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We deal with a heterogeneous pharmaceutical knowledge-graph containing textual
information built from several databases. The knowledge graph is a heterogeneous
graph that includes a wide variety of concepts and attributes, some of which are
provided in the form of textual pieces of information which have not been targeted in
the conventional graph completion tasks. To investigate the utility of textual information for
knowledge graph completion, we generate embeddings from textual descriptions given to
heterogeneous items, such as drugs and proteins, while learning knowledge graph
embeddings. We evaluate the obtained graph embeddings on the link prediction task
for knowledge graph completion, which can be used for drug discovery and repurposing.
We also compare the results with existing methods and discuss the utility of the textual
information.
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1 INTRODUCTION

Knowledge graphs (KGs) have attracted great attention from both academia and industry as a
means of representing structured human knowledge. A wide variety of KGs have been proposed
such as freebase (Bollacker et al., 2008), YAGO (Suchanek et al., 2007), and WordNet (Miller,
1995). A KG is a structured representation of facts that consists of entities, relations, and
semantic descriptions. Entities are real-world objects and abstract concepts, relations represent
relationships between entities, and semantic descriptions of entities, and these relationships
include types and properties that have well-defined meanings. The KG usually consists of a set of
triples {(h, r, t)}, where h, r, and t represent the head entity, relationship, and tail entity,
respectively.

Recently, obtaining representation of KG elements in a dense vector space has attracted a lot of
research attention. We have witnessed major advances in the KG expression learning model, which
expresses entities and relationships as elements of a continuous vector space. The vector space
embedding of all the elements in KGs have received considerable attention because it is used to create
a statistical model of the whole KGs, i.e., to easily calculate the semantic distance between all elements
and to predict the probabilities of possible relational events (i.e., edges) on the graph. Such models
can be used to infer new knowledge from known facts (i.e., link prediction), to clarify entities
(i.e., entity resolution), to classify triples (i.e., triple classification), and to answer the probability
question and answering (Bordes et al., 2011; Nickel et al., 2011; Socher et al., 2013; Nickel et al., 2016).
They can enhance knowledge learning capabilities from the perspectives of knowledge reasoning,
knowledge fusion, and knowledge completion (Lin et al., 2016; Xie et al., 2016; Pham and Le, 2018; Ji
et al., 2020).
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Applications of the KG are often severely affected by data
sparseness; however, a typical large-scale KG is usually far from
perfect. The task of completing the KG aims to enrich the KGs
with new facts. Many graph-based methods have been proposed
to find new facts between entities based on the network structure
of KG (Lao et al., 2011). Much effort has also been put into
extracting relevant facts from plain text (Zeng et al., 2014).
However, these approaches do not utilize KG information.
Neural-based knowledge representations have been proposed
to encode both entities and relationships in a low-dimensional
space where new facts can be found in (Bordes et al., 2013; Lin
et al., 2015). While traditional methods often deal with KGs
without node types, in many real world data, entities have
different semantic types. Recent methods deal with
heterogeneous knowledge graphs with different types of nodes
(Schlichtkrull et al., 2018; Wang et al., 2019). More importantly,
neural models can be used to perform learning of text and
knowledge within a unified semantic space to more accurately
complete the KG (Han et al., 2016).

Representing text information in a vector space has also
progressed rapidly. BERT (Bidirectional Encoder
Representation from Transformers) (Devlin et al., 2019) is a
pre-training model for NLP developed by researchers at Google
AI Language. By providing the state-of-the-art findings in a wide
range of NLP problems, including question answering and
natural language inference, it has created a stir in the artificial
intelligence community. The main technological innovation of
BERT is to apply Transformer’s bidirectional modelling using
self-attention for language modelling. Language models have
traditionally only been able to read text input sequentially,
either left-to-right or right-to-left, and they could not do both
at the same time. BERT is distinct because it is built to read all
together in both directions. This capability is recognized as
bidirectionality, allowed by the invention of Transformers. Its
purpose is to create a model of the language by pre-training the
model on a large-scale text data. This gives it exceptional
precision and efficiency on smaller data sets, addressing a
major problem in the NLP and an highly expressive way to
represent texts.

Nowadays, there has been a lot of interest in jointly learning
KG and embedding textual information. However, traditional KG
models based on representation learning only use structural
information embedded in a particular KG. Plain text textual
information, on the other hand, provides a wealth of semantic
and contextual information that can contribute to the clarity and
completion of entity representations and relationship
representation of a given KG. Therefore, textual information
can be seen as an effective supplement to the completed task
of the KG. In order to explore the informative semantic signals of
plain text, there has recently been a great deal of interest in
learning together the embeddings of KG and text information in
(Toutanova et al., 2015). Moreover, the researchers provided a
text-enhanced KG representation model that utilized textual
information to enhance the knowledge representations (Wang
et al., 2020).

