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Abstract

During symmetric division cells undergo large constriction deformations at a stable midcell site. Using a variational
approach, we investigate the mechanical route for symmetric constriction by computing the bending energy of deformed
vesicles with rotational symmetry. Forces required for constriction are explicitly computed at constant area and constant
volume, and their values are found to be determined by cell size and bending modulus. For cell-sized vesicles, considering
typical bending modulus of k*10kBT , we calculate constriction forces in the range 0:1{1pN . The instability of
symmetrical constriction is shown and quantified with a characteristic coefficient of the order of {50kBT , thus evidencing
that cells need a robust mechanism to stabilize constriction at midcell.
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Introduction

Cell constriction is an important cytokinetic phase preceding

division. Before splitting in two daughters, symmetrically dividing

cells accommodate theirs duplicated contents into spatially

separated compartments defined by a stable fission site located

at midcell [1]. Constriction is a non-spontaneous process which

involves large membrane deformations at the site of fission, a

division route entailing a strong breakage of symmetry in the

mother cell. In many organisms, membrane constriction is

mediated by a ring-shaped centripetal apparatus able to stress a

radial force in the constriction site [1], [2]. Quite a lot of energy is

required to distort the equilibrium shape into a transitory

constricted configuration potentially able to finally lead to binary

fission [3]. This is a crucial problem of bioenergetics, whose

solution should inform us about the amount of mechanical energy

necessary to duplicate cell contents in a stable way [4], [5], [6].

Computing the constriction forces requires a knowledge about the

minimal energy configuration at each constriction stage. Different

methods have been proposed to obtain the minimum energy shape

of a membrane under given constraints [7], [8], [9]. They consider

numerical procedures [7] and perturbative approaches [9],

including explicit structural characteristics (vesicle topology,

spontaneous curvature, membrane tension and excess area) within

a mechanical kernel defined by the Canham-Helfrich Hamiltonian

of the membrane bending elasticity [3], [10], [11], [12]. However,

despite these detailed descriptions, a simplified approach to the

problem of the spherical binary fission is still lacking. Here, the

question is addressed by considering a spherical vesicle under

symmetric constriction up to final fission into two daughter cells.

In order to compute the minimum energy shapes we propose a

variational approach to the vesicle shapes along the constriction

pathway. The variational problem is resolved using a minimal

mechanical kernel based on the bending energies considered

under the simplest conditions. First, we will assume a

homogeneous membrane with an average zero spontaneous

curvature, a condition globally fulfilled by the planar lipid

bilayer assembly which reasonably represents the simplest

model of a biological membrane [3], [13]. Then, the membrane

is considered in an initial spherical configuration which is the

most stable tensionless shape compatible with a zero excess

area. No tension effects are considered so far, a condition

accounting for the different mechanisms of membrane biogen-

esis existing in cells. In order to account for constriction, a blunt

profile is proposed as a variational ansatz describing membrane

shapes at the constriction region. The results are discussed for

different ideal cases accounting for given constraints. Namely,

constant area and constant volume will be considered. The

paper is organized as follows: In Sec. 1 we present the model

used to compute the bending energy and its simplification to the

case of surfaces of revolution. At the end of that section, we

introduce the variational approach used to compute the

minimum bending energy shape. In Sec. 2.1 we compute, for

symmetric constriction, the minimal bending energy and its

corresponding shape for different constriction stages. Section

2.2 focuses on the constriction force needed along the

constriction pathway. Next, in Sec. 2.3, we study and quantify

the stability conditions for symmetrical constriction. This

quantification allows to establish the minimum effective

potential required to stabilize symmetrical fission under
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axysymmetric constriction. Finally, in Sec. 3, we conclude by

summarizing the conclusions.

1 Methods

1.1 Elastic Hamiltonian: Bending energy for surfaces of
revolution

Changing the shape of a spherical vesicle from its equilibrium

configuration is a non-spontaneous process that requires an input

of energy. In the minimal description, the energy of the vesicle

shape changes is assumed to exclusively involve bending elasticity,

particularly, contributions from mean and Gaussian curvatures [3]

