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ABSTRACT
Tumor-infiltrating tertiary lymphoid structures (TLS) are thought to have anti-tumor activity and are
believed to indicate a favorable prognosis in cancer patients. However, the prognostic value of TLS in
gastrointestinal stromal tumors (GIST) is unknown. We evaluated the prognostic value of TLS using two
independent GIST cohorts. Pathological examinations identified TLS in 44.9% of patients in our discovery
cohort (DC). TLS was significantly associated with smaller tumor size (P = .011), relatively well morpho-
logical classification (P < .001), lower NIH classification (P < .001), lower recurrence (P = .005), longer
survival time (P < .001) and lower imatinib resistance (P = .006). Kaplan-Meier curves showed that TLS
was remarkably associated with favorable survival (P = .0002) and recurrence (P = .0015) time. In
addition, the presence of KIT mutations and the absence of TLS suggested worst prognosis both in
terms of overall survival (OS) (P = .0029) and time to recurrence (TTR) (P = .0150), while the presence of
PDGFRA mutations and TLS suggested optimal prognosis for OS and TTR. Multivariate analyzes demon-
strated that TLS was an independent prognostic factor for OS (HR:0.180, P = .002) and TTR (HR:0.412,
P = .023). These results were confirmed using our validation cohort. Multiplexed immunohistochemistry
staining was used to determine the composition of TLS. Therapies designed to target TLS may be
a novel therapeutic strategy for GIST patients with imatinib resistance.
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Introduction

Gastrointestinal stromal tumors (GIST) are the most common
sarcomas of the digestive tract.1 The annual incidence is
approximately 5000 in the United States.2 GISTs are thought
to be derived from interstitial cells of the Cajal, pacemaker
cells of the intestine or their precursors.3 GIST occurs most
frequently in the stomach (60%), followed by the small intes-
tine (25-–35%) and colon (5%).1,4,5 Activating mutations in
KIT are present in 75–80% of patients, while 5–10% of
patients harbor mutations in platelet-derived growth factor
receptor alpha (PDGFRA).6,7 Imatinib, a tyrosine kinase inhi-
bitor first used in metastatic GIST in 2001 with a great
success,8 has dramatically improved the prognosis of GIST
patients, with 80% clinical response.9,10 However, imatinib
was never curative for GIST. Probably due to secondary KIT
or PDGFRA mutations, resistance often developed within
18 months of imatinib administration.11,12 Sunitinib13 or
regorafenib14 would then be recommended. However, their
efficacy would last only for a few months. Hence, it is critical
to find new treatment strategies to overcome resistance and
treat patients with unresectable GIST.

The immune microenvironment plays an important role in
the development of various tumors. Tertiary lymphoid struc-
tures (TLS) are ectopic lymphoid formations found in patients
during chronic infections, graft rejections, autoimmune dis-
eases, and tumors.15 They consist of a T cell zone with a high
density of DC-Lamp+ mature dendritic cells (DC) and a B cell
follicular zone.16 TLS may act as a nest for recruiting lym-
phocytes from the blood17-19 or have an anti-tumor role.16

TLS has been associated with a favorable prognosis in most
solid cancers, including non-small cell lung cancer
(NSCLC),20 pancreatic cancer,21 colorectal cancer (CRC),19

breast cancer22 and melanomas.23 Intra-tumoral TLS have
been associated with positive clinical outcomes in patients
with hepatocellular carcinomas, while peri-tumoral TLS have
not.24 However, the role of TLS in GIST had not been fully
elucidated.

Using hematoxylin-eosin (H&E) staining, the prognostic
significance of TLS in 187 patients with primary GIST treated
with surgical resection was evaluated. These 187 patients were
randomly divided into a discovery cohort (DC) with 118
patients and a validation cohort (VC) with 69 patients. We
demonstrated that TLS was associated with lower future
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imatinib resistance, longer survival time and recurrence time
and was an independent prognostic factor in patients with
GIST.

Materials and methods

Patients and GIST samples

Two independent primary GIST patient cohorts (DC: n = 118;
VC: n = 69) who underwent radical resections at Zhongshan
Hospital of Fudan University between 2009 to 2014 were
retrospectively reviewed and enrolled in this study. All
patients did not receive imatinib prior to their surgery.
Clinicopathologic features were not significantly different
between the two cohorts (Supplementary Table S1).
Informed signed written consent was obtained from each
patient. Ethical approval was obtained from the Research
Ethics Committee of Zhongshan Hospital (B2012-022).