The pharmaceutical field is a good target of applying such text-
enhanced KG models. Side effects impose a financial burden on

the health-care system due to additional hospitalization,
morbidity, mortality, and the cost of health care utilization.
The occasional drug-drug interactions (DDIs) caused by the
co-prescribing of a drug with another drug can cause
undesired effects other than its major pharmacological effects
(Abubakar et al., 2015). The significant number of drug side
effects (about 3–26%) that lead to hospitalization are due to
unintended DDIs in (Dechanont et al., 2014). Patient groups,
such as the elderly and cancer patients are more likely to take
multiple medications at the same time, which is increasing the
risk of DDIs (Riechelmann et al., 2007; Doubova et al., 2007).
Current approaches to identifying DDIs, such as safety
investigations during drug development and post-approval
marketing monitoring, provide an important opportunity to
identify potential security issues, but cannot provide complete
to all possible DDIs in (Percha and Altman, 2013). Therefore,
drug discovery researchers and health professionals may not be
fully aware of dangerous DDIs. Predicting potential DDIs can
help reduce unexpected drug reactions and drug development
costs and improve the drug design process. Therefore, there is a
clear need for automated methods for predicting DDIs. Several
efforts have been made to automatically collect DDI information
from biomedical literature using text mining tools in (Zhao et al.,
2016; Simon et al., 2019; Asada et al., 2020; Wu et al., 2020). They
are not enough to predict potential DDIs and we need a way to
predict such potential DDIs.

Methods for computational drug repurposing and drug
discovery include chemoinformatics-based methods, network-
based methods, and data- or text-mining-based methods.
Some approaches to drug repurposing rely on data- and text-
mining and are based on identification of patterns in databases or
natural language text to predict novel associations between drugs
and targets or drugs and diseases (Andronis et al., 2011;
Sheikhalishahi et al., 2019; Wang et al., 2021). Since drug
interactions are widely published in publications, medical
literature is the best source for detecting them. Information
Extraction (IE) can be very useful in the pharmaceutical
industry, allowing for the detection and extraction of specific
data on DDIs and offering a fun way for health care practitioners
to spend less time reading the literature. The aim of this work is to
create a common structure for evaluating knowledge extraction
techniques used in biomedical texts for recognizing
pharmacological substances and detecting DDIs, which
motivates our present study.

As the knowledge graph grows, many of the world’s leading
researchers have succeeded in obtaining information from vast
medical databases and creating the largest heterogeneous graphs
that reflect the clinical realities of drugs and diseases. For
example, the DrugBank (Law et al., 2014) is a rich source of
medical information. This includes a wide range of organizations
(drugs, pharmaceutical targets, chemistry, etc.) and relationships
(such as enzyme pathways, DDIs, etc.). Recently, researchers
designed for speed, efficiency, and robustness through the use
of a graph database of an ICD-9 ontology (Schriml et al., 2012)
and refers to the knowledge base of human disease and can be
used to classify a patient’s diagnosis. Using a well-structured
clinical knowledge graph with an EMR-based clinical
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prescription system, the restructured system provides the right
medications for specialized patients, as well as alerts of potential
side effects and serious DDIs. To the best of authors knowledge,
the heterogeneous pharmaceutical knowledge-graph with textual
information have not been studied yet.

Based on the above motivation, this paper investigates a
heterogeneous pharmaceutical knowledge-graph containing
textual information constructed from several databases. We
construct the heterogeneous entity items consisting of drug,
protein, category, pathway, and Anatomical Therapeutic
Chemical (ATC) code, and relations among them, which
include category, ATC, pathway, interact, target, enzyme,
carrier, and transporter. We compare three methods to
incorporate text information in KG embedding training with
representing text with BERT. We evaluate the resulting node and
edge embeddings by the link prediction task and verify the
usefulness of using text information in KG embedding
training. The study of KG completion is roughly divided into
two types: a study in which the link prediction task is performed
by using score functions such as TransE (Bordes et al., 2013),
DistMult (Yang et al., 2014), and a study in which Graph
Convolutional Networks (Kipf and Welling, 2017), etc, are
applied to the whole KG, and the node classification task is
performed. In this study, we focus on the link prediction task and
investigate the usefulness of text information in scoring function-
based link prediction tasks.

Our contributions are summarized as follows:

• We propose a heterogeneous knowledge graph with textual
information (called PharmaHKG) in the drug domain. This
can be used to develop and evaluate heterogeneous
knowledge embedding methods.

• We propose three methods to incorporate text information
into KG embedding models.

• We evaluate and compare the combinations of four KG
embeddings models and three methods to integrate text
information on the link prediction task in the proposed
knowledge graph, and we show there is no single method
that can perform best for different relations and the best
combination depends on the relation type.

