEASURES

We characterized the arrangement of genotype networks in geno-

type space by measuring overlap and mutation probabilities φqp

among all pairs of phenotypes q and p. We applied these measures

at two levels of phenotypic granularity. In the first, the phenotype

of a binding site genotype is its ability to bind one or more TFs.

In the second, the phenotype of a binding site genotype is its abil-

ity to bind at least one TF in a class of TFs that share the same

DNA-binding domain. Regardless of the definition of phenotype,

we applied the measures to the corresponding genotype networks

in the same way.

The overlap Oqp of dominant genotype networks Gq and

G p, corresponding to phenotypes p and q , is defined as

Oqp = |S(Gq ) ∩ S(G p)|
|S(G p)| , (4)

where S(Gq ) is the set of genotypes in genotype network Gq ,

and |S(Gq )| is the number of genotypes in this set. Note that

overlap is an asymmetric measure due to the normalization factor

corresponding to the number of binding sites in G p.

The fraction φqp of mutations to binding sites in genotype

network G p that create binding sites in genotype network Gq is

defined as

φqp = 1

|S(G p)|
∑

i∈S(G p)

φlocal
q (i), (5)

where

φlocal
q (i) = nq

i

ki
, (6)

nq
i is the number of neighbors of genotype i that have phenotype q ,

and ki is the number of neighbors of genotype i in �. Thus, φlocal
q (i)

is the fraction of genotype i’s neighbors that have phenotype q . We

used equations (5) and (6) to calculate the mutational connectivity

�q of the genotype network of phenotype q from the genotype

networks of all other phenotypes in genotype space as

�q =
∑

p

φqp. (7)

The measure φqp is similar to the phenotypic accessibility

Aqp of phenotype q from phenotype p, which is measured as

Aqp = |S(Gq ) ∩ ∂S(G p)|
|∂S(G p)| , (8)

where S(Gq ) is the set of genotypes in the dominant network of

phenotype q and ∂S(G p) is the set of 1-mutant neighbors of the

set S(G p) (Stadler et al. 2001; Cowperthwaite et al. 2008). We

computed this measure as a point of comparison with φqp .

We complemented these global internetwork comparisons by

comparing the phenotypic compositions of the local mutational

neighborhoods of genotype pairs (i, j), using the Bhattacharyya

coefficient (Greenbury et al. 2016):

BC(i, j) =
∑

q

√
φlocal

q (i) × φlocal
q ( j). (9)

This coefficient quantifies the overlap of two distributions and

therefore ranges from a minimum of zero when the phenotypic

compositions of the mutational neighborhoods of genotypes i and

j are maximally dissimilar to a maximum of one when they are

identical. To quantify whether the phenotypic compositions of

mutational neighborhoods are more similar among pairs of geno-

types (i, j) that are neutral neighbors than among pairs of geno-

types (i, k) that are not neutral neighbors, but are from the same

genotype network, we computed the similarity ratio of the Bhat-

tacharyya coefficients BC(i, j)/BC(i, k). A ratio greater than 1

indicates that the phenotypic compositions of mutational neigh-

borhoods of pairs of genotypes are more similar if those genotypes

are connected by a neutral mutation than if they are not, and vice

versa. Neighbors that are shared among genotypes i and j , and
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among i and k, were excluded from this analysis to provide a

more conservative measure.

NULL MODEL

We compared our intra- and internetwork measures to those from

GP maps constructed using the null model of Payne and Wagner

(2014). Specifically, we randomly reassigned binding sites to TFs,

such that the number of binding sites per TF did not change. We

then constructed genotype networks from the reassigned binding

sites, and calculated the intra- and internetwork measures. We

repeated this process 1000 times for the GP maps of the three

species that we study.

SHANNON’S DIVERSITY INDEX

We assessed the amount of nucleotide diversity in each of a TF’s

putative binding sites in extant A. thaliana populations, using

single nucleotide polymorphism data from the 1001 Genomes

project (1001 Genomes Consortium 2016). Specifically, we cal-

culated Shannon’s diversity index D of each binding site as

D = −1

8

8∑
i=1

∑
j∈A,C,G,T

pi j log2(pi j ), (10)

where pi j is the frequency of allele j at position i in the binding

site. This measure takes on its minimum value of 0 when there is

no diversity in the binding site. It takes on its maximum value of

2 when each of the four nucleotides occurs with equal frequency

in all eight positions of the binding site.

DETERMINING THE NUMBER OF TRANSCRIPTION

FACTORS PER DNA-BINDING DOMAIN CLASS

We compared the number of TFs per DNA-binding domain in

our dataset to the same number in the proteomes of A. thaliana

(UP000006548), N. crassa (UP000001805), and M. musculus

(UP000000589), which we obtained from UniProt (The UniProt

Consortium 2015). To find the number of proteins in each pro-

teome with a match to a DNA-binding domain, we employ the pro-

gram hmmsearch from the software package HMMER (v3.1b2)

(http://hmmer.org/). We used a cutoff of 0.01 for both the sequence

e-value and the domain conditional e-value. We downloaded the

hidden Markov models of each DNA-binding domain from the

Pfam database (v27.0) (Finn et al. 2014).