Eb~
k

2

ð
V

(C1zC2{C0)2dAzkG

ð
V

C1C2dA: ð1Þ

In this equation, k is the bending modulus, kG the Gaussian

bending rigidity, V the surface, dA its element of area, C1 and C2

its principal curvatures, and the parameter C0 is the spontaneous

curvature that effectively accounts for possible asymmetries in the

surface structure between the inner and the outer sides. Here, we

restrict ourselves to the simplest case C0~0, corresponding to a

lipid membrane without the elements of structural complexity

necessary to support spontaneous curvature (the membrane is flat

in its absolute minimum energy configuration). The integrated

Gaussian curvature, the second term in Eq. (1), is invariant under

shape changes that do not change topology [3], [14]. The

constriction process does not change the topology, and only

involves shapes that are topologically equivalent to a sphere. For

the sphere, the bending energies are E(sph)
m ~8pk and

E
(sph)
G ~4pkG, respectively for the mean and Gaussian contribu-

tions. Therefore, although we describe the Gaussian curvature, we

will only deal with the variations of energy due to the mean

curvature

Em~
k

2

ð
V

½C1(x, y)zC2(x, y)�2dA: ð2Þ

When the surface can be represented in Cartesian coordinates as

~rr~ x, y, h(x, y)ð Þ.
For a surface of revolution with rotation symmetry axis along x,

h(x, y)~+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2(x){y2

p
ð3Þ

parameterizes the surface, with R(x) the radius of the section of

the surface at x (see Fig. 1). If the surface is between xi and xf , its

total area would be

A~2p

ðxf

xi

R

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1zR2

x

q
dx: ð4Þ

For the total volume enclosed by the surface we have

V~p

ðxf

xi

R2dx: ð5Þ

Analogously, once the membrane profile is known, the bending

energy Em [Eq. (2)] for a surface of revolution is given by

Em~pk

ðxf

xi

(1zR2
x{RxxR)2

(1zR2
x)5=2R

dx: ð6Þ

(See Supporting Information for details on the derivation of the

previous equations.) The scale invariance of the bending

Hamiltonian in Eq. (6) for surfaces of revolution implies no

dependence of the bending energy on the system size. Thus, in Eq.

(6), for any shape the transformed under the overall dilatation

x?lx and f?lf has the same bending energy (see Supporting

Information for details). This implies that once we have

determined the shape that minimizes the energy, its transformed

under an overall dilatation has the same energy and also

minimizes the energy. This property will be very useful for us in

this paper. It will be also useful to recall that under an overall

dilatation the area is transformed as A?l2A and the volume as

V?l3V . The vesicle takes the shape that minimizes this bending

energy Em (up to thermal effects).

1.2 Variational approach to minimization
The procedure considered in this paper consists to find the

shape that minimizes the bending energy using the variational

method [15]. This method is based on the fact that all possible

shapes give energies greater or equal than the global minimum,

and the shapes that gives energies equal to the minimum are the

optimal shapes [16]. In order to apply the procedure, we will

consider a family of shapes of the form

R(x)~R0(x)z
X?
i~1

aiRi(x) ð7Þ

where R0(x) and Ri(x) constitute a complete basis of functions

which will cover all possible shapes under this description. It is

important to recall that any truncation of the series is a variational

ansatz, which is expected to satisfy four boundary conditions at

two extremal points (x~a and x~b), namely, R(a)~ca,

R’(a)~da, R(b)~cb, and R’(b)~db. We will choose a zero-th

order solution R0(x) that verifies the same boundary conditions as

R(x) [i.e., R0(a)~ca, R’0(a)~da, R0(b)~cb, and R’0(b)~db];

while the family of functions Ri(x) are chosen to fulfil zero

boundary conditions, i.e., Ri(a)~0, R’i(a)~0, Ri(b)~0, and

R’i(b)~0. In this way, boundary conditions are guaranteed for all

members of the family of functions (all values of ai). In addition,

we would try to choose in practice the functions Ri in such a way

that, for the optimal shape, the coefficients ai rapidly decrease with

increasing i. In that case, keeping the first few terms of the series

we can arrive at a good approximation both for optimal shape and

for minimal bending energy. In summary, this leads to the

following practical procedure: choose a softly varying R0(x) that

satisfies the boundary conditions for R(x), choose a complete set of

functions Ri(x) (independent of R0) that satisfies the analogous

zero boundary conditions, order the set from softly varying (lower

energy for the same amplitude, thus higher amplitude expected) to

more abruptly varying, keep the first terms of the set of functions

and minimize bending energy with them, iteratively include more

functions Ri in the minimization to improve the approximation

and estimate the error. Although the method is restricted here to

the case of surfaces of revolution, it can be easily extended to

general surfaces.

