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Abstract

The application of machine learning techniques to psychiatric neuroimaging offers the pos-
sibility to identify robust, reliable and objective disease biomarkers both within and between
contemporary syndromal diagnoses that could guide routine clinical practice. The use of
quantitative methods to identify psychiatric biomarkers is consequently important, particu-
larly with a view to making predictions relevant to individual patients, rather than at a group-
level. Here, we describe predictions of treatment-refractory depression (TRD) diagnosis
using structural T1-weighted brain scans obtained from twenty adult participants with TRD
and 21 never depressed controls. We report 85% accuracy of individual subject diagnostic
prediction. Using an automated feature selection method, the major brain regions support-
ing this significant classification were in the caudate, insula, habenula and periventricular
grey matter. It was not, however, possible to predict the degree of ‘treatment resistance’ in
individual patients, at least as quantified by the Massachusetts General Hospital (MGH-S)
clinical staging method; but the insula was again identified as a region of interest. Structural
brain imaging data alone can be used to predict diagnostic status, but not MGH-S staging,
with a high degree of accuracy in patients with TRD.

Introduction

Based on the 2010 Global Burden of Diseases Study, Whiteford, Degenhardt (1] estimated
that mental and substance use disorders were the leading causes of years lived with disability
worldwide. This is due to the chronic nature of psychiatric disorders and the typical onset of
symptoms at a young age. Furthermore, depressive disorders were found to be the largest
contributor to disability-adjusted life years, by some margin, within this grouping [1]. Major
Depressive Disorder (MDD) is defined by persistent and disabling symptoms of low mood,
anhedonia, hopelessness, guilt, low self-worth, poor concentration, lack of energy, suicidal
thoughts and altered appetite and sleep [2, 3]. The diagnosis is elicited by clinical interview
and mental state examination in the absence of robust established pathophysiological mecha-
nisms or biomarkers. Remission rates with standard antidepressant drug treatments are only
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30-40%, even when depression is accurately diagnosed and patient adherence is excellent [4-
6]. The reliance on subjective symptoms in the absence of objective biomarkers, along with
under-developed understanding of depressive endophenotypes may explain these treatment
gaps.

It is, therefore, necessary to have a better understanding of the underlying mechanisms of
depressive illness and to be able to identify objective biomarkers that can be used to make clini-
cally-useful predictions for individual patients. Studies involving patients with so-called ‘treat-
ment-resistant’ or, rather, treatment-refractory depression (TRD) are important because, by
definition, these are the patients who do not respond well to available treatments and who
experience chronic impairment, disability and social disadvantage. We have adopted the Mas-
sachusetts General Hospital—Staging (MGH-S) protocol [7] for quantifying treatment-resis-
tance (similar to the Antidepressant Treatment History Form approach [8]). The crucial
concept is of a ‘failed adequate trial’ of a treatment intervention; usually a medication. An ade-
quate trial requires four criteria to be simultaneously satisfied: i) prescription of a given antide-
pressant medication for which there is evidence for efficacy with some patients with the
diagnosis, ii) at a given minimum dose, iii) for a given minimum duration of time, iv) with rea-
sonable certainty the patient took the medication as prescribed. If all four criteria are not met
then the treatment does not constitute an ‘adequate’ trial. If all criteria are satisfied and the
patient does not respond to treatment, then this is conceptualised as a ‘failed adequate trial’.
Essentially, the total number of failed adequate trials (with some weightings to the scoring)
constitutes a numerical measure of treatment resistance for an individual patient.

Whilst patients who are highly treatment refractory tend to experience chronic and endur-
ing illness (evidenced by e.g. high Montgomery-Asberg Depression Rating Scale (MADRS) or
Beck Depression Inventory-II (BDI) scores) and functional impairment, they are not necessar-
ily “in episode” continuously. For example, an individual patient can have shown minimal or
no response to several ‘adequate’ medication trials and psychological therapy before finally
responding to a course of electroconvulsive therapy. Such a patient would still be considered
to fall within the category of treatment refractory despite the improved current health status.
Treatment-resistance is, therefore, regarded as an enduring propensity to be resistant to antide-
pressant treatment and to be at increased risk of further episodes on the basis of previous
clinical features. This can be considered as analogous to, for example, epilepsy, where a patient
does not cease to have a propensity to epileptic seizures despite no recent seizure activity, par-
ticularly where seizure control has been difficult to achieve. This conceptualisation has the
advantage of avoiding a conflation of concepts of current illness severity (e.g. MADRS) and
treatment-resistance (e.g. MGH-S).