STATEMENT ON REAGENT AND DATA AVAILABILITY

All data used in this study are freely available in the UniPROBE

and CIS-BP databases. Table S1 provides the necessary informa-

tion to retrieve these data.

Results
GENOTYPE SPACE

We begin with a description of the network of all genotypes �,

as this is the substrate of the genotype networks that we study

in the subsequent sections. This network comprises 32,896 nodes

and 523,728 edges. Its degree distribution is shown in Fig. S1D.

The vast majority (96%) of genotypes have 32 neighbors, in-

dicating that the network is nearly regular. The remaining 4%

of sites possess peculiar features that are detailed in the Sup-

plementary Material. Its diameter—the longest of the shortest

paths between any two nodes—is eight, which corresponds to

the maximum alignment distance between two sites. On aver-

age, however, pairs of TF binding sites are separated by only

4.385 mutations. The clustering coefficient of the network is

0.122, indicating that very few of a site’s neighbors are neigh-

bors themselves. This occurs because a site’s neighbors can only

be neighbors themselves if they differ in the same nucleotide po-

sition. For example, the sequence ATATATAT has the neighbors

ATATATAA and ATATATAG, which are neighbors themselves,

but it also has neighbors such as CTATATAT and ACATATAT,

which cannot be neighbors because they differ in two nucleotide

positions. The network also lacks any meaningful assortativity

by degree (indicated by an assortativity value of r = 0.006),

which can be attributed in part to the low variance of the degree

distribution.

INTRANETWORK ANALYSES

We first make some general observations about sets of genotypes

that bind different TFs. The sizes of these genotype sets vary both

within and across species, from a minimum of two sites for the

A. thaliana TF Abf3 to 1186 sites for the M. musculus TF Sp110.

Across the three species, the average genotype set size is 374 sites.

A total of 53% of these genotype sets comprise a single genotype

network, whereas the remaining 47% comprise between 2 and 15

genotype networks. Despite such fragmentation, for 90% of the

TFs, more than 95% of the genotype set belongs to the dominant

genotype network (Table S1). We therefore carry out all of our

analyses on the dominant genotype networks, as in previous work

(Payne and Wagner 2014; Aguilar-Rodrı́guez et al. 2017). To

simplify the presentation of our results, we focus on data from M.

musculus in the main text, as it is representative of the data from

A. thaliana and N. crassa, which we present in the Supplementary

Material.

For the 190 M. musculus TFs, the average genotype network

diameter is 6.7, varying from a minimum of 2 to a maximum of 14

(Fig. 1A; Table S1). In contrast, the characteristic path length—

i.e., the average shortest distance between any pair of genotypes

in a genotype network—is 3.2, less than half of the average net-

work diameter (Fig. 1B; Table S1). These genotype networks are
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Figure 1. Intranetwork statistics for 190 TFs from M. musculus. The distributions of genotype network (A) diameter, (B) characteristic path

length, (C) clustering coefficient, and (D) assortativity. (E) Assortativity (vertical axis) and its relationship to the number of genotypes in

the dominant genotype network (horizontal axis). The horizontal dashed line indicates an uncorrelated (nonassortative) mixing pattern.

(F) The distribution of the genotype network route factor.
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highly clustered, with an average clustering coefficient of 0.312

(Fig. 1C; Table S1). Taken together, the short characteristic path

length relative to the diameter, and the high clustering coefficients,

indicate that genotype networks of TF binding sites tend to fall

within the family of “small world” networks (Watts and Strogatz

1998). These are networks that can be traversed in very few steps,

like a random network, yet are highly clustered, like a regular

lattice. In the context of TF binding sites, the “small world” prop-

erty has two implications. First, it implies that binding sites are

highly evolvable, because only very few mutations are required

to travel across the network and potentially access new binding

phenotypes. Second, it implies that binding sites are mutationally

robust, because they may accumulate multiple mutations and still

bind their cognate TF. Qualitatively similar results are obtained

for the A. thaliana and N. crassa TFs (Figs. S4A– C and S5A–

C), indicating the consistency of these properties across three

branches of the tree of life.

A recent numerical study suggests that assortativity (r )

may influence evolutionary dynamics on genotype networks

(Manrubia and Cuesta 2015). This measure, which ranges from

−1 ≤ r ≤ 1, captures the propensity with which nodes of similar

degree connect with one another (Newman 2002). Evolutionary

dynamics on genotype networks that are assortative by degree

(r > 0) may result in phenotypic entrapment, where the prob-

ability that an evolving population leaves a genotype network

decreases with the time spent on it (Manrubia and Cuesta 2015).