Hematoxylin and eosin staining

Tumor samples were fixed in 4% paraformaldehyde solution
and embedded in paraffin. GIST samples were then sliced into
4 μm sections. Deparaffinization and rehydration of the tis-
sues were performed using xylene and ethanol respectively,
followed by hematoxylin staining for 5 minutes and 1% acid
ethanol for 3 seconds. The sections were then rinsed in dis-
tilled water and stained with eosin for 3 minutes. Dehydration
and hyalinization were then subsequently performed. Sections
were scanned using an automatic digital slide scanner
Pannoramic MIDI (3DHISTECH, Hungary) and analyzed
using the CaseViewer (3DHISTECH, Hungary).

Pathological examinations

The diagnosis was confirmed by two independent pathologists
specialized in GIST in our institute. The following pathologi-
cal features were recorded: primary tumor location, tumor
size, mitosis rate, nuclear atypia, morphological classification,
morphology, NIH classification, Ki67 and mutations.
Morphological classifications were based on the criteria pro-
posed by Professor Hou at our hospital.25

Multiplexed immunohistochemistry staining

Multiplexed immunohistochemistry staining was performed in
some of the tumor samples. The samples were fixed in 4%
paraformaldehyde solution and embedded in paraffin. Slides
were made using 4 μm sections of the tumor samples.
Deparaffinization and rehydration were performed with xylene
and ethanol respectively, followed by microwave antigen retrie-
val using heated citric acid buffer (pH 6.0) for 10 minutes and
endogenous peroxidase blocking in 3% H2O2 for 20 minutes.
Goat serum (Vector, MP-7451) was used to block nonspecific
binding sites. Afterward, relevant primary antibodies were incu-
bated for 1 hour at room temperature, followed by the corre-
sponding secondary antibodies (Vector, MP-7451; MP-7452) for
20 minutes. Slides were then incubated with fluorescein TSA
plus for 10 minutes, after which microwave antigen retrieval was

repeated with the above steps until the last antibody was added.
After multiplexing, DAPI (Sigma, D9542) was used to stain the
nuclei. Antibodies and fluorescent dyes used formultiplexing are
listed in Supplementary Table S2. The slides were scanned by
Vectra 3 automated high-throughput multiplexed biomarker
imaging system (Perkin Elmer) and analyzed using the inform
image analysis software (Perkin Elmer). Immune cells were
classified into the following types: Regulatory T cells (Treg)
(CD4+Foxp3+), Th1 cells (CD4+T-Bet+), Th2 cells
(CD4+GATA3+), Th17 cells (CD4+RORγt+), CD8+T cells
(CD8+), Tissue-resident memory T cells (Trm) (CD103+),
plasma cells (PCs) (CD20−CD24−CD27hiCD38hi), B cells
(CD20+), naive B cells (Bn) (CD20+CD27−IgM+), IgM+ memory
B cells (IgM+ Bm) (CD20+CD27+IgM+), CD27− isotype-
switched memory B cells (CD27− Sw Bm)
(CD20+CD27−IgM−), and CD27+ isotype-switched memory
B cells (CD27+ Sw Bm) (CD20+CD27+IgM−).

Statistical analysis

Statistical analyzes were performed using the IBM SPSS
Statistics 23 (SPSS Inc., Armonk, NY, USA) and GraphPad
Prism 7.0 (GraphPad Software, La Jolla, CA, USA) software.
Pearson chi-square test was used to analyze the relationship
between TLS and qualitative variables and Fisher’s exact test
was used when necessary. Multivariate analyzes were per-
formed using Cox proportional hazards regression to identify
independent prognostic factors. Kaplan-Meier analysis was
used to compare differences after curative surgery for patient
overall survival (OS) and time to recurrence (TTR). P-value
<0.05 was considered statistically significant.