2 MATERIALS AND METHODS

In this section, we first introduce a heterogeneous
pharmaceutical knowledge graph PharmaHKG that is
constructed in this paper. We then explain the definition of
KG and the learning method of embeddings in KG. We finally
explain our proposed method that effectively uses text
information for KG representation learning.

2.1 Heterogeneous Pharmaceutical
Knowledge Graph with Textual Information
We construct a heterogeneous pharmaceutical knowledge
graph with textual information from DrugBank (Wishart
et al., 2017) and its relating data sources. DrugBank is one

of the rich drug databases. It contains several different types of
nodes, which can be a good source for a heterogeneous
knowledge graph. The nodes are related to several textual
information in DrugBank and their linked entries in several
other data sources such as UniProtKG (Consortium, 2018),
Small Molecule Pathway Database (SMPDB) (Jewison et al.,
2014) and medical thesaurus Medical Subject Headings
(MeSH). The existence of such textual information fits our
objective to evaluate the utility of textual information in
knowledge graph representation. We illustrate the KG and
the related data sources in Figure 1. In this section, we first
explain the nodes and relations in the KG and then explain the
textual information.

2.1.1 Heterogeneous Pharmaceutical Knowledge
Graph
We construct a KG consisting of five different types of
heterogeneous items, i.e., drug, protein, pathway, category, and
ATC code, from different databases and thesaurus. The statistics
of the number of nodes is shown in Table 1.

• Drug: We extract information of drugs from DrugBank
(Wishart et al., 2017). More than 10,000 drugs are registered
in DrugBank, and various types of information such as drug
names, descriptions, molecular structures and experimental
properties are registered.

• Protein: We extract the information of proteins from
UniProtKG (Consortium, 2018). UniProtKG consists of
Swiss-Prot which is manually annotated and reviewed
and TrEMBL which is automatically annotated and not
reviewed, and we use Swiss-Prot knowledgebase.

• Pathway: We extract information of pathways from Small
Molecule Pathway Database (SMPDB) (Jewison et al.,
2014). SMPDB is an interactive, visual database
containing more than 30,000 small molecule pathway
found in humans.

• Category: We extract information of drug categories from
medical thesaurus Medical Subject Headings (MeSH)
(Lipscomb, 2000). Each drug recorded in DrugBank has
several hypernymy categorical classes and these classes have
MeSH term ID. As an example, a drug Morphine has
categories such as Alkaloids (MeSH ID:D000470),
Anesthetics (MeSH ID:D018681), and the detailed
information can be obtained by referring to MeSH.

• ATC: Anatomical Therapeutic Chemical (ATC)
classification system also has categorical information of
drugs. In the ATC classification system, drugs are divided
into different groups according to the organ or system on
which they act and their therapeutic, pharmacological, and
chemical properties. Drugs are classified in groups at five
different levels. The drugs are divided into fourteen main
groups (first level), with pharmacological or therapeutic
subgroups (second level). The third and fourth levels are
chemical/pharmacological/theraperutic subgroups and the
fifth level is the chemical substance. For example, a drug
“Metformin” is classified into “A: Alimentary tract and
metabolism” (first level), “A10: Drugs used in diabetes”
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(second level), “A10B: Blood glucose lowering drugs, excl.
insulins” (third level), “A10BA: Biguanides” (fourth level)
and “A10BA02: metformin” (fifth level).

Five different types of nodes are connected by the following
eight types of relations: category, ATC, pathway, interact, target,
enzyme, carrier, and transporter. The statistics of the KG edges for
each relation type is shown in Table 2. We extract the relation
triples from DrugBank.

Drug nodes andMeSH categorical terms are linked by category
relation.

• category: This relation type indicates the MeSH category of
drugs. These relationship indicates that the drug is classified
into the therapeutic category or the general category (anti-
convulseant, antibacterial, etc.) defined by MeSH. These
relationship are registered by the manual search of

DrugBank developers. These relationship indicates that
the drug is classified into the therapeutic category or the
general category (anti-convulseant, antibacterial, etc.)
defined by MeSH. These relationship are registered by
the manual search of DrugBank developers.

Drug nodes and ATC classification system codes are linked by
ATC relation. In order to incorporate hierarchical information into
the KG, we link ATC codes to ATC codes byATChypernym relation.
ATC codes are linked to the next higher level codes with this relation.
We create relational triples such as A10BA—ATChypernym—A10B,
N02—ATChypernym—N by linking the ATC code of the next
higher level. Since this relation is apparent from the surface

TABLE 1 | Statistics of heterogeneous pharmaceutical KG entities.

Entity type #

Drug (DrugBank-ID) 11,516
Protein (Uniprot-ID) 5,339
Pathway (SMPDB-ID) 874
Category (MESH-ID) 2,166
ATC (ATC-code) 1,093
Total 20,988

TABLE 2 | Statistics of heterogeneous pharmaceutical KG edges for each
relation type.