We find that most genotype networks exhibit a moderate amount

of degree assortativity, possessing on average a value of r = 0.25

(Fig. 1D; Table S1). Degree assortativity is positively correlated

with the size of the dominant genotype network (Spearman’s

r = 0.57, P = 1.33 × 10−17), such that disassortative genotype

networks (r < 0) are always small (Fig. 1E). This likely reflects

finite-size effects. Figures S4D and E and S5D and E show that

the same trends also exists in A. thaliana and N. crassa TFs.

Assortativity is also positively correlated with characteristic path

length (Spearman’s r = 0.56, P = 3.47 × 10−19), indicating that

as genotype networks become less “small-world,” the potential

for phenotypic entrapment increases. Finally, we emphasize that

these trends in assortativity do not simply arise from the assorta-

tivity of �, because � shows very little assortativity (r = 0.006).

We next describe the structure of genotype networks using

the route factor q . Figure 1F shows the distribution of q for the

dominant genotype networks of the 190 M. musculus TFs, where

the target genotype is chosen to have the highest E-score. The

distribution is heavily skewed toward q = 1, with an average

route factor of q = 1.01 (Table S1). This indicates that genotype

networks of TF binding sites are almost optimally distributed in

�, meaning that almost all of the mutational paths in a genotype

network that lead to the highest affinity sequence are the shortest

possible mutational paths. Indeed, 38% of the genotype networks

are optimally distributed, with q = 1. These results are consistent

across the three species we study, as shown in Figs. S4F and S5F.

Figures S6– S8 show that these intranetwork statistics consis-

tently differ from the null expectation. Specifically, the genotype

networks constructed from the empirical data have longer diam-

eters and characteristic path lengths, but shorter route factors, as

well as higher clustering coefficients and assortativity values than

the genotype networks constructed using the null model. Thus, the

“small-worldness” of these genotype networks, as well as their ef-

ficient layout in genotype space, and assortative mixing patterns,

are not expected structural properties according to the null model.

Figures S9– S11 show how these intranetwork statistics change as

the binding affinity threshold is increased. In sum, they become

more small-world (i.e., their characteristic path length decreases

and their clustering coefficient increases) and slightly less assor-

tative, with a more efficient layout in genotype space. We also

study the community structure of these genotype networks, but

it is not clear whether and how the network partitions we detect

relate to dual modes of binding specificity (Badis et al. 2009), or

to other facets of TF-DNA interactions (Supplementary Material).

Finally, we ask what these intranetwork measures tell us

about the evolution of TF binding sites. In particular, we test a

series of hypotheses about how the structural properties of geno-

type networks impact binding site diversity. To do so, we focus on

A. thaliana, because two important sources of data are available

for this species: Digital footprints from DNase I hypersensitivity

assays (Sullivan et al. 2014), which can be used to predict TF

binding sites, and high-quality single nucleotide polymorphism

data (1001 Genomes Consortium 2016), which can be used to

measure binding site diversity in extant populations. Our first hy-

pothesis is that binding site diversity will increase as the number

of binding sites in a genotype network increases. Our reason-

ing is that there are simply more sequences capable of binding

a TF in a large genotype network than in a small genotype net-

work, so these binding sites should exhibit more diversity. We

find that this is indeed the case. The diversity of polymorphic

TF binding sites exhibits a strong positive correlation with the

size of the TF’s genotype network (Fig. 2A; Spearman’s cor-

relation ρ = 0.42, P = 1.71 × 10−10). The second hypothesis is

that binding site diversity will increase as the characteristic path

length of a genotype network increases. Our reasoning is that

genotype networks with large characteristic path lengths are more

“spread out” in genotype space and will therefore permit the ac-

cumulation of more diversity than genotype networks with short

characteristic path lengths. To test this hypothesis, we need to

control for genotype network size, because this is positively cor-

related with characteristic path length (Spearman’s correlation

ρ = 0.76, P = 4.46 × 10−42). We find that even after controlling

for genotype network size, binding site diversity increases with

characteristic path length (Fig. 2B; Spearman’s partial correlation
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Figure 2. The structural properties of genotype networks are indicative of binding site diversity in extant populations of A. thaliana.

Shannon’s diversity of a TF’s polymorphic binding sites is shown in relation to (A) the number of nodes, (B) characteristic path length,

and (C) route factor of its genotype network. The label of the y-axis applies to all panels.

ρ = 0.23, P = 6.38 × 10−4). The third hypothesis is that bind-

ing site diversity will increase as the route factor increases. Our

reasoning is that genotype networks with high route factors are

less “efficient” than those with short route factors, meaning that

there are more sequences in the shortest paths between the high-

est affinity sequence and other sequences in the network. This

reduced efficiency should result in greater binding site diver-

sity, which is indeed what we observe, even after controlling for

genotype network size (Fig. 2C; Spearman’s partial correlation

ρ = 0.21, P = 1.70 × 10−3). The final hypothesis is that binding

site diversity will decrease as assortativity increases. Our reason-

ing is that highly connected nodes are “visited” more frequently

by a population evolving on a genotype network (van Nimwegen

et al. 1999), and in highly assortative networks, such nodes prefer-

entially connect to one another, which may make it difficult for an

evolving population to escape the network’s dense core, and thus

lead to reduced diversity. However, after controlling for genotype

network size, we find no evidence for this phenomenon (Spear-

man’s partial correlation P = 0.09), possibly because the geno-

type networks we study exhibit limited variation in assortativity

(−0.47 ≤ r ≤ 0.51 as compared to the full range of −1 ≤ r ≤ 1).