Results

Patient characteristics and TLS status

Detailed patient clinical characteristics are shown in
Supplementary Table S1. There were 118 and 69 patients in our
DC and VC respectively. 61% of the patients were male in the DC
and 52% in the VC. 52% of the patients in the DC were above
60 years old, while 48% of the patients were above 60 years old in
the VC. For patients in the DC, tumors were mostly located in the
stomach (52%), followed by the small intestine (39%) and others
(9%), and was similar to the VC. Most patients (approximately
78%) had tumors larger than 5 cm in both the cohorts, probably
because that physical examinations were not popularized in
China. Postoperative National Institutes of Health (NIH) classifi-
cation indicated that high-risk patients were the majority, fol-
lowed by low risk and medium risk patients. With regards to
mutational status, most tumors had KIT mutations (83%), fol-
lowed by PDGFRA mutations (about 10%) and wide type (WT)
(about 7%) which were relatively less common in our cohorts and
was consistent with previous reports. 69 patients in the DC were
administered imatinib with 19 (27.5%) developing drug resis-
tance. For patients in the VC, imatinib resistance occurred in
38.1% of 42 patients. Relapse and death occurred in 47 (39.8%)
and 24 (20.3%) of patients in the DC respectively, and 25 (36.2%)
and 16 (23.2%) of patients in the VC.
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Tumor-infiltrating TLS were classified into three categories
based on their morphology determined by H&E staining; 1)
TLS−: no clusters of lymphocytes (Figure 1a); 2) TLS
Aggregates (Agg): small, quasi-circular clusters of lymphocytes
(Figure 1b); 3) TLS Follicles (FL): large clusters with (FL-II) or
without (FL-I) germinal center formation (Figure 1c). Ki-67
staining additionally confirmed the presence of a germinal cen-
ter (Figure 1d). We defined tumors with no TLS as TLS− and
tumors with one or more TLS as TLS+. Based on the classifica-
tion criterion described above, we identified TLS in 53 tumors
(44.9%), of which 39 patients (33%) were TLS Agg, 7 patients
(5.95%) were TLS FL-I and 7 patients (5.95%) were TLS FL-II in
our DC (Figure 1e). In the VC, 33 patients (47.8%) and 36
patients (52.2%) were classified as TLS negative and positive
respectively and consisted of 30 TLS Agg (43.5%) patients, 3
TLS FL-I (4.35%) patients and 3 TLS FL-II (4.35%) patients.

TLS immune profiles in GIST patients

To get a better understanding of TLS, we investigated the
general composition of TLS in GIST patients using multi-
plexed immunohistochemistry staining. We found that TLS
consisted of a CD4+ or CD8+ T cell zone in the outer layer
and a CD20+ B cell zone in the inner layer (Figure 2a). As for
the specific immune cell subtypes, the TLS was mostly com-
posed of CD4+ T cells, CD8+ T cells, Trm cells, and CD20+

B cells, while a relatively small percentage of Treg cells, Th1
cells, Th2 cells, Th17 cells, PCs, Bn cells, IgM+ Bm cells,
CD27− Sw Bm cells and CD27+ Sw Bm cells were observed
(Figure 2a). Trm cells were mostly localized in the outer layer
of the TLS and were relatively close to tumor cells, which
indicated that they may play a vital role in anti-tumor
response.26 Th2 cells were close to the B cell zone, which

may be beneficial for the interaction of cellular and humoral
immunity.27 PCs were mostly located around the follicles,
suggesting antibody production in situ.28 However, the dis-
tribution of other cells, including Treg cells, Th1 cells, Th17
cells, Bn cells, IgM+ Bm cells, CD27− Sw Bm cells and CD27+

Sw Bm cells, had no characteristic localization patterns.

Heterogeneity of immune profiles between TLS+ and TLS−

GIST patients

To better understand the differences in immune profiles
between TLS+ and TLS− patients, we performed multiplexed
immunohistochemistry staining. Surprisingly, we found that
TLS− patients had a higher number of Treg cells and a lower
number of B cells in the tumor area (Figure 2b,c). This may
partly explain why TLS− patients had poor OS and TTR.
However, we did not observe any differences in the number
of CD8+ or CD4+ T cells (Supplementary Figure 1A).

Correlation between TLS and clinicopathological features
in GIST patients

To evaluate the clinical importance of TLS in GIST, patients
were divided into TLS+ and TLS− groups. The association
between clinicopathological features and the selected variables
are summarized in Table 1. The presence of TLS was posi-
tively correlated with smaller tumor size (DC, P = .011; VC,
P = .008), relatively well defined morphological classifications
(P < .001 for both cohort), lower NIH classification (DC,
P < .001; VC, P = .005), lower possibility to develop drug
resistance (DC, P = .007; VC, P = .020), recurrence (DC,
P = .005; VC, P = .003) and favorable survival (DC,
P < .001; VC, P = .004). However, the relationship between