2 Results and Discussion

2.1 Minimal bending energy and optimal shape at a
given constriction stage

Scale invariance of the bending energy tell us that bending

energy of a vesicle is independent of the total area of its surface (or

of the total volume enclosed) and only depends on the shape of the
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vesicle. Thus, we will start by finding the vesicle shapes that

minimize the energy for a given constriction stage. The

constriction stage will be characterized by the constriction

parameter

s :~
Rm{Rc

Rm

~1{
Rc

Rm

ð8Þ

Figure 1. Symmetrically constricted vesicle. A. Longitudinal section at y~0 and characteristic parameters of a deformed vesicle under
symmetrical constriction represented on the optimal shape obtained for s~0:5 using first order approach. B. Surface resulting from the revolution of
the optimal shape represented in Fig. 1A. C. Transversal section at a given x. The height at a given point (x, y) is given by z~h(x, y). Due to rotational
symmetry around x axis, all transversal sections are circumferences. We denote its radius by R(x). The height h(x, y) and the radius R(x) are related
by the Pythagoras’ Theorem R2(x)~h2(x, y)zy2 which leads to Eq. (3).
doi:10.1371/journal.pone.0069750.g001
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which is defined in terms of the ratio of the constriction radius Rc

to the maximum radius Rm (see Fig. 1a). During the constriction

process this dimensionless parameter goes from s~0 (no

constriction) up to s~1 (maximal constriction).

First, we will consider solutions at constant Rm, which will be

discussed as a reference state for other conditions as fixed area or

volume, computed using a rescaling procedure described in the

next subsections.

2.1.1 Constant maximum radius Rm. We consider vesicles

shapes with a constricted central region analogous to the one

depicted in Fig. 1b, i.e., with revolution symmetry along a

longitudinal axis and with central symmetry. This shapes are

generated rotating, along the x axis, profiles R(x) as the one

depicted in Fig. 1a, central symmetry implies R(x)~R({x).
Then, we divide the profile R(x) in four regions separated by the

three zeros of its derivative Rx, located at {Lm, 0, and Lm, and

search which is the profile that minimizes the bending energy at a

given constriction stage s. Now, in terms of functions, its

components are Rc :~R(0) and Rm :~R(Lm)~R({Lm).

The rightmost polar region has boundary conditions

R(Lm)~Rm, R’(Lm)~0, R(L=2)~Rc, and R’(L=2)~0, with L

the total longitudinal length of the vesicle (see Fig. 1). For the polar

regions, the shape during constriction continues to be close to a

hemisphere, i.e. a half-dome, of radius Rm. This correspond to

R(x)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

m{(x{Lm)2
q

for the right pole, and to

R(x)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

m{(xzLm)2
q

for the left pole. Therefore, the total

longitudinal length of the vesicle is L~2Lmz2Rm. These

considerations leads to

R(x)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

m{(xzLm)2
q

if x[½{Rm{Lm, {Lm)

R(x) if x[½{Lm, Lm�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

m{(x{Lm)2
q

if x[(Lm, LmzRm�

:

8>>><
>>>:

ð9Þ

where only the shape in the central constriction region remains to

be determined. The shape R(x) with symmetry R(x)~R({x)
that minimizes the energy in this central region has to verify the