Relation type All Train Valid Test

Category 60,459 54,419 3,020 3,020
ATC 16,341 14,711 815 815
Pathway 18,707 16,847 930 920
Interact 2,682,142 2,413,932 134,105 134,105
Target 18,467 16,627 920 920
Enzyme 5,206 4,686 260 260
Carrier 815 735 40 40
Transporter 3,093 2,793 150 150
Total 2,750,228 2,525,829 140,240 140,240

FIGURE 1 | Illustration of the heterogeneous pharmaceutical knowledge graph.
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strings of ATC codes, we do not consider this relation for link
prediction.

• ATC: Drugs are linked to any level of ATC codes with this
relation. InDrugBank database, drug elementsmay have one or
more ATC-code elements, e.g., drugMorphine four ATC codes
(A07DA52, N02AA51, N02AA01 and N02AG01), and each
ATC-code element has child elements. All these child entities
and the drug entity are connected by the ATC relation.

Drug nodes and protein nodes are also connected with
pathways.

• pathway: This relation type indicates a drug or protein is
included in a pathway. When the drug is involved in
metabolic, disease, and biological pathways as identified
by the SMPDB, the drug entity and the pathway entity is
connected by the pathway relation. Also, when the enzyme
protein is involved in the same pathways, the protein entity
and the pathway entity are connected by the relation.

Drug nodes can be connected by a relation interact.

• interact: A triple of this relation type indicates that the drug pair
has a DDI. When concomitant use of the pair of drugs will
affect its activity or result in adverse effects, these two drug
entities are connected by interact relation. These interactions
may be synergistic or antagonistic depending on the
physiological effects and mechanism of action of each drug.

Drug nodes and protein nodes can be linked by target, enzyme,
carrier, or transporter relation.

• target: A protein, macromolecule, nucleic acid, or small
molecule to which a given drug bids, resulting in an
alteration of the normal function of the bound molecule
and a desirable therapeutic effect. Drug targets are most
commonly proteins such as enzymes, ion channels, and
receptors.

• enzyme: A protein which catalyzes chemical reactions
involving a given drug (substrate). Most drugs are
metabolized by the Cytochrome P450 enzymes.

• carrier: A secreted protein which binds to drugs, carrying
them to cell transporters, where they are moved into the cell.
Drug carriers may be used in drug design to increase the
effectiveness of drug delivery to the target sites of
pharmacological actions.

• transporter: A membrane bound protein which shuttles
ions, small molecules, or macromolecules across
membranes, into cells or out of cells.

2.1.2 Textual Information of Knowledge Graph
Here we explain the text information relating to each type of
node.

• Drug: Drugs are assigned a unique DrugBank-id. We use
various text information contained in the DrugBank xml

file. “Name,” to heading of the drug and standard name of
the drug as provided by the drug manufacturer,
“Description,” which describes the general facts,
composition and/or preparation of the drug, “Indication”
is a description or common names of diseases that the drug
is used to treat, “Pharmacodynamics” is a description of
how the drug works at a clinical or physiological level,
“Mechanism of Action” is a description of how the drug
works or what it binds to at a molecular level, “Metabolism”
is a mechanism by which or organ location where the drug is
neutralized, and “Synonyms” indicates alternate drug names.

• Protein: Protein targets of drug actions, enzymes that are
inhibited/induced or involved in metabolism, and carrier or
transporter proteins involved in movement of the drug
across biological membranes. Each of targets, enzymes,
carriers, transporters have unique UniProt-id. We refer to
UniProt-id and obtained the following types of textual
information, functions, miscellaneous description, short
name, alternative names, gene names.

• Pathway: We extract pathway relations from DrugBank
database. Each pathway has a unique ID defined by The
Small Molecule Pathway Database (SMPDB) (Jewison et al.,
2014). “Name” and “Description” of the pathway are
registered in SMPDB.

• Category: Drug categories are classified according the
medical thesaurus MeSH. These textual information are
registered in MeSH: “Name” is a definition word,
“ScopeNote” is a term description, “Entry terms” is a
synonym.

• ATC: Drugs are classified in a hierarchy with five different
levels by WHO drug classification system (ATC) identifiers.
Each level of ATC classification code has a name, which is
defined as the international nonproprietary name (INN) or
to the name of the ATC level. We use these names given to
ATC codes as textual information.

2.2 Learning KnowledgeGraph Embeddings
2.2.1 Knowledge Graph Definition
We treat a heterogeneous knowledge graph (KG) as a directed
graph whose nodes and edges have semantic types. The semantic
types are assigned to different types of nodes (drug, protein,
pathway, etc.) and relations (target, carrier, etc.) to represent
detailed information of nodes and relations. A KG is defined as a
directed graph G � (E,R, F), where the nodes E denotes the set of
typed entities, R refers to the set of typed relations and F
represents the set of facts (i.e., directed edges). The nodes are
often called entities. The facts or directed edges are often called
triplets and are represented as a (h, r, t) tuple, when h is the head
entity, t is the tail entity and r is the relation from the head entity
to the tail entity.