Ultimately, improved understanding of the underlying mechanisms contributing to TRD
could facilitate more effective targeting of drug discovery research, substantially impacting on
chronic disability worldwide. However, there are few studies of this important clinical popula-
tion [6]. In the imaging studies that have focused on TRD, reduced hippocampal volume has
been consistently implicated. Studies by Shah and colleagues reported reduced grey matter
density in the left temporal cortex, including the hippocampus [9, 10], in TRD patients com-
pared both with controls and recovered MDD patients. A more recent volumetric study
reported that both TRD and treatment-resistant schizophrenia patients showed reduced hippo-
campal volumes compared with controls [11]. The volume of the entorhinal cortex, a structure
with strong connections with the hippocampus, has also been reported to be significantly
reduced in female patients with TRD compared with controls, but not in the corresponding
male comparison [12].

Whilst there have been only a few studies specifically investigating patients with TRD,
there are many studies which have reported group-level differences in brain structure between
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patients with MDD (non-TRD) and healthy controls; a majority of which have reported
regional reductions in grey matter volume compared with healthy controls [10, 13-15]. MDD
patients, compared with healthy controls, have been reported to show decreased grey matter in
one or more meta-analysis in: the bilateral rostral anterior cingulate cortex; putamen; caudate;
insula; globus pallidus; thalamus; hippocampus; and diverse areas within the frontal lobes [14,
16, 17]. Kempton et al. [17] also reported that MDD subjects had larger lateral ventricular and
CSF volumes compared with controls. The amygdala and thalamus were reported to show no
differences between groups by Kooschijn et al. [14], but the latter was found to be decreased in
MDD patients in the more recent meta-analysis by Kempton et al. [17].

Regions identified using voxel-based morphometry (VBM) provide information about
group-level differences. By contrast, techniques based on machine learning, such as support
vector machines (SVM), which include additional techniques such as feature selection, can
determine which brain regions consistently differ between groups in order to produce an accu-
rate individual subject classifier. Although no reported study has used machine learning-based
techniques to classify individual subjects with TRD, a number of studies have used these tech-
niques to classify MDD patients and healthy controls ranging between 68-90% accuracy [18-
20]. The highest accuracy reported was obtained by Mwangi and colleagues [20], who success-
tully classified structural MR images between MDD patients and healthy controls using images
obtained over two scanning centres. In that study, grey matter reductions were identified in
MDD participants compared to controls in the dorsolateral prefrontal cortex, medial frontal
cortex, orbitofrontal cortex, temporal lobe, insula, cerebellum and posterior lobe. Identification
of a pattern of brain abnormalities that is able to accurately predict TRD vs. healthy controls in
individual subjects using machine learning-based techniques could increase the understanding
of and elucidate the mechanisms of TRD. Similarly, identification of brain regions that support
prediction and correlate with, for example, the MGH-S staging method, could be used to define
novel biomarkers relevant to treatment non-response.

Another aim of the study was to investigate whether it was possible to make accurate indi-
vidual predictions of symptom severity scores derived from the self-rated BDI and/or the clini-
cian-rated MADRS and 17-item Hamilton Depression Rating Scale (HDRS; ) using the same
TRD participant structural images. Mwangi and colleagues previously used structural MR
images to predict MDD illness severity [21]. In that study, they found that it was possible to
predict BDI scores from whole-brain structural MRI scans [21].

Therefore, the primary aims of the present study were to:

1. classify accurately TRD participants and never-depressed controls on the basis of structural
MRI scan data alone,

2. investigate whether the level of treatment resistance derived from the Massachusetts Gen-
eral Hospital (MGH-S) staging method [7] could be accurately predicted in the patient

group,

3. investigate whether symptom severity scores derived from the self-rated BDI and/or the cli-
nician-rated HDRS;; and MADRS could be accurately predicted in the patient group.