boundary conditions R(0)~Rc, R’(0)~0, R(Lm)~Rm, and

R’(Lm)~0. We determine the optimal shape R(x) in the

constriction region applying the variational approach that we

have previously presented. Therefore, we will consider families of

solutions of the form

R(x)~R0(x)z
XM
i~1

aiRi(x), ð10Þ

with M the order of the approximation. We take

R0(x)~Rm 1{
s

2
1zcos

px

Lm

� �� �� �
ð11Þ

Ri(x)~Rm 1{cos
2pix

Lm

� �� �
, ð12Þ

where R0(x) verifies the boundary conditions R0(0)~Rc,

R
0
0(0)~0, R0(Lm)~Rm and R

0
0(Lm)~0; and all Ri(x) the

analogous zero boundary conditions: Ri(0)~0, R
0
i (0)~0,

Ri(Lm)~0, and R
0
i (Lm)~0. Bending energy increases with

increasing curvature, which correspond to larger values of the

derivatives of R(x). The family of functions considered constitutes

a complete basis and it is ordered form slower varying function

(less energetic shapes) to faster varying functions (more energetic

shapes). Therefore, we expect that the coefficients ai decrease fast

as i increases for the optimal shape. Applying the variational

approach we determine for each constriction stage the values of

the shape parameters Lm and ai that minimize the bending energy

along the constriction pathway where s is continuously increased

(with Rm~R0, being the radius of the initial sphere). These results

allow us to compute relevant magnitudes as a function of the

length Rm and the bending modulus k at different constriction

stages. Figures 2–4 show that the convergence is fast for the

families of functions chosen. The amplitudes of the variational

parameters ai and Lm are plotted in Figs. 2 and 3 respectively, up

to second variational order, which provides an accurate approx-

imation in the constriction region. Third- or higher order

represents very small contributions characterised by negligible

values of the corresponding variational parameters. Indeed, at

small constriction, the minimal energy profile is reasonably

described by the zero-th order function in Eq. (10). Only at large

constriction (sw0:5), small contributions from the first order

variational terms are required to describe the profile of minimal

energy (see Fig. 2). The relative contribution of the second order

variational term is comparatively negligible (see Fig. 2), making the

first order approach sufficient to make converge the bending

energies down to their lowest variational minima. Figure 3 shows

the s{dependence of the optimal aspect ratio of the constriction

region Lm=Rm. At zero constriction (s~0) the aspect ratio takes a

null value, corresponding to the initial spherical case (Lm~0).

Increasing constriction causes the vesicle to axially elongate the

constriction region, with Lm increasing until it reaches a maximal

value Lm&1:4Rm at a constriction s&0:6. Further constriction

beyond maximal elongation (sw0:6) causes a little contraction

down to a value compatible with unity (Lm=Rm&1), which

resemble two identical spheres joined by a narrow neck. Figure 4

shows constriction is a non-spontaneous process requiring an input

of energy to occur. The reduced value of the bending energy Em

increases monotonically with increasing s, starting at s~0 from

the value corresponding to the initial sphere, E0~8pk. At high

constriction (sw0:85), the bending energy exceeds 2E0, the final

bending energy corresponding to the two spheres representative of

the fissioned state (see Fig. 4). Such an excess energy Em{2E0

represents one of the contributions to the energy barrier DE
between the pre-fissioned configuration with two spherical lobes

connected by a highly curved neck and the final state represented

by two separated daughter vesicles. The other contribution is due

to the increase in the Gaussian curvature of the two spheres, whose

value is 4pkG . This gives an energy barrier for fission of

DE~Em(s~1){16pkz4pkG: ð13Þ

Let’s first consider constriction maintaining a constant maximum

radius Rm. This corresponds to a case where the constriction

region is a neck tube between two spherical poles with fixed radius,

and the vesicle can change both area and volume unexpensively.

Here, Fig. 4 shows the evolution of the vesicle profiles from the

initial spherical state at s~0 up to the final highly constricted state

along the minimal energy constriction pathway defined by the

variational amplitudes in Fig. 2 and the aspect ratio of Fig. 3.

Forcing constant Rm makes both area and volume more than

twice their initial values (see Fig. 5b).

A more realistic calculation should consider a variable

maximum radius Rm under a given geometrical constraint, e.g.

Mechanics of Constriction during Cell Division
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constant area or volume. However, scale invariance makes that the

results for ai, Eb=k and Lm=Rm are valid independently on

whether we are considering fixed maximum radius Rm or fixed

area A, or volume V , provided we consider the same constriction

stage (given by the constriction parameter s).

2.1.2 Constant area vs. constant volume. In the previous

section, we have computed the optimal shape that minimizes the

bending energy for different constriction stages considering

constant maximal radius, i.e., Rm(s)~Rm(0)~R0. Here, we will

address constriction with other relevant fixed parameters, as fixed

Figure 2. Values of the variational parameters ai. Values of the parameter ai as a function of constriction parameter s for different orders of
approximation in the variational approach.
doi:10.1371/journal.pone.0069750.g002