Taken together, these analyses indicate that several of the struc-

tural properties of genotype networks affect the evolution of TF

binding sites in vivo, particularly the extent to which binding sites

accumulate genetic diversity.

INTERNETWORK ANALYSES

We now shift the scale of our analysis from local to global, tran-

sitioning from descriptions of individual genotype networks to

descriptions of how these genotype networks overlap and inter-

face with one another in �.

Overlap
Some TFs have similar binding preferences, especially if they

are products of duplicate (paralogous) genes (Badis et al. 2009;

Weirauch et al. 2014). The genotype networks of such TFs

will therefore overlap, which has potential implications for TF

crosstalk (Friedlander et al. 2016). Figure 3A shows the overlap

for all pairs (p, q) of TFs in the mouse dataset. Rows and columns

correspond to individual TFs, and are arranged by DNA-binding

domain. The shading of matrix elements depicts overlap as the

fraction of binding sites that are common to the genotype net-

works of two TFs. The matrix is asymmetric, because overlap is

normalized by the genotype network size of TF q . Similar values

of overlap are found in A. thaliana and N. crassa (Figs. S12A,

S13A).

Paralogous TFs exhibit a high level of overlap in their geno-

type networks, as indicated by the block structure of the main

diagonal in Fig. 3A. Even TFs with a C2H2 ZF binding domain,

which exhibit the lowest levels of overlap, still share 9.14% of

their binding sites on average. At the other end of the spectrum

are two TFs with an E2F binding domain (E2F2 and E2F3),

which share 92.73% of their binding sites. Overlap is not re-

stricted to TFs from the same binding domain, as indicated by the

blue shading off the main diagonal. For example, ARID/BRIGHT

and Sox TFs share on average 16.5% of their binding sites. In

fact, every single TF in the M. musculus dataset exhibits over-

lap in its genotype network with at least one other TF from a

different binding domain. TFs with the same DNA-binding do-

main tend to share on average 27.2% of their binding sites, while

TFs with different binding domains only share 1.88% on average

(Wilcoxon rank-sum test, P < 10−6). Figure S14 compares geno-

type network overlap in the empirical data to the null model, and

Fig. S15 shows that overlap gradually decreases as the binding

affinity threshold increases. In sum, these results suggest that cog-

nate and noncognate TFs may often compete for the same binding

sites, especially if the TFs are paralogs.

Interface
To characterize how the genotype networks of TF binding sites

interface with one another, we calculated the fraction φqp of muta-

tions to binding sites in the genotype network of TF p that create
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Figure 3. Matrices of internetwork relationships for the genotype networks of TF binding sites from M. musculus. Heatmaps of log10-

transformed (A) overlap and (B) φqp, the probability of mutating from the genotype network of phenotype p to the genotype network of

phenotype q. The rows and columns are grouped according to binding domain, which are ordered alphabetically on the horizontal axis:

A, AP-2; B, ARID/BRIGHT; C, AT hook; D, bHLH; E, bZIP; F, C2H2 ZF; G, CxxC; H, E2F; I, Ets; J, Forkhead; K, GATA; L, GCM; M, Homeodomain;

N, Homeodomain + POU; O, IRF; P, MADS box; Q, Myb/SANT; R, Ndt80/PhoG; S, Nuclear receptor; T, RFX; U, SAND; V, SMAD; W, Sox; X,

T-Box; Y: TBP. Within the DNA-binding domain groups, the rows and columns are ordered by the size of each TF’s dominant genotype

network, such that network size increases from top to bottom and from left to right. Labels on the vertical axis indicate the name of the

TFs, which can be read on the computer by zooming in. Cells colored in gray indicate either N/A values (on the diagonal) or values equal

to zero (off-diagonal).
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binding sites in the genotype network of TF q (Greenbury et al.

2016). The matrix in Fig. 3B shows φqp for all TFs in the mouse

dataset. It is arranged as in Fig. 3A. Similar values of φqp are

found in A. thaliana and N. crassa (Figs. S12B, S13B).

Of the 35,910 pairwise comparisons depicted in Fig. 3B,

31,548 (87.9%) have φqp > 0 (as compared to 33.2% in the null

model). This means that genotype networks of TF binding sites

interface with one another to such an extent that it is usually

possible to evolve at least one of a TF’s binding sites via a single

small mutation to a binding site of nearly any other TF. On average,

the φqp between the genotype networks of TFs with the same

binding domain is higher than that of TFs with different binding

domains (0.139 compared to 0.016; Wilcoxon rank-sum test, P <

10−6). Figure S17 compares φqp in the empirical data to that of

the null model, and Fig. S18 shows how φqp decreases as the

binding affinity threshold increases.