Figure 1. The classification of tertiary lymphoid structure (TLS) in primary GIST.
(a). Representative H&E image of TLS− patients. Scale bar: 40 μm (left); 200 μm (right)(b). Representative H&E image of TLS Aggregates patients. (black dotted
portion: TLS aggregates). Scale bar: 40 μm (left); 200 μm (right)(c). Representative H&E image of TLS Follicles patients. (black dotted portion: TLS Follicles; red dotted
portion: germinal center). Scale bar: 40 μm (left); 200 μm (right)(d). Typical IHC staining of Ki67 in germinal center. (left: TLS aggregates; right, TLS Follicles). Scale bar:
400 μm.(e). TLS phenotype and frequency evaluated in discovery (left) and validation cohort (right). Proportions of TLS−, TLS Aggregates, Follicle I and Follicle II in
GIST were summarized by pie chart.
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TLS and mitotic index (DC, P = .041; DC, P = .161) or
mutational status were only significantly different in the DC
(P = .011; VC, P = .056) but not in the VC. This may be due
to the relatively small sample size in our VC.

TLS predicts future imatinib resistance

Resistance to imatinib usually occurs after GIST therapy.
Hence, patients in the DC and VC who were administered
imatinib after surgery were selected to determine whether
imatinib resistance was associated with TLS. Surprisingly, we
found that most patients who developed imatinib resistance
were TLS− (Figure 3a,b), however, there were no differences
in the number of TLS− or TLS+ patients who did not develop
resistance (Table 3, Figure 3b). Interestingly, patients categor-
ized with TLS Follicles never developed imatinib resistance in
both the DC and VC (Figure 3b). This suggested that TLS
maturity may correlate with future imatinib resistance.
Furthermore, we found that TLS− patients were more likely
to develop drug resistance in the future (DC, P = .006; VC,
P = .014), which may suggest that the immune system in these
patients may play a protective role in preventing imatinib
resistance (Table 2). In addition, imatinib resistance was sig-
nificantly associated with clinical outcomes of recurrence
(P < .0001 in both cohorts) and death (P < .0001 in both
cohorts) (Table 2).

We then analyzed the relationship between drug-resistant
time and TLS phenotype. We observed that TLS+ patients had
longer drug-resistant times compared to TLS− patients (DC,
P = .0075; VC, P = .0171) (Figure 3c).

To determine the cell type that may contribute to future
imatinib resistance, we analyzed the composition of TLS
between imatinib-resistant and nonresistant patients.
Interestingly, we found that imatinib-resistant patients had
more Treg cells and CD20+ B cells and lower CD8+ T cells
in the TLS (Supplementary Figure 1B and 1C). This suggested
that Treg cells and CD20+ B cells may contribute to imatinib
resistance while a lower number of CD8+ T cells may be a risk
factor of future imatinib resistance. However, we did not
observe any differences in the number of CD4+ T cells
(Supplementary Figure 1B and 1C).

Prognostic significance of TLS in GIST patients

To evaluate the prognostic value of TLS in GIST patients,
Kaplan-Meier curves were performed. We observed that
TLS+ patients had better OS (DC, P = .0002; VC, P = .0019)
and TTR (DC, P = .0015; VC, P = .0021) compared to TLS−

patients (Figure 4a,b, left). Furthermore, significant differ-
ences in survival and recurrence were observed in Agg, FL-I
and FL-II TLS subgroups (Figure 4a,b, right). In the DC, the
median OS and TTR were 66 months and 53 months for TLS
negative, 82 months and 69 months for TLS Agg, 74 months
and 68 months for TLS FL-I, and 94 months and 78 months
for TLS FL-II.

To further exclude the possible impact of imatinib, multi-
variate cox regression analyzes were performed, which indicated
that imatinib was not an independent factor for OS and TTR
(OS: DC, HR:0.676, P = .443; VC, HR:0.958, P = .953) (TTR: DC,
HR:0.486, P = .084; VC, HR:0.868, P = .817) (Table 3). In