Figure 3. Aspect ratio of the constriction region. Aspect ratio of the constriction region Lm=Rm as a function of constriction parameter s for
different orders of approximation in the variational approach.
doi:10.1371/journal.pone.0069750.g003
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area or fixed volume. Thanks to the scale invariance of the

bending energy solving these problems using the previous results is

a simple task. Scale invariance allows us to rescale solutions

through appropriate overall dilatations to fit other constraints. As

in all cases we start (s~0) with a sphere of radius R0, we have that

constriction at constant area or constant volume is obtained

rescaling the results for fixed Rm(s)~R0 by an overall dilation

factor that depends on the constriction parameter

lA(s)~

ffiffiffiffiffiffiffiffiffiffiffi
4pR2

0

A0(s)

s
for constant area, ð14Þ

or

lV (s)~

ffiffiffiffiffiffiffiffiffiffiffi
4p
3

R3
0

V0(s)

3

s
for constant volume, ð15Þ

where A0(s) and V0(s) are the area and volume found in the

previous subsection for the case of fixed maximum radius

Rm(s)~R0. Thus, for constant area ½AA(s)~l2
A(s)A0(s)~4pR2

0~

constant�, the maximum radius is Rm(s)~lA(s)R0, and the

volume is VA(s)~l3
A(s)V0(s). Analogously for constant volume

½VV (s)~l3
V (s)V0(s)~4pR3

0=3~constant�, Rm(s)~lV (s)R0 and

the area is AV (s)~l2
V (s)A0(s). The dilation factors are plotted in

Fig. 5a as a function of constriction parameter s. This procedure

allows to obtain the optimal dimensions at various constriction

stages of a vesicle that undergoes constriction while keeping

constant either its membrane area or its internal volume. Figure 5b

shows constant volume constriction involves an increase in

membrane area. Conversely, constriction at constant membrane

area requires a decrease in volume.

Constant volume constriction implies an increase in membrane

area of ca: 30% with respect its initial value (see Fig. 5b). Thus,

this limiting case requires inexpensive membrane availability of

the vesicle to increase its area [17]. This necessarily implies

membrane uptake from either accumulated excess area or external

lipid reservoirs [18], [19], [20], e.g. smaller vesicles or lipid

aggregates in contact with the deformed vesicle. Otherwise, area

expansion should occur at the expense of membrane stretching

which is too expensive in terms of elastic energy [21]. Figure 6

shows the sequence of vesicle constriction occurred at constant

volume. In this case, the vesicle with initial radius R0 dilates its

membrane area up to final fission in two identical spheres

(Vf ~V0=2) with smaller radius Rf ~R0=21=3. Constriction starts

by breaking the spherical symmetry into an elongated shape

(sv0:1). At s§0:3, it evolves into a two lobed shape with a well

defined spherocylindrical geometry characterised by an equatorial

furrow with a saddle shape. Further constriction, (sw0:9), imposes

a deeper furrow with a narrower neck between the two quasi-

spherical lobes.

Constant area constriction is also a limiting case that deserves

alternative discussion. A similar evolution of the vesicle profiles is

observed in this case (data not shown). Such a constriction

pathway requires the vesicle to decrease its initial volume forming

two daughter specimens with a content smaller than the mother

cell (see Fig. 5b), with ca: 30% decrease of volume content. Indeed,

the two final vesicles (Af ~A0=2) shrink to a volume smaller than

the dimensions of the initial sphere, this is Vf ~V0=23=2
vV0=2.

Lipid bilayers are indeed partially permeable to water [22], [23],

thus, in the absence of active membrane pores, a constriction route

Figure 4. Bending energy. Bending energy Em (in units of E0~8pk) as a function of constriction parameter s for different orders of approximation
in the variational approach. Profiles maintaining constant Rm at different stages of constriction are also shown.
doi:10.1371/journal.pone.0069750.g004
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Figure 5. Rescaling parameter l, area and volume. A. Rescaling parameter l as a function of constriction parameter s, for different cases:
constant maximum radius, constant area, and constant volume. B. Area A in units of A0~4pR2

0 and volume V in units of V0~4pR3
0=3 as a function of

constriction parameter s for different constraints.
doi:10.1371/journal.pone.0069750.g005
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at decreasing volume based in a partial loss of the water content

may be easily envisaged.

2.2 Constriction force
In terms of the change in bending energy, the constriction force

is defined as

Fc :~{
dEm

dRc

~{
dEm

ds

ds

dRc

~
1

Rm

dEm

ds
: ð16Þ

This definition is valid for all cases (in particular for constant Rm,

A or V ), the difference arising from the functional dependence of

Rm(s) on the constriction ratio. Just because Em(s) is scale

invariant, we see from Eq. (16) that smaller vesicles are harder to

constrict. Figure 7 shows the values of Fc required for a given

equatorial constriction to occur. This is calculated, following Eq.