Materials and Methods

Structural T; weighted scans and contemporaneous clinical ratings were obtained at the Clini-
cal Research Centre, Ninewells Hospital and Medical School in Dundee, UK. The study was
approved by the East of Scotland Research Ethics Service. Written confirmation of informed
consent was obtained from all volunteers.
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Participants

Twenty adults with a lifetime history of TRD, but who did not necessarily meet criteria for
diagnosis of depressive episode at time of scanning were recruited from the Advanced Interven-
tions Service in Dundee. All TRD participants had experienced lifetime and/or current chronic
episodes of depression (>24m). Diagnoses were made by experienced clinicians according to
DSM-1IV criteria using the MINI PLUS (version 5.0) interview schedule [22]. The level of treat-
ment non-response was based on detailed case note review and was scored using the MGH-S
[7]; a clinical staging method for evaluating ‘treatment resistance’ that assigns points for ‘ade-
quate’ trials (i.e. exceeding a minimum dose and duration of a given medication) of antidepres-
sant medication. Scoring incorporates optimisation of antidepressant dose, antidepressant
combinations and treatment augmentation strategies.

Study exclusion criteria included potentially confounding clinical features including: other
primary psychiatric disorder (e.g. bipolar disorder, personality disorder or psychotic illness);
history of current or previous substance misuse or significant head injury. Eighteen TRD par-
ticipants were being treated with one or more anti-depressant medications at time of scanning
(venlafaxine (6), sertraline (3), trazodone (3), citalopram (2), fluoxetine (2), isocarboxazid (2),
mirtazapine (2), L-tryptophan (1), phenelzine (1), tranylcypromine (1)). In addition, 7 TRD
participants were being treated with anti-psychotic medications (quetiapine (6) and chlor-
promazine (1)). Three TRD participants were being treated with lithium augmentation.

Twenty-one healthy, never-depressed controls were recruited (mostly from partners, rela-
tives and friends of TRD participants) and underwent clinical screening using the same semi-
structured interview schedule and questionnaires. None of the controls had a history of current,
or previous, psychiatric or neurological disorder, and all control participants were medication-
free.

All participants had a predicted premorbid Full Scale Intelligence Quotient above 106 (one
control was not assessed for IQ) as estimated by the National Adult Reading Test [23]. Hand-
edness was assessed using the Edinburgh Handedness Inventory [24]. All subjects were right-
handed with the exception of two left-handed participants in the control group and one and
three ambidextrous participants in the control and patient groups respectively. Handedness
was unknown in one participant from each group.

Image Acquisition

Structural whole-brain images were acquired using a 3T Siemens Magnetom TrioTim syngo
scanner using a T1-weighted MP-RAGE (magnetisation-prepared rapid acquisition gradient
echo) sequence with the following parameters: TR = 1900 ms, TE = 2.64 ms, flip angle = 9°,
FOV =200 mm, matrix = 256 x 256, 176 slices, voxel size 0.8x0.8x1 mm, slice thickness 1 mm.

Image Pre-processing

All scans were visually inspected for gross artefacts and particular care was taken to identify
motion artefacts which appeared as blurring or ‘ghosting’ [25]. All scans were free from such
artefacts and were included in the analysis.

Pre-processing was performed using SPM8 [26]. The procedure involved segmentation of
T, weighted images into separate grey matter, white matter and CSF compartment images and
normalisation of the grey matter segmented images towards to the default SPM8 anatomical
template. The resultant images were smoothed with an 8 mm full-width at half-maximum
(FWHM) Gaussian kernel.
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Individual Subject Classification

Individual subject classification was implemented in Matlab (The Mathworks Inc.) using a
SVM toolbox [27] with a Gaussian kernel [28] and custom Matlab scripts.

SVM analysis consisted of two stages: training the classifier, then testing the accuracy using
data not used for training. Within-study replication (‘leave-one-out’ cross-validation, LOOCV)
was used for training, meaning N-1 subjects are used as training data and the left out subject is
predicted using the trained classifier, with all subjects used as testing data at some stage [29].
The SVM parameters were selected on the basis of training stage accuracy to avoid mixing pre-
diction data with testing data which would result in inflated accuracy estimates.