Figure 2. Immune profiles of TLS in GIST defined by multiplexed immunohistochemistry staining.
(a). Representative 7-plex immunofluorescence image of T and B patterns of TLS follicles. Composite image (left) showing the colocalization staining pattern and the
right panel shows a single-channel along. T cell panel 1 to show Treg cells (CD4+Foxp3+), Th17 cells (CD4+RORγt+), Th2 cells (CD4+GATA3+) and CD8+ T cells (CD8+).
T cell panel 2 to show Trm cells (CD103+), Treg cells (CD4+Foxp3+), Th17 cells (CD4+RORγt+), Th2 cells (CD4+GATA3+) and Th1 cells (CD4+T-bet+). B cell panel to show
plasma cells (PCs) (CD20−CD24−CD27hiCD38hi), B cells (CD20+), naive B cells (Bn) (CD20+CD27−IgM+), IgM+ memory B cells (IgM+ Bm) (CD20+CD27+IgM+), CD27−

isotype-switched memory B cells (CD27− Sw Bm) (CD20+CD27−IgM−) and CD27+ isotype-switched memory B cells (CD27+ Sw Bm) (CD20+CD27+IgM−). Scale bars,
200 μm.(b). Representative images of five-color multiplex present immune profile in TLS+ patients, Scale bar: 200 μm.(c). Representative images of five-color
multiplex present immune profile in TLS− patients, Scale bar: 200 μm.
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addition, we analyzed the OS and TTR in patients who had
a history of imatinib usage after surgery. Similar results were
observed and were summarized in Figure 5.

We then analyzed the number, density, and location of
TLS. The presence of TLS was associated with a better OS
and TTR, no matter located in the tumor or peri-tumor
region (Supplementary Figure 2). With regards to the number
and density of TLS, we observed that patients with a large
number or high density of TLS had a better OS and TTR
compared to patients with small number or low density of
TLS (Supplementary Figure 3).

In addition, univariate cox regression analyzes for the two
cohorts were performed. We observed that age (DC,

HR:3.628, P = .006; VC, HR:3.204, P = .031), mitotic index
(DC, HR:4.619, P = .013; VC, HR:6.515, P = .013) and TLS
(DC, HR:0.181, P = .001; VC, HR:0.172, P = .006) were
significantly associated with OS in GIST (Table 3).
Multivariate cox regression analyzes identified age (DC,
HR:3.502, P = .014; VC, HR:3.167, P = .035) and TLS (DC,
HR:0.180, P = .002; VC, HR:0.219, P = .030) as independent
prognostic factors for OS (Table 3).

With regards to TTR, univariate cox regression analyzes
identified primary tumor location (DC, HR:2.015, P = .001;
VC, HR:2.278, P = .003), tumor size (DC, HR:2.908, P = .024;
VC, HR:4.261, P = .049), mitotic index (DC, HR:4.875,
P < .001; VC, HR:7.315, P = .001), morphology classification

Table 1. The correlation between TLS and clinicopathological features in whole series (n = 187).

Discovery cohort (n = 118) Validation cohort (n = 69)

Variables TLS+ TLS− P* TLS+ TLS− P*

Gender (Male vs. Female) 41/24 31/22 0.611 21/15 15/18 0.285
Age (years) (≤60 vs. >60) 32/33 29/24 0.553 20/16 19/14 0.866
Site (Gastric vs. Small intestine vs. Others) 34/27/4 27/19/7 0.413 19/14/3 17/12/4 0.982
Tumor size (cm) (≤5 vs. >5) 20/45 6/47 0.011 13/23 3/30 0.008
Mitotic index (/50HPF) (≤5 vs. >5) 29/36 14/39 0.041 18/18 11/22 0.161
Nuclear atypia (Mild vs. Moderate or Distinct) 44/21 28/25 0.100 25/11 23/10 0.982
Morphological classification (Low vs. Borderline vs. High) 24/23/18 7/10/35 <0.001 6/17/13 3/3/27 <0.001
Morphology (Spindle vs. Epithelioid vs. Mixed) 44/9/12 41/3/8 0.288 23/4/9 26/2/5 0.393
NIH classification (Low vs. Medium vs. High) 15/4/46 1/1/51 <0.001 10/4/22 1/1/31 0.005
Mutation (KIT vs. PDGFRA) 50/11 48/1 0.011 27/7 30/1 0.056
(KIT vs. WT) 50/4 48/4 >0.999 27/2 30/2 >0.999
(PDGFRA vs. WT) 11/4 1/4 0.109 7/2 1/2 0.236
Ki67 (%)#(<5 vs. ≥5) 25/25 17/25 0.361 14/14 8/16 0.225
Drug resistance (Yes vs. No) 3/26 16/24 0.007 2/13 14/13 0.020
Recurrence (Yes vs. No) 18/47 29/24 0.005 7/29 18/15 0.003
Death (Yes vs. No) 5/60 19/34 <0.001 3/33 13/20 0.004

Abbreviation: NIH, National Institutes of Health; PDGFRA, Platelet-derived growth factor receptor alpha; WT, Wide Type.
Pearson chi-square tests or Fisher’s exact tests for all the other analysis.
# Available in 92 cases in discovery cohort and 52 cases in validation cohort.