(16), as the numerical derivative of the minimal energy pathway in

Fig. 4. No large differences are observed for constrained

constriction along the three geometrical pathways considered,

i.e. constant Rm, constant volume, and constant area. In all cases,

three deformation regimes are clearly differentiated in Fig. 7. In

the regime I at low constriction (sv0:06) a kick-off force

(F0&175k=R0) is required to initiate constriction from the initial

spherical state. Thus, an initial force F0&1 pN is required to

initiate constriction deformations in cell sized vesicles

(R0&10 mm, k&10kBT). This is a value in the range of typical

forces exerted by molecular motors [24], [25], [26], [27], [28].

Further elongation requires smaller forces. Once distorted, in the

intermediate regime II (0:1vsv0:85), the vesicle becomes

progressively elongated, plastic-like, under the action of a near

constant force. Compared to the strong initial kick required for

spherical distortion, a much weaker force is involved in such a

plastic deformation (see regime II in Fig. 7). In the regime II,

Fplas&F0=10, which causes a strong elongation followed by the

formation of a constriction neck at the middle cell region (see

profiles in Fig. 6). In the biologically relevant case, a constant force

as small as Fplas&0:1 pN should be sufficient for making cell

constriction to progress in this regime. From these results, we

deduce that a strong force is required to break the initial spherical

symmetry, however, once the symmetry is broken, the axially-

elongated object is able to easily undergo the transitory shape

transformations required to reach the pre-fissioned state. Finally,

in the phase III, at high constriction (sw0:9), stronger forces are

needed in order to overcome the curvature barrier involved in the

pre-fissioned state (see Fig. 7). It is relevant to notice that the

junction of the ansatzs for the poles and the constriction zone do

not verify the matching conditions for higher derivatives [conti-

nuity of the second and third derivatives of R(x)], that the exact

solution should verify. We expect these demanding conditions to

be relevant to find a closer approximation to the exact shape at

high constrictions, thus a better description of the curvature

barrier preceding fission. However, preliminary numerical com-

putations indicate that these improvements do not change the

main quantitative conclusions of the present approach.

2.3 Stability of symmetrical constriction
The study of the energetics of symmetrical constriction is

strongly motivated by its biological relevance. However, no less

important is the question about its stability, a problem directly

Figure 6. Shapes during constriction process. Shapes at various
constriction stages (s = 0, s = 0.01, s = 0.3, s = 0.6 and s = 0.9) with the
condition of constant volume.
doi:10.1371/journal.pone.0069750.g006
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dealing with the propensity of liposomes to symmetrically divide in

two daughter vesicles with a similar size. If symmetrical

constriction was not stable, the question to know how large are

the instabilities is a relevant problem with important implications

in the chemical details of cell division. This is the question

addressed in this section.

In previous sections, optimal membrane shapes have been

considered for the case of symmetrical constriction. The varia-

tional approach has provided us with bending energies calculated

in a broad range of constriction ratios defined under different

geometrical restrictions. Here, we will consider the question of

how stable the symmetrical constriction configuration is against

longitudinal asymmetries. In order to perform this computation we

compare the bending energy of a symmetrical shape with equal

right and left lobes with an asymmetrical shape where one of the

lobes is greater than the other (see Fig. 8). In the asymmetrical

case, the constriction ratio s~1{ Rc

Rm
is different as seen from each

one of the lobes, every one being characterized by a different Rm

(see Fig. 8a). Consequently, for a given asymmetric configuration,

both, optimal shape and bending energy are different for every

lobe characterized by a different constriction ratio and size. In an

asymmetric configuration, one of the lobes will have a greater

maximum radius Rm while the other will have an smaller one, with

respect to the corresponding symmetric shape (see Fig. 8). We

denote these changes as

DRz
m ~Rz

m {Rm,sym ð17Þ

for the righthand side, and

DR{
m ~R{

m {Rm,sym ð18Þ

for the lefthand side.

Analogous changes happen for the variable Lm which now, in

the asymmetric form, should be redefined as

Lz
m ~Lm RmzDRz

m , Rc

	 

~Lm,symzDLz

m ð19Þ

for the righthand side, and

L{
m ~Lm RmzDR{

m , Rc

	 

~Lm,symzDL{

m ð20Þ

for the lefthand side. These new parameters are clearly shown in

Fig. 8a.