Some pairs of TFs with different binding domains have high

φqp . For example, the genotype networks of TFs with a SAND

binding domain have a higher φqp, on average, with the genotype

networks of TFs with a bZIP binding domain than they do with

the genotype networks of TFs with the same binding domain. To

investigate this further, we compare φqp to the null expectation

(Payne and Wagner 2014), which is equivalent to the fraction

fq of genotypes with phenotype q (Schaper and Louis 2014;

Greenbury et al. 2016). We consider the TF Hes7 as phenotype

q , because it has the largest genotype network of the TFs with

a bHLH binding domain, which is the domain with the largest

number of TFs in our dataset. We find that the null model does

not provide a reasonable approximation to the empirical data

(Fig. S16), in contrast with earlier observations in computational

models of GP maps (Greenbury et al. 2016). This means that the

overall frequency of a phenotype—i.e., the fraction of genotypes

with that phenotype—is not a good indicator of the probability

that a randomly chosen non-neutral mutation leads to that pheno-

type. We find that for TFs with the same binding domain as the

focal TF Hes7, φqp is typically larger than the null expectation

(Fig. S16, filled circles). Since such TFs often bind similar sets of

sites (Weirauch et al. 2014), this observation corroborates the intu-

ition that their genotype networks interface more than expected by

chance. However, such TFs do not fully account for the observed

deviation from the null model, because removing them from the

linear fit of φqp to fq barely improves the coefficient of determi-

nation (R2 = 0.1337, as compared to R2 = 0.082). In sum, the

arrangement of genotype networks in � deviates substantially

from the null expectation, and this deviation is not explained by

TF paralogs binding similar sets of sequences; even the arrange-

ment of genotype networks of nonparalogous TFs deviates from

the null expectation.

GP maps often exhibit correlations in their local mutational

neighborhoods (Greenbury et al. 2016). We therefore sought to

determine if the composition of such neighborhoods—in terms

of the phenotypes that occur in them—might deviate from the

null expectation. To do so, we compared the composition of the

mutational neighborhoods of pairs of neighboring genotypes on a

genotype network to the mutational neighborhoods of randomly

selected pairs of nonneighboring genotypes from the same geno-

type network, removing neighbors that are shared by the geno-

types being compared. We used this comparison to compute a

similarity ratio that is greater than unity when neighboring geno-

types have more similar sets of phenotypes in their mutational

neighborhoods than do nonneighboring genotypes (Greenbury

et al. 2016). Figure S19 shows a histogram of this similarity ratio

for all possible pairs of neighboring genotypes in the genotype

network for the mouse TF Sp110, which we have chosen to ex-

emplify this result because it has the largest genotype network in

the M. musculus dataset. The mean is 1.465 ± 0.006, which devi-

ates significantly from the null expectation of unity (one-sample

t-test, t = 79.87, P < 10−6). We made similar observations in

the A. thaliana and N. crassa data (Figs. S20, S21). Figure S22

shows that the similarity ratio is higher than expected under the

null model, and Fig. S23 shows that although the similarity ratio

decreases as the binding affinity threshold increases, it always

remains above unity.

So far, we have only considered how genotype networks in-

terface with one another. Since mutations that abrogate TF binding

are also important for regulatory evolution (Guerreiro et al. 2013),

we now turn our attention to the interface of genotype networks

with the regions of � that do not bind any TF. Such unbound

regions are not small: They comprise 51%, 48%, and 39% of

� in A. thaliana, N. crassa, and M. musculus, respectively. For

each TF P , we calculate the fraction φunbound,p of mutations to

binding sites in the genotype network for TF p that create un-

bound sites—i.e., sites that do not bind any TF in our dataset,

for the respective species. We then divide this number by the

fraction funbound of unbound sites, which is the null expectation

for φunbound,p (Greenbury et al. 2016). Thus, this ratio will equal

unity when the empirical data is well represented by the null

model. Figure S24 shows this ratio for all of the mouse TFs.

It is consistently below unity. This indicates that unbound sites

occur less frequently in the mutational neighborhoods of bound

sites than is expected under the null model. Thus, the interface of

genotype networks with unbound sites in � is qualitatively differ-

ent from the interface of genotype networks with one another. We

made similar observations in the A. thaliana and N. crassa data

(Figs. S25, S26), and these findings are insensitive to the binding

affinity threshold (Fig. S27).

Finally, we sum across the columns of Fig. 3B to obtain a

global measure �q of the mutational connectivity of the geno-

type network of phenotype q with the genotype networks of

all other phenotypes in genotype space. This measure is related
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to, and highly correlated with, a popular measure called phe-

notypic accessibility (Stadler et al. 2001; Cowperthwaite et al.

2008) (Spearman’s r = 0.95, P < 10−6; Fig. S28). The main dif-

ference is that �q accounts for genotype network overlap. We

find that �q increases with genotype network size (Spearman’s

r = 0.64, P < 10−6; Fig. S29), indicating that non-neutral mu-

tations to TF binding sites are more likely to create binding sites

for low-specificity TFs than for high-specificity TFs, because low-

specificity TFs have larger genotype networks (Payne and Wagner

2014). We also find that �q increases with genotype network size

in A. thaliana (Fig. S30) and N. crassa (Fig. S31).