Figure 3. Differences of TLS phenotype between imatinib resistant patients and non-imatinib resistant patients.
(a). Representative H&E images in imatinib resistant (upper panel) and non-imatinib resistant patients (bottom panel). Scale bar: 40 μm (left); 200 μm (right).(b).
Proportions of TLS−, Aggregates, Follicle I and Follicle II in our discovery cohort (upper panel) and validation cohort (bottom panel).(c). Kaplan-Meier curves of drug
resistant time in patients with TLS+ and TLS− (left, discovery cohort; right, validation cohort).

ONCOIMMUNOLOGY e1747339-5



(DC, HR:1.847, P = .003; VC, HR:2.285, P = .030), drug
resistance (DC, HR:16.833, P < .001; VC, HR:41.974,
P < .001) and TLS (DC, HR:0.397, P = .002; VC, HR:0.278,
P = .004) as clinicopathologic factors that correlated with TTR
(Table 3). Furthermore, multivariate analyzes identified that
mitotic index (DC, HR:7.872, P = .014; VC, HR:9.684,
P = .002) and TLS (DC, HR:0.412, P = .023; VC, HR:0.193,
P = .002) were independent indicators for TTR (Table 3).

We then evaluated the prognostic value of TLS phenotypes
in both our cohorts (the combination of discovery and valida-
tion cohorts). Our results demonstrated that the presence of
TLS was a valuable prognostic factor for post-operative survi-
val in GIST patients, no matter located in the tumor or peri-
tumor region (Supplementary Figure 4 and 5).

Mutational status combined with TLS predicts future
clinical outcomes

Mutational status has been the hallmark for most GIST
patients.29 Hence, we analyzed the relationship between muta-
tional status and TLS. Differences in TLS morphology were not
found in patients with KIT mutations (Figure 6a), PDGFRA
mutations (Figure 6b) and WT genotypes (Figure 6c). We then
analyzed the percentages of TLS+ patients with different muta-
tions and observed that patients with PDGFRA mutations were
more likely to have TLS compared to patients with KIT muta-
tions or WT genotypes (Figure 6d). Kaplan-Meier curves were
then generated based on the combination of mutational and TLS
status. Patients were categorized into three groups (Group I,KIT
mutations and TLS−; Group III, PDGFRA mutations and TLS+;
Group II, others). Significant differences in survival and recur-
rence were observed for the different subgroups. Group III had
the best prognosis for OS (P = .0029) and TTR (P = .0150) while
Group I had the worst prognosis (Figure 6e). Similar results were
observed in our validation cohort (Figure 6f).

Discussion

The tumor microenvironment had been intensely investigated
in recent years, especially the immune microenvironment.

TLS provides a local and essential microenvironment for
both the innate and acquired immune system to eliminate
tumor cells.30 It is considered an indicator of favorable clinical
outcomes in virtually most patients with solid tumors.31,32

TLS has been demonstrated to orchestrate a Th1 cell-
polarized and cytotoxic CD8+ T cell anti-tumor immune
response in NSCLC.33 In addition, TLS has been associated
with lymphatic invasion, increased pathological nodal stages
and nodal involvement in some tumors.34 TLS has even been
detected in metastases in parallel with primary tumors.35 In
addition, the presence of TLS with desmoplastic melanomas
have a higher response rate to PD-1 blockade.36 High propor-
tions of regulatory T cells (Treg) in TLS are thought to control
the extent and activation of CD4+ and CD8+ T cell infiltrates
and correlate with poor prognosis37 whereas depletion of Treg
cells leads to exacerbation of the disease and increased tumor
infiltration by CD4+ and CD8+ T cells and macrophages.38

In the present study, we demonstrate for the first time that the
presence of TLS in GIST correlated with favorable tumor char-
acteristics, including smaller tumor size, well morphological
classifications, lower NIH classifications, and lower imatinib
resistance. This indicated that TLS may contribute to effective
anti-tumoral immune responses by promoting local antigen
presentation and lymphocyte differentiation. Mature dendritic
cells (DCs) present antigens to CD4+ T cells to activate cellular
immunity in the T cell zone,39 while DC-LAMP+ DCs in the
germinal center present antigens to B cells to induce humoral
immunity.40 B cells could also present antigens to CD8+ T cells,
possibly through CD80 and CD40 receptors on B cells. This
replaces the need for CD4+ T cells to transmit signals to CD8+