2.3.1 Constant area. If in the transition between the

symmetric and the asymmetric shape the area is kept constant,

the changes in Rm are related by

A(Rm, Rc)~
A(RmzDR{

m , Rc)zA(RmzDRz
m , Rc)

2
: ð21Þ

which stands for the constant area of the asymmetrically deformed

vesicle with the two lobes characterized by different Rm with

respect to the undeformed case. This relation can be solved

numerically and given DR{
m we can obtain the corresponding

DRz
m , which maintains constant the area (see Fig. 9). Alternatively,

for small departures from the symmetrical shape, an analytic

perturbative computation is also possible. Expanding Eq. (21) up

to second order, it is obtained:

DR{
m ~{DRz

m {

L2A

LR2
m

z8p{1

8pRmz LA
LRm

DRz
m

	 
2 ð22Þ

With these values, one can already compute the bending energy

Eb,asym of the asymmetric shape, which is obtained as the sum of

Figure 7. Constriction force. Constriction force Fc (in units of k=R0) as a function of constriction parameter s. Due to its trend it is divided in three
regimes (I, II and III) with different behaviour.
doi:10.1371/journal.pone.0069750.g007
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the bending energies of the two lobes considered individually:

Eb,asym~
Eb(RmzDR{

m , Rc)zEb(RmzDRz
m , Rc)

2
: ð23Þ

We can also know how asymmetrical is the resulting shape,

computing how much the constriction ring is displaced from the

middle point between the poles (see Fig. 8):

Dx~
Lz

m {L{
m zRz

m {R{
m

2
ð24Þ

Finally, for small Dx, the difference of energy with respect to the

symmetric configuration is given by a quadratic form as

DEb~Eb,asym{Eb,sym~kA
Dx

R0

� �2

ð25Þ

with an effective harmonic constant kA

kA~
R2

0

2 1z
LLm

LRm

� �2

L2Eb

LR2
m

z

LEb

LRm

1{8p{
L2A

LR2
m

 !

8pRmz
LA

LRm

2
66664

3
77775: ð26Þ

2.3.2 Constant volume. If in the transition between the

symmetric and the asymmetric shape it is the volume what is kept

constant, the changes in Rm are related by

V (Rm, Rc)~
V (RmzDR{

m , Rc)zV (RmzDRz
m , Rc)

2
: ð27Þ

As in the case of constant area we can solve this equation

numerically and obtain DR{
m as a function of DRz

m and compute

DEb and Dx analogously (see Fig. 9). Alternatively, the

perturbative computation is also possible. Assuming small

Figure 8. Asymmetrically constricted vesicle. A. Symmetric and asymmetric constriction optimal shapes [R(x) vs. x] with Rc~0:5 with the same
volume plotted with the characteristic parameters for defining asymmetrical constrictions. B. Asymmetric surface resulting from the revolution along
the x axis of the asymmetric R(x) in Fig. 8A.
doi:10.1371/journal.pone.0069750.g008
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asymmetries, one gets

DR{
m ~{DRz

m {

8pRmz
L2V

LR2
m

4pR2
mz

LV

LRm

DRz
m

	 
2 ð28Þ

implying an energy difference of

DEb~kV
Dx

R0

� �2

ð29Þ

with a constant volume effective harmonic constant

kV ~
R2

0

2 1z
LLm

LRm

� �2

L2Eb

LR2
m

{

LEb

LRm

8pRmz
L2V

LR2
m

 !

4pR2
mz

LV

LRm

2
66664

3
77775: ð30Þ

2.3.3 Symmetric constriction is unstable. The harmonic

constants in the quadratic forms in Eqs. (26) and (30) describe the

effective change in elastic energy involved in an asymmetric

constriction with respect to the symmetrical case. Figure 9 shows

the values of these constants computed both, numerically and from

the perturbative formulas in Eqs. (26) and (30). Similar results are

found for the two cases: constant area and constant volume.