Feature selection was used to identify brain regions supporting predictive classification. The
feature selection method chosen during the SVM classification was a standard t-test, as imple-
mented in the SPM toolbox. A t-test between the patient and control groups within each train-
ing set was performed during LOOCV (i.e. the subject being classified was not included in the
t-test) with significance defined as p<0.05 at a whole brain, family-wise error corrected level
[30]. The z-scores at each of the significant voxels were then ranked during LOOCV and the
threshold, whereby voxels with z-scores above this threshold would be included in the classifi-
cation, was optimised at the same stage as the SVM parameter selection. As the features
selected differed slightly for each iteration of LOOCYV, we report the sum of each feature selec-
tion map from each iteration, indicating which brain regions are most consistently selected for
prediction of the ‘left out’ test dataset.

Group-level Differences

In order to compare the regions identified during the classification with a more conventional
group-level analyses, we performed a standard t-test on all subjects, as implemented in the
SPM toolbox. This comparison demonstrates that the feature selection method, which involves
selecting a threshold during cross-validation, corresponds to a more stringent threshold than
using a conventional t-test, but otherwise the results are very similar. For the conventional
group-level VBM analysis, the null hypothesis of no difference in brain structure between
patients and controls was tested using an unpaired t-test as implemented in SPM8. Significance
was defined as p<0.05 at a whole brain, family-wise error corrected level, with the simulta-
neous requirements for voxel threshold and minimum cluster extent identified using a popular
Monte-Carlo method [30].

Individual Subject MGH-S and Severity Score Predictions

Individual subject predictions of MGH-S and severity scores was implemented in Matlab (The
Mathworks Inc.) using the Relevance Vector Regression (RVR) function within the PRoNTo
toolbox [31, 32] and custom Matlab scripts. Similar to the SVM analysis, within-study replica-
tion (LOOCV) was used for training [29].

The RVR parameters were selected on the basis of a combination of three standard statisti-
cal variables: the root-mean square error (RMSE), the mean absolute error (MAE) and Pear-
son’s correlation coefficient (R) as calculated using the gfit2 toolbox [33]. The Shapiro-Wilk
test was used to test whether each continuous variable was normally-distributed prior to using
RVR (a requirement when using the Pearson correlation coefficient). The MGH-S and symp-
tom severity scores all met this requirement.

The RVR predictions were performed on scans from TRD participants only, both with and
without feature selection. The feature selection methods investigated and the corresponding
results are reported in the S1 File.
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Group-level Correlations

Similarly, the group-level regressions were performed as implemented in SPM8 using TRD par-
ticipant data and both the MGH-S and symptom severity scores (according to the HDRS;,
MADRS and BDI-I], reported in the S1 File). Significance was defined as p<0.05 at a whole
brain, family-wise error corrected level, with the simultaneous requirements for voxel thresh-
old and minimum cluster extent identified using a popular Monte-Carlo method [30].

Results
Participant Characteristics

Age and estimated pre-morbid IQ (t-test, p>0.1, excluding the one control subject who failed
to complete the testing) and gender distribution (as assessed by a chi-square calculation) did
not differ significantly between groups. TRD participants mean + SD age was 51.8 + 11.2 years
and mean + SD estimated IQ was 122.8 + 4.7. The control group mean + SD age was

46.1 + 14.0 years and the mean + SD estimated IQ was 122.8 +5.8.

The average MGH-S score of the TRD participants was 13.3, which is consistent with a pre-
vious report of patients attending the Advanced Interventions Service (15.5) and should be
noted as significantly higher than patients with depression treated in UK secondary care (5.3);
and primary care (0.5) [34]. Indeed, this compares to the average MGH-S score for US patients
enrolled in a speciality clinic, who had mean + SD MGH-S scores of 1.6 + 1.2 [35]. The average
HDRS;;, MADRS and BDI illness severity rating scores in the TRD group were 16.1, 22.5 and
32.2 respectively, reflecting group-level depression severity at time of scanning to be in the
mild-moderate range. These results are summarised in Table 1.