2.2.2 Scoring Functions
The methods that represent KG by using embeddings of entities
and relations can catch the structure information of the KG and
provide structure-based embeddings. Entities and relations are
directly represented as the real-valued vector, matrix or complex-
valued vectors. Scoring function f (h, r, t) is defined on each triple
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(h, r, t) to access the validity of triples. Triples observed in the KG
tend to have higher scores than those that have not been observed.
We employ the following four scoring functions.

2.2.2.1 TransE
TransE (Bordes et al., 2013) is a representative translational
distance model that represents entities and relations as vectors
in the same semantic space of dimension Rd where d is the
dimension of the target space with reduced dimension. A fact in
the source space is represented as a triplet (h, r, t). The relation
ship is interpreted as a translation vector so that the embedded
entities are connected by relation r have a short distance. In terms
of vector computation, it could mean adding a head to a relation
should we set the norm to 2, so the scoring function is
computed as:

f (h, r, t) � −|h + r − t|2. (1)

2.2.2.2 DistMult
DistMult (Yang et al., 2014) is a method that speeds up the
RESCAL model (Nickel et al., 2011) by considering only
symmetric relations and restricting Mr from a general
asymmetric r × r matrix to a diagonal square matrix, thus
reducing the number of parameters per relation to O(d).
DistMult scoring function is computed as:

f (h, r, t) � hTdiag(r)t � ∑
d−1

i�0
[h]i[r]i[t]i. (2)

2.2.2.3 ComplEx
ComplEx (Trouillon et al., 2016) uses complex vector operations
to consider both symmetric and asymmetric relation. The scoring
function for complex entity and relation vectors h, r, and t ∈ Cd is
computed as:

f (h, r, t) � Real(hTdiag(r)t), (3)

where Real extracts real part of the complex vectors.

2.2.2.4 SimplE
SimplE (Kazemi and Poole, 2018) considers two vectors h, t ∈ Rd

as the head and tail embeddings for each entity and two vectors
vr, vr−1 ∈ Rd for each relation r. The similarity function of SimplE
for a triple (h, r, t) is defined as:

f (h, r, t) � 1
2
(〈hh, vr , tt〉 + 〈ht , vr−1 , th〉). (4)

We chose the above four score functions because these are
widely used and cover the standard ideas for scoring relational
triples: distance-based, bilinear-based and complex number-
based.

2.2.3 Negative Sampling and Loss Functions
Generally, to train a KG embedding, the models apply a
variation of negative sampling by corrupting triplets (h, r, t).
They corrupt either h, or t by sampling from set of head or tail

entities for heads and tails, respectively. The corrupted triples
can be either of (h′, r, t) or (h, r, t′), where h′ and t′ are the
negative samples. We acknowledge that due to the
incompleteness of the current KG, the unregistered and
potentially positive relational triples can be negative
examples: this problem is common to most studies that
tackle with the link prediction task. To avoid easy negative
samples and utilize the entity type information, we restricted the
node types of negative samples depending on r. The logistic loss
and the margin based pairwise ranking loss are commonly used
for training. The logistic loss returns −1 for negative samples
and +1 for the positive samples. D+ and D− are negative and
positive data, y � ± 1 is the label for positive and negative
triples, and f (·) is the scoring function. Model parameters are
trained by minimizing the negative log-likelihood of the logistic
model with L2 regularization on the parameters Θ of the model;

LKG ∑
(h,r,t) ∈ D+∪D−

log(1 + exp(y × f (h, r, t))) + λ‖Θ‖22. (5)

The margin based pairwise ranking loss minimizes the rank
for positive triples. Ranking loss is given by:

LKG � ∑
(h,r,t) ∈ D+

∑
(h′ ,r′ ,t′) ∈ D−

max(0, c − f (h, r, t) + f (h′, r′, t′)) + λ‖Θ‖22. (6)

2.3 Utilizing Textual Information
In this study, we verify the usefulness of using text information in
KG embedding training by three methods explained below.
Figure 2 shows the overview of the three methods that utilize
text information for KG embedding representation. We employ
Bidirectional encoder representation from transformer (BERT)
(Devlin et al., 2019), which is an extremely high-performance
contextual language representation model, in encoding text.
BERT is pre-trained with the masked language model
objective and next sentence prediction task objective on large
unlabeled corpora, and fine-tuned BERT towards the target task
achieved the state-of-the-art performance.