Phenotype space covering
To further characterize how genotype networks of TF binding

sites overlap and interface with one another, we calculated the

average fraction of phenotypes found within n mutations of each

binding site, for each TF. We refer to this measure, which has

been introduced in a different context as shape space covering

(Schuster et al. 1994), as phenotype space covering, and we call

a phenotype “covered” if it is found within a mutational radius of

a genotype. We again use the mouse TF Sp110 to exemplify our

findings.

We consider two variants of phenotype space covering. In

the first, we determine the phenotypes of all genotypes within a

mutational radius of n, such that all mutations are neutral (i.e.,

the binding sites are part of the same genotype network). This

analysis is therefore a further characterization of genotype net-

work overlap. We find for the murine TF Sp110 that within just a

single mutation (n = 1), an average of 8.51% of the phenotypes

are covered, and that within a mutational radius of n > 4, a total

of 46.31% of the phenotypes are covered (Fig. 4A). The genotype

network for Sp110 therefore overlaps with the genotype networks

of nearly half of the mouse TFs in our dataset. Figure S32A shows

that this does not happen under the null model where phenotype

space covering is close to zero for all n. We then asked how

the maximum proportion of phenotypes covered (e.g., 46.31%

for Sp110) relates to the size of a genotype network. Figure 4

B shows that this maximum proportion is largely determined by

the size of the dominant genotype network (Spearman’s r = 0.76,

P < 10−6), such that larger dominant genotype networks cover

more phenotypes. Figures S33A –S35A show how this maximum

proportion decreases as the binding affinity threshold increases.

In the second variant of phenotype space covering, we con-

sider all genotypes within a mutational radius of n, such that all

mutations are non-neutral. The proportion of phenotypes cov-

ered within a mutational radius of n = 1 does not differ from

the first variant, but it increases more rapidly with n, such that

all phenotypes are covered within a mutational radius of n > 4

(Fig. 4A). Figure S32B shows that this increase is reduced under

the null model. Moreover, there is no variation in this measure

when n > 4, meaning that all phenotypes are covered within this

mutational radius from any binding site of Sp110. Across all of

the mouse TFs, n = 4.5 is the average mutational radius for which

the coefficient of variance (σ/μ) in the proportion of phenotypes

covered becomes smaller than 1%. There are 33 TFs that cover

more than 99% of all phenotypes within a radius of n ≤ 4. Re-

markably, five of these networks are extremely small, comprising

between 8 and 11 binding sites (TFs Arnt2, Fosl1, Hes2, Jun,

and Olig3). These binding repertoires are therefore exceptionally

evolvable. Figures S33B– S35B show how the radius at which all

phenotypes are covered increases as the binding affinity threshold

increases.

GENOTYPE NETWORKS OF DNA-BINDING DOMAINS

The GP map we study can be analyzed at multiple levels of

granularity. We have so far considered a fine-grained analysis, in

which each genotype is a DNA sequence, and the phenotype is

the sequence’s ability to bind one or more TFs. We now consider

a more coarse-grained analysis, in which each genotype is a DNA

sequence, and the phenotype is the sequence’s ability to bind at

least one TF in a class of TFs that share the same DNA-binding

domain. Studying the overlap and interface of such genotype

networks complements our previous analyses by describing how

TFs with different binding domains may compete for the same

sites, and how DNA mutations may transfer regulatory control

from a TF with one DNA-binding domain to a TF with a different

binding domain.

Figure 5A shows the extent of overlap among all pairs

of genotype networks for the 25 DNA-binding domains in the

M. musculus dataset. Such overlap is pervasive. For example, there

are six binding domains with genotype networks that overlap the

genotype networks of every other binding domain in the dataset

(bHLH, bZIP, C2H2ZFs, Ets, Homeodomain, SAND). Even the

AP-2 and Ndt80/PhoG binding domains, which exhibit the lowest

levels of overlap, still overlap with 14 (56%) of the other domains.

In total, 504 of the 600 pairs of binding domains exhibit over-

lap in their genotype networks. It is therefore common for TFs

with different binding domains to recognize some of the same

sites, further highlighting the potential for crosstalk in transcrip-

tional regulation (Friedlander et al. 2016). Similar patterns hold in

A. thaliana and N. crassa (Figs. S36A, S37A), even though these

species have several binding domains that are not present in the

M. musculus dataset. Such overlap therefore appears to be a gen-

eral consequence of the low specificity with which eukaryotic

TFs interface with DNA, rather than a consequence of the bind-

ing preferences of any particular binding domain.