Two TRD participants were in remission at the time of scanning (as assessed through the
MINI PLUS interview schedule and clinical ratings). Using a previously described scheme for
categorisation of severity [36], HDRS;; scores were categorised into approximate levels of
severity. Using this approach, one participant was classed in the “very severe” range, three in
the “severe” range, ten in the “moderate” range, five in the “mild” range and one in remission
at the time of scanning. Using alternate severity ranges as defined by Zimmerman, Martinez
[37], two participants were classed in the “severe depression” range, seven in the “moderate”
range, ten in the “mild” range and one in remission at the time of scanning. Using either cate-
gorisation, TRD participants had a wide range of symptom severity scores at the time of
scanning.

Table 1. Clinical descriptors for the TRD and healthy control groups in the structural MRI analysis.
Variables are shown as mean (standard deviation).

MDD Controls
Age 51.80 (11.23) 46.14 (13.97) n.s.
1Q 122.75 (4.71) 116.95 (27.38) n.s.
Female/Total* 15/20 15/21 n.s.
HDRS;; 16.10 (5.58) 0.48 (0.93) <0.001
MADRS 22.50 (7.97) 0.48 (1.03) <0.001
BDI 32.20 (11.38) 0.43 (0.87) <0.001
MGH-S 13.25 (10.49) N/A N/A

*chi-square test with other tests being t-tests.

doi:10.1371/journal.pone.0132958.t001
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Individual Subject Classification

A Gaussian SVM was used and feature selection was implemented using t-tests with a variable
threshold that was optimised during cross-validation. The analysis using grey matter images
resulted in an individual subject predictive accuracy of 85% (sensitivity 0.85, specificity 0.86,
x> =17.7,p <0.0001).

Grey matter reductions in the caudate, insula, and periventricular grey matter supported
individual prediction at an accuracy of 85%. Regions used in the classification are shown in Fig
1 and Table A in S1 File.

Group-level Differences

The brain regions identified using feature selection overlapped to a great extent with the results
of the VBM group-level analysis (p<0.05, whole brain level significance) as t-tests were used in
both cases (although the t-tests used during feature selection did not include the subject being
classified and not all significant voxels from the t-tests were used in the prediction as it was
thresholded). In the VBM analysis, mostly grey matter reductions were identified in the TRD
participants, but a small number of increases were also found in the posterior cerebellum and
middle frontal gyrus. As shown in Fig 2 and Table B in S1 File, the largest grey matter reduc-
tions were found in the caudate, insula, and periventricular grey matter. In addition, TRD
patients also had significantly reduced grey matter volumes in a region identified by Lawson,
Drevets [38] as corresponding to the habenula. There were no significant group differences
detected in the hippocampi.

Whilst the majority of the regions identified in the classification overlapped with the VBM
results, a few voxels did not overlap either due to the thresholding of the t-tests during feature
selection or differences in the t-test due to the left out subject during cross-validation. The
overlap between the VBM results and the results from the feature selection is shown in Fig 3.

Individual Subject MGH-S and Severity Score Predictions

A linear kernel RVR was used to predict symptom severity scores (HDRS;;, MADRS and BDI)
using the whole brain (no feature selection) MRI images from the TRD participants only.
There was a significant correlation between the true and predicted HDRS;; scores (RMSE =
4.6963, MAE = 3.6212, R = 0.50712, p = 0.02). A significant correlation was also identified
between the true and predicted MADRS scores (RMSE = 6.8328, MAE = 5.441, R = 0.4822,
p = 0.03). The best-fit line between true and predicted scores for both the HDRS;, and
MADRS predictions is shown in S1 Fig. and the highly distributed brain regions that provided
the highest weightings are shown in S2 Fig. The most common regions to be used in both pre-
dictions were those along the cingulate gyri. However, the BDI scores could not be predicted in
individual TRD participants using this approach. The results when feature selection was inves-
tigated is included in the S1 File.

Using the same method that was able to predict various symptom severity scores, it was not
possible to predict MGH-S scores in individual subjects, irrespective of whether feature selec-
tion was used.