T cells for anti-tumor responses.41–43 Interestingly, intravenous
injection of GFP splenocytes in mouse models results in the
homing of lymphocytes to the TLS. This suggests an active role
of TLS in the recruitment of lymphocytes to tumor regions,19

and may partly explain our findings.
To gain a better understanding of TLS in GIST patients, we

performed multiplexed immunohistochemistry staining. TLS
was mostly composed of a T cell zone in the outer layer and
a B cell zone in the inner layer. With regards to immune cell
subtypes, CD4+ T cells, CTL, Trm cells and CD20+ B cells

Table 2. The correlation between imatinib resistance and clinicopathological features.

DC drug resistance VC drug resistance

Variables No Yes P* No Yes P*

Gender(Male vs. Female) 28/22 13/6 0.348 13/13 10/6 0.429
Age (years)(≤60 vs. >60) 28/22 8/11 0.302 18/8 7/9 0.102
Site(Gastric vs. Small intestine vs. Others) 25/21/4 6/7/6 0.051 11/14/1 5/6/5 0.064
Tumor size (cm)(≤5 vs. >5) 9/41 2/17 0.449 3/23 2/14 1.000
Mitotic index (/50HPF)(≤5 vs. >5) 12/38 3/16 0.534 7/19 3/13 0.715
Nuclear atypia(Mild vs. Moderate or Distinct) 26/24 11/8 0.661 17/9 10/6 0.850
Morphological classification(Low vs. Borderline vs. High) 8/13/29 2/1/16 0.107 1/4/21 2/0/14 0.196
Morphology(Spindle vs. Epithelioid vs. Mixed) 39/3/8 13/2/4 0.641 25/0/5 11/2/3 0.286
NIH classification(Low vs. Medium vs. High) 3/0/47 0/0/19 0.556 1/0/25 0/0/16 1.000
Mutation(KIT vs. PDGFRA vs. WT) 48/0/2 66/1/2 0.330 25/0/1 15/1/0 0.623
Ki67 (%)#(<5 vs. ≥5) 16/24 3/10 0.330 6/15 3/8 1.000
TLS(Positive vs. Negative) 26/24 3/16 0.006 13/13 2/14 0.014
Recurrence(Yes vs. No) 37/13 19/0 <0.001 22/4 16/0 <0.001
Death(Yes vs. No) 4/46 13/6 <0.001 0/26 13/3 <0.001

Abbreviation: NIH, National Institutes of Health; PDGFRA, Platelet-derived growth factor receptor alpha; WT, Wide Type.
*Pearson chi-square tests or Fisher’s exact tests for all the other analysis.
# Available in 92 cases in discovery cohort and 52 cases in validation cohort.
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accounted for the majority while Treg cells, Th1 cells, Th2
cells, Th17 cells, PCs, Bn cells, IgM+ Bm cells, CD27− Sw Bm
cells and CD27+ Sw Bm cells accounted for a small percen-
tage. We then analyzed the immune profiles in TLS+ and
TLS− patients. TLS+ patients had a higher number of B cells
and a lower number of Treg cells in the intra-tumor regions.
B cells localized in the TLS were observed to have high
expression levels of activation-induced deaminase (AID),
BCL-6 and activation of isotypic switch machinery, which
are responsible for the generation of effector B cells differen-
tiating into plasma cells and memory B cells to maintain
a long-term immune response.35 Furthermore, PD-1hiCD8+

T cells, PD-1hiCD4+ TFH cells and DC-LAMP+ DCs were
observed in the follicular B cell zone of TLS.40,44 This likely
indicated an essential role of the TLS in promoting an inter-
action of T and B cells to generate an effective anti-tumor
response.40,44

Imatinib significantly improves the prognosis of GIST
patients,11 however, imatinib resistance is an inevitable

consequence. Hence, we analyzed the relationship between
TLS and imatinib resistance. Surprisingly, we found that
patients with TLS were less likely to develop imatinib resis-
tance, indicating that the immune system could influence the
development of imatinib resistance. In addition, we analyzed
the immune profiles of TLS in imatinib-resistant and non-
imatinib resistant patients. We observed that patients with
imatinib resistance had a larger number of Treg and B cells
and a lower number of CD8+ T cells in the TLS. This further
demonstrated that immune cells were responsible for the
development of imatinib resistance. Additional studies are
needed to determine whether targeting the immune system
could be a strategy to avoid imatinib resistance.