Figure 5B shows φqp for all pairs of the 25 DNA-binding

domains in the M. musculus dataset. As with overlap, we observe

an increase in φqp as we shift the level of analysis from TFs to

DNA-binding domains. A total of 590 (98.3%) binding domain
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Figure 4. Phenotype space covering. (A) The proportion of phenotypes covered as a function of the mutational radius n from a given

binding site, averaged across all binding sites of the murine TF Sp110. The maximum proportion of phenotypes covered plateaus at a

much lower level when considering just neutral mutations than when considering non-neutral mutations. Error bars are the standard

deviations of the mean. (B) The maximum proportion of phenotypes covered by neutral mutations as a function of the number of binding

sites in the dominant genotype network, for all 190 murine TFs. The black line shows the fitted linear regression to the data (R2 = 0.516)

and the shaded gray area denotes 95% confidence intervals. The figure also shows the Spearman’s correlation and its associated P -value.

pairs exhibit nonzero φqp. Mutations in TF binding sites could

thus commonly transfer regulatory control among TFs with

different binding domains. Similar observations are made for

A. thaliana and N. crassa (Figs. S36B, S37B). We also studied

how the different genotype networks of DNA-binding domains

interface with one another through the visualization of phenotype

networks (Figs. S38– S40).

Finally, �q scales with genotype network size at the level

of DNA-binding domains, just as it did at the level of individual

TFs (compare Figs. S41– S43 with Figs. S29– S31). However,

since the number of TFs per binding domain in the M. muscu-

lus dataset also scales with genotype network size (Fig. S44A),

we were concerned that these trends may stem from ascertain-

ment bias. This could occur if the number of TFs per binding
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Figure 5. Matrices of internetwork relationships for the genotype networks of binding domains from M. musculus. Heatmaps of log10-

transformed (A) overlap and (B) φqp, the probability of mutating from the genotype network of phenotype p to the genotype network

of phenotype q. Each row and column represents a different genotype network. Domains are ordered alphabetically. Cells colored in gray

indicate either N/A values (on the diagonal) or values equal to zero (off-diagonal).

domain in the M. musculus dataset was not representative of the

number of TFs per binding domain in the M. musculus genome.

Figures S44B,C show that this is not the case. Both the number

of TFs per binding domain in the M. musculus dataset, and the

size of the corresponding genotype network, scale with the num-

ber of TFs per binding domain in the M. musculus genome. We

made similar observations in A. thaliana and N. crassa (Figs. S45,

S46).
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Discussion
The concept of a genotype-phenotype (GP) map can be traced

back to the work of Sewall Wright (Wright 1932), Conrad

H. Waddington (Waddington 1959), and John Maynard Smith

(Maynard Smith 1970). However, the term GP map (“genotype-

phenotype mapping”) was only coined in 1970 by Jim Burns

(Burns 1970), who recognized the importance of incorporating

a mechanistic perspective into the evolutionary framework of

population genetics, thus outlining the research programme that

has come to be known as evolutionary systems biology (Soyer

and O’Malley 2013). The term was re-introduced in 1991 by the

developmental biologist Pere Alberch (Alberch 1991), who was

interested in macroscopic phenotypes arising from complex de-

velopmental processes. The study of GP maps is currently shift-

ing away from the conceptual and computational models that

shaped the thinking of the founders of the field, toward empiri-

cal data derived from high-throughput assays (Rowe et al. 2010;

Fowler et al. 2010; Hinkley et al. 2011; Jiménez et al. 2013;

Melamed et al. 2013; Buenrostro et al. 2014; Findlay et al. 2014;

Olson et al. 2014; Podgornaia and Laub 2015; Julien et al. 2016;

Li et al. 2016; Puchta et al. 2016; Qiu et al. 2016; Sarkisyan et al.

2016). Our study is part of this shift. We have used experimental

data from protein binding microarrays to analyze the architecture

of an empirical GP map, in which each genotype is a short DNA

sequence, and the phenotype of the sequence is its ability to bind

one or more TFs. This study expands upon previous analyses of

this map (Payne and Wagner 2014; Aguilar-Rodrı́guez et al. 2017)

by providing more nuanced descriptions of individual genotype

networks, detailed characterizations of how these networks over-

lap and interface with one another, and does so at two levels of

phenotypic granularity.

Our analyses of individual genotype networks provide two

new insights into their structure. First, they tend to be “small-

world” (Watts and Strogatz 1998), an observation that furthers our

understanding of the “robust-yet-evolvable” nature of TF binding

sites (Payne and Wagner 2014): While binding sites tend to be

highly clustered in their genotype network (robustness), it remains

possible to traverse the network with just a few mutations, thus

providing efficient access to adjacent genotype networks (evolv-

ability). Indeed, the route factor of these genotype networks in-

dicates that they are almost optimally distributed in genotype

space, in the sense that almost all genotypes are connected to

a central target genotype through the shortest mutational paths.

These structural properties have implications for the evolution of

TF binding sites. Specifically, we find that they affect the accu-

mulation of genetic diversity in extant populations of A. thaliana,

such that binding site diversity increases as a genotype network’s

characteristic path length or route factor increases.