Group-level Correlations

Grey matter volume did not correlate strongly with previous medication exposure (as assessed
through the MGH-S scores). Indeed, there were no positive correlations with MGH-S scores,
but the insula and various small cortical regions showed a negative correlation (as shown in
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Fig 1. Feature selection (Gaussian SVM) identified brain regions in grey matter. PV—periventricular
grey matter; C—caudate; IN—insula.

doi:10.1371/journal.pone.0132958.g001

Fig 2. Group-level grey matter reductions in patients with TRD compared with healthy matched
controls. PV- periventricular grey matter, C—caudate reductions, H—habenula and IN—insula.

doi:10.1371/journal.pone.0132958.g002
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Fig 3. Overlapping grey matter regions between features selected during classification (purple/blue)
and regions selected in the VBM analysis (red/purple).

doi:10.1371/journal.pone.0132958.g003

S8 and S9 Figs and Table C in S1 File). Hence, TRD participants with greater ratings of refrac-
toriness to treatment showed reduced grey matter volume in these regions.

The insula was previously identified in the VBM analysis as one of the regions which was
significantly reduced in volume in TRD participants compared with healthy controls. However,
as MGH-S scores did not correlate with any of the symptom severity scores (HDRS;;, MADRS
or BDI), it is reasonable that we did not find any overlap between brain regions that correlated
with symptom severity (reported in the S1 File, S4-S7 Figs and Tables D-F in S1 File). Further-
more, adding MGH-S as a covariate in the HDRS;; regression (and vice-versa) made no sub-
stantial alterations to the results.

Discussion

The high classification accuracy (85%) achieved in this study demonstrates that there are con-
sistent patterns of structural brain abnormalities in patients with histories of TRD, including
those with mild symptom burden, or in full clinical remission, at time of scanning when com-
pared with healthy controls. These patterns were identified using feature selection and key
regions included the caudate, the insula and periventricular grey matter—each of which have
previously been reported to be reduced in previous group-level meta-analyses focusing on
MDD [14-17]. The insula appears to represent an important brain region in TRD as it was
found to correlate with MGH-S scores and was identified in the TRD vs. healthy control pre-
diction. The insula has previously been implicated in the pathophysiology of depression as it
has been associated with, among other things, emotional processing [39, 40] and human
awareness and subjective experience [41]. As with our study, the volume of the insula was

PLOS ONE | DOI:10.1371/journal.pone.0132958 July 17,2015 9/16



@’PLOS ‘ ONE

Structural MRI-Based Predictions in TRD Patients

reduced in several other studies of patients with depression [20, 40, 42, 43]. Furthermore, these
insula changes may be associated with clinical course and prognosis as Soriano-Mas and col-
leagues reported that insula volume was correlated with the number of relapses during a fol-
low-up period and, along with the hippocampus and lateral parietal cortex, reduced volume of
the left insula predicted a slower recovery [43]. The insula has also been reported to have
decreased connectivity in TRD compared with treatment-sensitive depression [44].

The failure to accurately predict MGH-S scores in individual subjects may be due to the dif-
ficulties and methodological limitations inherent in quantifying the degree of treatment resis-
tance. However, an alternative explanation is that there is no consistent association between
brain structure and the number of trials of antidepressant medication without clinical response.
The latter explanation is supported by the fact that so few brain regions correlated with
MGHS-S scores in the group-level regression analysis.

Hippocampal volume reductions have been reported in several TRD (and MDD) studies
previously [9-12, 45]. Although no significant differences were identified in this region
between TRD participants and healthy controls, hippocampal volume was found to negatively
correlate with both the HDRS;7 and MADRS scores (see S1 File). Nonetheless, given the
chronicity, severity and degree of treatment-refractoriness of the participants’ illnesses, the
absence of hippocampal volumetric differences between the groups was somewhat surprising.
The extensive treatment history all TRD patients, or inclusion of TRD participants with mild
illness severity (or remission) at the time of scanning in the present study may account for the
failure to replicate these between-group hippocampal volume reductions as a number of stud-
ies suggest a correlation between hippocampal volume and antidepressant treatment/decreas-
ing depressive symptoms [46-50].