Negative values of the harmonic constants are found in all cases,

indicating lower bending energies in the asymmetric case than in

the symmetric one, i.e. asymmetrical constriction is energetically

more favourable than the symmetrical case of equatorial

constriction. Within the considered harmonic approach, the larger

the asymmetry the smaller is the penalty in elastic energy involved

in constriction. In the two cases considered, symmetric constriction

is systematically unstable with respect to the lateral displacement

of the constriction neck, the case of constant volume being

characterized by the highest decrease in elastic energy under

asymmetric constriction ({kVw{kA). As expected, the highest

instability is found for constriction at constant volume around the

spherical geometry, indeed, the negative values of ki are expected

to reach in this case a value ki&{5k&{50kBT at s~0. As

contraction proceeds, the harmonic constants decrease in absolute

value indicating a trend to a weaker destabilization with increasing

constriction. A limiting value is reached at high constriction

(ki&{k&{10kBT at s?1), indicating the clear tendency of

lipid vesicles to asymmetric budding instead of symmetrical

constriction.

3 Conclusions

The mechanical problem of a spherical vesicle stressed under

equatorial constriction was studied in the frame of the Helfrich-

Canham Hamiltonian. The membrane shapes of minimal-energy

were computed for vesicles deformed with a rotational symmetry

using a variational approach. The bending energies were

calculated as a function of symmetric constriction defining a

continuous pathway between the undeformed sphere and the final

prefission state. For negligible spontaneous curvature, membrane

tension and osmotic stress, the bending energies show scale

invariance. This is an important property which permits easy

calculation of the constriction forces under different geometrical

constraints, particularly constant radius, constant area, and

constant volume. The constriction forces were computed, obtain-

ing values in the range 0:1{1 pN for cell-sized vesicles

(R0&10mm) with a flexible membrane (k&10kBT ). This defines

Figure 9. Instability coefficient of symmetrical constriction. Instability coefficient of symmetrical constriction for constant area kA and for
constant volume kV (in units of k) vs. constriction parameter s for different orders of approximation in the variational approach and calculated
numerically.
doi:10.1371/journal.pone.0069750.g009
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cell constriction as a practicable deformation process under the

action of cytokinetic engines based on sophisticated protein motors

[24], [25], [26], [27] or simpler physical mechanisms taking

advantage of phase segregation within the lipid component [29],

[30]. Constriction at constant volume requires a nearly 30%
increase in area (see Fig. 5B), i.e., an intense membrane trafficking

[31], [32], which is known to play an important role in cytokinesis

[33], [34]. On the other hand if constriction takes place at constant

area (i.e. without membrane trafficking) the volume must be

reduced in 30% (see Fig. 5B). Thus, in constant area constriction a

greater initial area is required to have the same final volume. Heat

shock has been shown to increase the area before division [35],

[36], and to affect membrane trafficking molecules genes

expression, but also other genes as those of signaling molecules

[37]. The other ideal case studied, constriction with constant

maximum radius requires doubling the area and volume. Rod

shaped cells present constrictions with constant maximum radius,

but the rod shape reduces the required relative increase in area

and volume with respect to spherical shaped cells [38], [39].

Another additional effect not included in our model is anisotropic

contraction ring nucleation, which can lead to a non-concentric

ring and break the axial symmetry [40].

The stability of the equatorial constriction was analyzed

against lateral displacements of the deformation site. The

energies of the asymmetric configurations were found smaller

than the symmetric case corresponding to equatorial constric-

tion. This indicates that symmetric division is unstable pointing

out the functional requirement for a positioning mechanism that

stabilizes the midcell emplacement of the constriction ring [41],

[42], [43], [44], [45], [46]. We have only quantified here the

instability arising from the bending energy minimization, cells

also presents other instabilities, as for example those induced by

the polar actomyosin contractility [28], [47]. These sources of

instabilities are counterbalanced in cells by structures as the

spindle apparatus and mechanism as bleb formation [39], [47],

[48], [49], [50], [51].

The results constitute altogether a significant piece of knowledge

on the physical mechanism of cell division through the mechanical

pathways defined for optimal binary fission. The constriction

pathway described here constitutes the simplest mechanism of

symmetrical division of a spherical vesicle. Thus, it is expected to

represent a minimal model for cell division by binary fission in

primordial protocells [52], [53], [54]. In addition, as far as the

essential mechanical features of such primordial division mecha-

nism may be imprinted in more evolved cells, the results in this

paper would serve to get insight on the more complex cytokinetic

pathways involved in programmed division in modern cells [28],

[55], [56], [57], [58].

The variational method used here can be used to obtain

approximate analytical formulas to describe the general constitu-

tive relations (work in progress).
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