Immune checkpoint therapy, which has achieved a great
success in lung cancer45 and melanomas,46 is thought to be
effective in microsatellite instable patients.47 Tumors with
high TILs are thought to be a good predictor for sensitivity
to immune checkpoint therapies, as they could promote
in situ anti-tumor response and reverse immune escape

Figure 4. Prognostic significance of TLS phenotypes of in GIST patients.
(a). Kaplan-Meier analysis of overall survival (OS) and time to recurrence (TTR) in discovery cohort according to TLS phenotypes (n = 118).(b). Kaplan-Meier analysis of
OS and TTR in validation cohort according to TLS phenotypes (n = 69).

Figure 5. Prognostic significance of TLS phenotypes in GIST patients with the history of postoperative imatinib usage.
(a). Kaplan-Meier analysis of overall survival (OS) and time to recurrence (TTR) in discovery cohort according to TLS phenotypes (n = 69).(b). Kaplan-Meier analysis of
OS and TTR in validation cohort according to TLS phenotypes (n = 42).
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mechanisms.24 Therapies to block PD-1 and PD-L1, which
could rescue exhausted CD8+ T cells via the PI3 K/Akt/mTOR
signaling pathway,48 had shown promising results in combi-
nation with imatinib for treating GIST.49 Depending on CD8+

T cells, the combination of anti-CD40 drugs and imatinib has
also been an effective strategy for treating GIST patients.50

The combination of antiangiogenic and anti-PD-L1 therapies
have been shown to increase TLS formation in breast and
neuroendocrine pancreatic cancer patients.51 In contrast, cau-
tion is advised when administrating corticosteroids to manage
chemotherapy side effects, as it could decrease the density of
TLS in patients with lung squamous cell carcinomas.52 These
findings are valuable to help us develop immunotherapies that
specifically enables the formation of TLS to improve the
prognosis of patients with GIST.

It is reported that the genomic alterations are associated with
anti-tumor immunity and tumormutation burdens, by promoting
the generation of tumor neo-antigens, which is thought to be
a major origin of adaptive immune responses.47,53,54 In patients
with stage II/III non-metastatic colorectal carcinoma (nmCRC),
TLS has been shown to be significantly associated with high-
microsatellite-instability (MSI-H) and BRAF-mutant nmCRC,
which may be through the production of immunogenic
epitopes.55 The presence of gene mutations is an important char-
acteristic associated with GIST patients. We analyzed the combi-
national effects of these mutations and TLS in clinical outcomes.
To our surprise, patients with PDGFRA mutations and positive
TLS had the best prognosis for OS and TTR, while patients with
KIT mutations and negative TLS had the worst prognosis for OS
and TTR. The reason may be that patients with PDGFRA muta-
tions are more likely to be TLS positive. This is consistent with

a previous study that demonstrated immune cells were more
numerous and had higher cytolytic activity in PDGFRA-mutant
GISTs compared to KIT-mutant GISTs.56

Despite of the promising result, we still had some limita-
tions in our study. Unfortunately, we did not have any results
referring to the mechanism why TLS could influence the
imatinib resistance and prognosis of GIST. Additional studies
are required to determine how TLS originates and the exact
role of TLS in the tumor microenvironment.

In conclusion, our present study demonstrated that the
presence of tumor-infiltrating TLS was an independent prog-
nostic factor for both OS and TTR. Furthermore, TLS was
associated with lower imatinib resistance, longer survival and
recurrence time after surgery. This indicated that TLS may
have active anti-tumor activity and prevent anti-imatinib
resistance. As drug resistance is becoming a severe problem
for the treatment of patients with GIST, additional studies are
urgently needed to determine whether patients with TLS
could benefit from immune therapy or whether TLS could
be induced to extend GIST patient survival.
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Figure 6. Association of mutation status with TLS phenotype in GIST patients.
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group III: KIT mutation and TLS− (blue), group I: PDGFRA mutation and TLS+ (red), group II: others (green) in discovery cohort.(f). Kaplan-Meier analysis of OS (left) and
TTR (right) in patients with group III: KIT mutation and TLS− (blue), group I: PDGFRA mutation and TLS+ (red), group II: others (green) in validation cohort.
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