2.3.1 Initializing Node Embeddings
Usually, the initial value of embedding for each node in KG is
given randomly in the existing methods. As shown in Figure 2A,
first, we select which type of text to use, e.g., drug nodes have text
types such as Name, Description and Synonyms. We then take
the selected text as the input of the text encoder model BERT and
the <CLS> embeddings of the BERT as the initial value of the
node embeddings. For the methods that use two embeddings for
an entity, i.e., ComplEx (real and imaginary embeddings) and
SimplE (head and tail embeddings), we initialize both vectors
with the <CLS> embeddings. When multiple text items are
registered (e.g., the drug Acetaminophen has multiple
synonyms, “Acenol,” “APAP,” “Paracetamol”), we connect
these terms with a comma and take it as an input for BERT.
We call this the Initialization method. The motivation of the
Initializationmethod is to help representing node embeddings by
using the BERT embeddings that pre-trained on a large amount
of biomedical literature. We aim to predict correct relational
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triples from textual information by BERT even if the structural
information of the graph is insufficient.

2.3.2 Aligning Entity Embeddings and Textual
Embeddings
The aligning method aims to gradually project KG embeddings
into textual embeddings space by adding the regularization term
to loss function.

La � λa‖VKG − Vtext‖2, (7)

L � LKG + La, (8)

where λa is a regularization coefficient of alignment,VKG andVtext

are vector lookup table matrices of KG and textual embeddings,
respectively. Similarly to the initialization method, the textual
embeddings are obtained from BERT and when there are two
embeddings for an entity, we regularized both vectors. We call
this the Alignment method. The motivation of the Alignment
method is that as the updating the node representation
progresses, the two spaces of the text embeddings and the
graph structural embeddings are projected into the same
space, and finally we obtain more suitable node representations.

2.3.3 Augmenting Knowledge Graph Embeddings
In this method, as shown in Figure 2C, we augment the KG
structure by adding relation triples based on the text information
of the node. The node’s own embedding is initialized with textual
embeddings of Name. The embedding value of linked nodes is
initialized with the BERT output. Moreover, since ATC classification
codes have a hierarchical structure as shown in Figure 2C, after
extending the link from the drug node to create new categorical
nodes, further linking is made between the categorical nodes. We
construct a graph that can consider both text information and the
hierarchical information. We call this the Augmentation method.

The motivation of the Augmentationmethod is to consider multiple
text information of one entity at once.

3 RESULTS AND DISCUSSIONS

3.1 Experimental Settings
3.1.1 Constructing Heterogeneous Knowledge Graph
with Textual Information
We show the overview of constructing a heterogeneous KG with
textual information in Figure 1. We downloaded four publicly
available databases, DrugBank, UniProt, MeSH term descriptions
and SMPDB, and first we processed DrugBank and extracted
relations between the drug and other heterogeneous items. Here,
the text information of each drug are also extracted and associated
with the entity ID in the KG. Next, for entities other than drugs, we
used the link ID of DrugBank to refer to other databases and
associated the text information with entity ID in the KG. As a
result, five types of entities (i.e., drug, protein, pathway, category, and
ATC) are included in the constructed KG. Between entities, there are
relation links: category, ATC, pathway, interact, target, enzyme,
carrier, and transporter. The total number of relational triples is
about 2.7M, and as shown in Table 2, the number of drug-interact-
drug triples is large and accounts for the majority of them. Note that
only the relation drug-interact-drug is symmetric, and the other
relations are asymmetric, that is, when there is a DrugA-interact-
DrugB relation triple in the KG, there is also a DrugB-interact-DrugA
triple.

3.1.2 Encoding Text Information
We employed PubMedBERT (Gu et al., 2020) to encode textual
information into fixed-length real-valued embeddings.
PubMedBERT is a model that uses 21B words of PubMed corpus
for pre-training, and it shows high performance in several NLP tasks

FIGURE 2 | Overview of methods: (A) Initializing node embeddings (Initialization), (B) Aligning entity embeddings and textual embeddings (Alignment), and (C)
Augmenting KG embeddings (Augmentation).
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in the biomedical domain. In this paper, we used texts such as names
and descriptions as inputs for pre-trained PubMedBERT, and used
the output <CLS> token embedding as a textual representation. We
set the maximum length of the input subword to 512.

3.1.3 Knowledge Graph Embedding Training Settings
We employed four knowledge graph embedding scoring
functions as explained in Section 2.2.2. For each of the
scoring functions, we applied three methods to train
embedding using textual information; the initialization,
aligning and the augmenting methods.

We show the ratio of nodes that have each textual information
in Table 3. The node has the text information of Name in any
database. In UniProt database, most proteins have Description
and Synonyms texts information, and many categorical terms in
MeSH also have Description and Synonyms. On the other hand,
some drugs in DrugBank do not have some text information. In
the Initialization method and Alignment method, one text type is
selected and the embeddings of textual information are used.1

When the node does not have the text information, the text of
Name is used instead.

Drugs and proteins have textual information that other nodes
do not have, and their coverage is as follows: 32.61% drugs have
Indication information, 24.60% drugs have Pharmacodynamics
information, 18.40% drugs haveMetabolism information, 30.52%
drugs have Mechanism-of-action information and 96.05% of
proteins have Gene-name. These text items are linked to the
KG nodes in the Augmentation method, so the Augmentation
method can utilize all text information.