Caudate volume reductions have been reported in previous studies of depression [45, 51—
54] and negative correlations between caudate volume and HDRS;; scores have been reported
previously [51, 55]. In addition, decreased connectivity between the precuneus/posterior cingu-
late cortex and the bilateral caudate has been reported in early depression [56]. Although some
studies did not find significant differences in caudate volume between groups, there are various
factors that could explain this discrepancy including, for example, younger study populations,
lower illness severity and the exclusion of subjects with cerebrovascular risk factors [55, 57,
58]. It is particularly interesting that the dorsal striatum (including the caudate) and not the
ventral striatum was found to have reduced volume in the TRD group since the dorsal striatum
is generally implicated in learning stimulus-response associations whereas the ventral striatum
is involved with reward and motivation, particularly the prediction of reward [59].

The decrease in periventricular grey matter is linked with ventricular enlargement. Visual
inspection of the raw MR images showed that several participants had remarkably large ventri-
cles, including a few controls. Ventricular enlargement is more commonly associated with
aging but, as there were no significant differences in age between the groups, it is most likely
due to MDD diagnosis. Elkis, Friedman [60] reported, through a meta-analysis, that ventricular
volumes were larger in patients with mood disorders than healthy controls, but smaller than
in patients with schizophrenia. However, a later review by Soares and Mann [61] could not
find evidence for ventricular enlargement in mood disorders. In an early structural study by
Andreasen, Olsen [62], patients with schizophrenia and ventricular enlargement typically had
more “negative” symptoms, the symptoms more commonly associated with depression such
as anhedonia, and, similarly, patients with schizophrenia and small ventricles had predomi-
nantly “positive” symptoms. It is, therefore, possible that ventricular enlargement may be more
strongly associated with motor symptoms and loss of hedonic responsiveness. However this
association requires further investigation as neither the “psychomotor retardation” question
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within the HDRS;; score nor the “loss of pleasure” question within the BDI score correlated
with CSF volume in this study.

Reduced habenula volume has also been reported, albeit inconsistently, in previous studies
of patients with mood disorders [63, 64]. This reduction may be specific to mood disorder as
reductions in this area have not been identified in studies of schizophrenia or post-traumatic
stress disorder [63, 65]. Identification of a reduced habenular volume is interesting as it con-
tains strong connections with both the limbic forebrain, consistently implicated in TRD stud-
ies, and the midbrain/brainstem and it is functionally associated with depression-relevant
emotions (anxiety) and physiological responses such as those to stress and reward processing
[63]. In addition, deep brain stimulation has been attempted previously in the lateral habenula
in patients with treatment resistant depression [66].

Predictions of symptom severity in individual subjects have been performed previously in
participants with current symptoms of depression [21] and other disorders such as OCD, Alz-
heimer’s disease and mild cognitive impairment [67-69]. Mwangi ef al. [21] reported the abil-
ity to predict scores on the BDI in MDD participants using whole brain grey matter images.
Using a similar approach, in this study we were able to predict HDRS;; and MADRS scores.
This may be because the participants in the present study were more treatment-resistant and
had a wider range of symptom severity scores. In any event, both the HDRS;, and MADRS
scores, which are based upon clinician ratings of descriptions of symptoms over the preceding
week, combined with some quantification of mental state findings, could be significantly pre-
dicted based upon a single grey matter MR image. When predicting symptom severity, adding
feature selection to the process conferred little additional benefit. As some participants, despite
having an extensive treatment history, were in remission at the time of scanning, it is a remark-
able and novel finding that it was possible to accurately predict state measures of depression in
individual subjects using structural measures.

Study Limitations

There are several study limitations to note. First, although the number of subjects in this
study is comparable with similar studies, replication in a larger study population would be
desirable. Second, the TRD participants were taking a range of antidepressant medications
at the time of scanning and it remains unclear to what extent this may influence results.
Sapolsky [70] has argued that it is unlikely that the often observed grey matter reductions in
MDD are a consequence of antidepressant medication as there is evidence for the contrary,
antidepressant-induced neurogenesis, with no clear rationale for reductions. We observed
some small regions of increased grey matter in the posterior cerebellum and middle frontal
gyrus and it is possible these represent medication effects that merit further investigation.
Current medication status is also, theoretically, a potential confound when predicting symp-
tom severity scores. However, Table 2 shows that there is no obvious link between current
medication and symptom severity. Despite the TRD patients, by definition, having an exten-
sive medication history, there were very few specific brain regions that correlated with the
MGHS-S scores. The insula was the only region of interest that was linked with medication
exposure, implying that previous medication exposure is not strongly associated with wide-
spread regional grey matter loss. This is despite the participants in this study having experi-
enced far greater lifetime exposure to antidepressant medications (see MGH-S scores) than
those in other studies. Finally, as the TRD group was recruited with a past or present diagno-
sis of chronic MDD, the differences between the two groups may not have been as distinct as
other studies. However, this enhanced range of symptom severity may actually have been an
advantage in the prediction of symptom severity.
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Table 2. Treatment Resistance, State lliness Severity and Current Medication. No patients had psychotic symptoms and quetiapine was prescribed as