The second new insight is that genotype networks are assor-

tative, meaning that robust (i.e., highly connected) binding sites

are likely to neighbor other robust binding sites. The potential

implication for the evolution of TF binding sites is reduced diver-

sity, because an evolving population tends to accumulate in such

densely connected regions of genotype networks (van Nimwe-

gen et al. 1999), which may lead to “phenotypic entrapment”

(Manrubia and Cuesta 2015), a phenomenon in which an evolv-

ing population becomes less likely to leave its genotype network

the more time it spends on it. However, we do not find evidence

of this in our analysis of polymorphism data from A. thaliana,

inasmuch as we do not find a significant relationship between

assortativity and binding site diversity. One possible explanation

is that the genotype networks we study exhibit limited variation

in assortativity.

A sometimes underappreciated feature of GP maps is that

genotypes may have more than one phenotype (West-Eberhard

2003; Wagner and Zhang 2011), which means that genotype

networks may overlap. Even if we restrict our examples to the

molecular realm, they are numerous: An RNA transcript can be

translated into different proteins (Bratulic et al. 2015), an amino

acid sequence can fold into different conformational structures

(Bloom et al. 2006), and a promiscuous enzyme can catalyze dif-

ferent reactions (Nam et al. 2012). In the GP map studied here,

such overlap is also pervasive, both at the level of individual TFs

and of DNA-binding domains. It implies competition for binding

sites among cognate and noncognate TFs, a phenomenon known

as “crosstalk.” Recent modeling work suggests that crosstalk is an

inevitable feature of transcriptional regulation in species that em-

ploy limited-specificity TFs (Friedlander et al. 2016), such as the

three eukaryotic species studied here. This is important because

crosstalk places constraints on the function and evolution of tran-

scriptional regulatory networks. Our results provide an empirical

complement to these earlier theoretical findings, by providing es-

timates of how much crosstalk can occur among TFs and binding

domains. However, it is worth highlighting that these estimates are

based on in vitro measurements of TF binding preferences. The

myriad complexities of in vivo TF–DNA interactions (Siggers and

Gordân 2014), including epigenetic marks, local sequence, and

chromatin context, as well as interactions with protein partners,

will certainly affect these estimates. Our ability to interrogate the

effects of these complexities on TF–DNA interactions is contin-

uing to advance (Hu et al. 2013; Levo et al. 2015; Isakova et al.

2017; Levo et al. 2017), and we believe that genotype networks

will provide a useful framework for studying how such complex-

ities mitigate crosstalk in transcriptional regulation. Of particular

interest is the role played by chromatin silencing (Beisel and Paro

2011), which may mitigate crosstalk by making binding sites un-

available in the presence of noncognate TFs.
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Our analysis of how genotype networks interface with one

another has implications for the emergence of evolutionary inno-

vations, because mutations in cis-regulatory regions may produce

novel gene expression patterns (Wray 2007; Prudhomme et al.

2007). In particular, single-base pair mutations in TF binding sites

can shift the regulatory control of a gene from one TF to another,

and this may cause profound phenotypic change. For example,

such mutations led to the differential expression of Rhodopsin

genes in different subsets of Drosophila photoreceptors (Rister

et al. 2015), which facilitated the discrimination of a wide spec-

trum of optical stimuli, and thus drastically changed how flies

perceive their environment. In the GP map studied here, it has

been previously shown that genotype networks are so intertwined

that it is usually possible to mutate at least one of a TF’s binding

sites to a binding site of nearly any other TF (Payne and Wagner

2014). This means that mutation can readily shift the regulatory

control of a gene from one TF to another, a shift that may lead to

an adaptive change in gene expression. Here, we provide a more

detailed and nuanced view of TF binding site evolvability. At the

most local scale, evolvability is relatively low because neutral

neighbors tend to have highly similar mutational neighborhoods,

which decreases the diversity of novel phenotypes that may arise

via a single point mutation to any one binding site (Greenbury

et al. 2016). However, only very few mutations are required to

shift regulatory control from the cognate TF to nearly any other

TF in our dataset. At even this intermediate scale, TF binding sites

are therefore remarkably evolvable.

An important challenge in the biological sciences is to pro-

vide a comprehensive description of the architecture of an em-

pirical GP map. The hyper-astronomical size of genotype space

renders this challenge impossible for most biological systems

of interest, including macromolecules, regulatory circuits, and

metabolisms (Louis 2016). Even for the relatively small genotype

space studied here, we fall short of a comprehensive description.

The reason is that we do not have data describing the binding

preferences of every TF from each of our three study species.

However, the data we do have are a representative sampling of

each species’ TF repertoire. There are two reasons for this. The

first is that the assayed TFs were intentionally selected to exhibit

an even balance among DNA-binding domains and to survey dif-

ferent levels of sequence similarity (Weirauch et al. 2014). The

second is that the number of TFs per binding domain in our

dataset is correlated with the number of TFs per binding domain

in the genomes of each species (The UniProt Consortium 2015).

This study therefore provides a high-resolution depiction of the

architecture of an empirical GP map.
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