We prepared the random initialization method without textual
information (No Text) as the baseline. In this setting, embeddings
of entities and relations are initialized with the random values

drawn from a uniform distribution between ± (c + ϵ
d), where

c � 12, ϵ � 2 and d is a dimension of KG embeddings.

3.1.4 Task Setting
We evaluated the node and edge embeddings by the link prediction
task. Link prediction is a task to search an entity which probably
constructs a new fact with another given entity and a specific
relation. For KGs are always imperfect, link prediction aims to

discover and add missing knowledge into it. With the existing
relations and entity, candidate entities are selected to form a new
fact. We replace the head or tail of the triples in the validation or
test data set with other entities that have the same entity types and
calculate the scores of all created negative triples in the KG.We sort
the calculated positive triple score and the scores of all negative
triples and evaluate the rank of the positive triple score. Mean
reciprocal rank (MRR) is used as evaluation metric. When we
create negative example triples, if there are correct triples that exist
in the KG, we excluded such triples from the ranking. This
evaluation setting has been adopted in many existing studies as
a filtered setting (Bordes et al., 2013; Trouillon et al., 2016; Kazemi
and Poole, 2018). In addition, similar to the negative sampling
setting during training, given the relational edge label, the node
types of head or tail are trivial, so we also excluded triples with
inappropriate combinations of edge and node types.

We divided the extracted approximately 2.7 M relational
triples into 90:5:5 as train, valid and test data sets. In the
augmentation method, relational triples created from textual
nodes are added to the train data set.

3.1.5 Hyper-Parameter Settings
We tuned hyper-parameters by evaluating the MRR score on
validation set for each model. We choose hyper-parameters with
following values: regularization coefficient
λ ∈ {10− 3, 10− 6, 10− 9, 10− 12, 0}, alignment regularization
coefficient λa ∈ {10− 3, 10− 6, 10− 9, 10− 12}, initial learning rate
α0 ∈ {0.5, 0.25, 0.1, 0.05, 0.025, 0.01}, For loss function, we
adopted pair-wise hinge loss function for TransE and DistMult
and logistic loss function for ComplEx and SimplE according to
the setting of the original papers. The KG embedding dimension
is set to 768 in order to match the dimension of the output of
BERT embedding. For all models, we set the batch size for 4,096
and the number of epochs for 100.

3.1.6 Implementation Details
We implemented all the models using the PyTorch library (Paszke
et al., 2019), the DGL-KE library (Zheng et al., 2020) for knowledge
graph embeddings, and the transformers library (Wolf et al., 2020)
for BERT. We modified the original DGL-KE implementation in
the following point. While DGL-KE samples negative examples
from all combinations of entity pairs, our model excludes
impossible negative instances by restricting the types of entities
by the relations (e.g., a drug-interact-category triple is not created
for negative samples) as explained in Section 2.2.3.

3.2 RESULTS

Table 4 shows the comparison of link prediction MRR for each
relation edge type, themacro-averagedMRR.While amicro-average
MRR is calculated by directly calculating theMRR for all instances in
the KG without considering the types, a macro-averaged MRR is
calculated by first calculating theMRR for each type and then taking
the average of the MRR scores. Since the constructed triples are
highly imbalanced and the proportion of interact triples is large,
models with high prediction performance of relation interact can

TABLE 3 | The percentage of nodes that have each type of text.

Name Description Synonyms (%)

Drug 100 53.72 48.50
Protein 100 96.17 100
Category 100 94.01 91.42
ATC 100 — —

Pathway 100 100 —

Nodes in all databases have a Name text information. While many proteins and
categories have Description information and Synonyms information, the percentage of
drugs that have these information is low.

1We leave the combination of different text information in these methods for
future work
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result in high micro-averaged MRR. We report the macro-averaged
MRR to avoid the effect of this imbalance. For each scoring function,
we showed the comparison of performance between themodels with
and without text information.

When we used TransE algorithm, in the category types, the
textual models improved MRR but in other relation triple types,
the MRR decreased and averaged MRR also decreased. Of the
three methods that used text, the Initialization by synonyms
embeddings method showed the highest macro-averaged MRR.

When we used the DistMult scoring function, the MRR
decreased in interact and pathway, but on the categorical
relation category and ATC, MRR was improved when we
adopted the Initialization method. Initialization methods that
use Name information improved the MRR of target, enzyme,
carrier and transporter, which are the relations between drugs and
proteins. The averaged MRR was lower than that of the models
without textual information.

When we used ComplEx scoring function, The MRR
decreased in the interact and pathway relation, while the MRR
increased on the categorical relations and relations between drugs
and proteins, these are the same tendency as the DistMult
algorithm. Especially in the category relation, the ComplEx

TABLE 4 | Comparison of MRR performance for each method.