an augmentation agent for antidepressants [71], similar to the long established use of lithium, L-tryptophan and tri-iodothyronine in treatment resistant depres-
sion. No obvious relationships between current medication and treatment resistance/state iliness severity were present. ‘mg’ indicates total dose per day,
‘mcg’ total micrograms per day.

HDRS;,

21
4

11
8

16
29
19
21
18
18
24

12
14
19
13
16
14
18
14
13

Primary Anti-
depressant
fluoxetine (60 mg)
venlafaxine (525 mg)
sertraline (100 mg)
venlafaxine (300 mg)
phenelzine (60 mg)

venlafaxine (300 mg)
fluoxetine (100 mg)
venlafaxine (525 mg)
isocarboxazid (70 mg)
sertraline (300 mg)

venlafaxine (75 mg)
tranylcypromine (70 mg)
isocarboxazid (40 mg)
sertraline (100 mg)
sertraline (200 mg)
venlafaxine (300 mg)
venlafaxine (225 mg)
citalopram (60 mg)
citalopram (10 mg)

doi:10.1371/journal.pone.0132958.t002

Secondary Anti-
depressant
mirtazapine (45 mg)
mirtazapine (45 mg)
trazodone (200 mg)

Primary Augmentation

lithium (900 mg)

Secondary
Augmentation

Anti-psychotic
Medication

quetiapine (300 mg)

trazodone (300 mg)

lithium (200 mg)

L-Tryptophan (3000 mg) lithium (1000 mg) quetiapine (75 mg)
chlorpromazine (150 mg)

L-Tryptophan (6000 mg)

trazodone (150 mg)
trazodone (150 mg)

tri-iodothyronine (20
mcg)

quetiapine (800 mg)

quetiapine (75 mg)

quetiapine (100 mg)
quetiapine (300 mg)
quetiapine (200 mg)

Conclusions

To summarise, it was possible to use grey matter MR images to predict diagnostic status when

comparing TRD subjects and healthy controls. Although it was not possible to predict the level
of treatment-resistance in individual TRD participants, the insula was identified as a region of

interest. These results provide encouragement that machine learning methods can increase the
understanding of the neurobiology of TRD.

Supporting Information

S1 File. Supporting Information and Severity Score Prediction Information.
(DOC)

S1 Fig. The best fit lines for whole brain severity score predictions (left: HDRS,; predic-
tions, right: MADRS predictions).
(TIF)

S2 Fig. The brain regions which were identified as the most predictive during the whole
brain severity score predictions (left: HDRS;, predictions, right: MADRS predictions).
(TIF)

S$3 Fig. The best fit line for the prediction of the BDI score using thresholded multiple lin-
ear regression feature selection and grey matter images.
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S4 Fig. Group-level positive correlations between grey matter and HAM_D (top) and
MADRS (bottom).
(TIF)

S5 Fig. Group-level negative correlations between grey matter and HAM_D.
(TIF)

S6 Fig. Group-level negative correlations between grey matter and MADRS.
(TIF)

S7 Fig. Group-level grey matter decreases in patients with TRD with increased BDI scores.
(TIF)

S8 Fig. Group-level grey matter decreases in patients with TRD with increased MGH-S
scores.
(TIF)

S9 Fig. The best fit line for the correlation between the MGH-S scores and the volume of
grey matter contained within a 5mm sphere centred within the mid-insulae (left (top),
right (bottom)).
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S1 Data. Supplemental data.
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