No text Initialization Alignment Augmentation

— Name Desc Syn Name Desc Syn —

TransE
Category 0.1978 0.2117 0.2120 0.2231 0.2136 0.2059 0.1913 0.2239
ATC 0.2929 0.2695 0.2571 0.2495 0.3000 0.2973 0.2872 0.2571
Pathway 0.6741 0.5674 0.5792 0.5793 0.6694 0.6711 0.6713 0.5473
Interact 0.3109 0.2867 0.2845 0.2843 0.3103 0.3106 0.3108 0.2644
Target 0.0802 0.0748 0.0811 0.0808 0.0808 0.0780 0.0821 0.0889
Enzyme 0.3262 0.3067 0.3314 0.3090 0.3474 0.3564 0.3590 0.2926
Carrier 0.4155 0.3078 0.2843 0.3679 0.4037 0.4044 0.4010 0.3459
Transporter 0.3576 0.3194 0.3104 0.3182 0.3444 0.3308 0.3391 0.2866
Avg. (macro) 0.3319 0.2930 0.2950 0.3015 0.3337 0.3318 0.3302 0.2883

DistMult
Category 0.2539 0.2876 0.2797 0.2753 0.2679 0.2661 0.2586 0.2649
ATC 0.2428 0.2674 0.2899 0.2639 0.2612 0.2617 0.2698 0.2904
Pathway 0.6792 0.5424 0.5542 0.6002 0.6524 0.6711 0.6615 0.4997
Interact 0.7730 0.6338 0.5895 0.6302 0.7911 0.7868 0.7990 0.6113
Target 0.0738 0.0866 0.0864 0.0947 0.0778 0.0758 0.0734 0.1049
Enzyme 0.2501 0.2516 0.2358 0.2847 0.2247 0.2334 0.2140 0.2183
Carrier 0.2023 0.2254 0.1640 0.1622 0.1369 0.1311 0.1649 0.2134
transporter 0.2293 0.2703 0.1840 0.2190 0.1969 0.1939 0.1708 0.2062
Avg. (macro) 0.3380 0.3206 0.2979 0.3162 0.3261 0.3274 0.3265 0.3011

ComplEx
Category 0.0905 0.3455 0.3495 0.3386 0.3302 0.0577 0.0611 0.3420
ATC 0.3326 0.3463 0.3623 0.3485 0.3271 0.3425 0.3407 0.3652
Pathway 0.6956 0.6856 0.7051 0.7157 0.7220 0.6963 0.7323 0.6820
Interact 0.8678 0.7632 0.7166 0.7802 0.8578 0.8189 0.8497 0.8230
Target 0.0496 0.1116 0.1093 0.1153 0.0859 0.0640 0.0740 0.1243
Enzyme 0.2103 0.2256 0.2512 0.2538 0.2245 0.1907 0.2097 0.2073
Carrier 0.1533 0.1557 0.1817 0.1423 0.0994 0.1750 0.1462 0.1934
transporter 0.1942 0.3119 0.2667 0.2593 0.2151 0.2076 0.2362 0.2801
Avg. (macro) 0.3242 0.3681 0.3678 0.3692 0.3577 0.3190 0.3312 0.3771

SimplE
Category 0.0461 0.3591 0.3536 0.3668 0.0520 0.3263 0.2619 0.3367
ATC 0.3278 0.3820 0.3617 0.3732 0.3644 0.3410 0.3425 0.3475
Pathway 0.7513 0.7164 0.7299 0.7180 0.7336 0.7428 0.7448 0.7189
Interact 0.6215 0.7229 0.7253 0.7338 0.6488 0.6242 0.6602 0.7230
Target 0.0815 0.1128 0.1169 0.1171 0.0971 0.0918 0.0873 0.1163
Enzyme 0.1903 0.2442 0.2143 0.2555 0.2499 0.2031 0.1977 0.2304
Carrier 0.1358 0.2544 0.2441 0.2526 0.1881 0.1766 0.1266 0.1493
transporter 0.2242 0.2718 0.2189 0.2543 0.2396 0.2042 0.2417 0.2173
Avg. (macro) 0.2973 0.3829 0.3705 0.3839 0.3216 0.3387 0.3328 0.3549

We summarized the MRR for each relational triple and calculated the macro-averaged MRR. The highest score for each node row is shown in bold.

TABLE 5 | Summary of the best settings for each relation.

MRR Method Text information

Category 0.3668 SimplE Initialization + Synonyms
ATC 0.3820 SimplE Initialization + Name
Pathway 0.7513 SimplE No text
Interact 0.8678 ComplEx No text
Target 0.1243 ComplEx Augmentation
Enzyme 0.3590 TransE Alignment + Synonyms
Carrier 0.4155 TransE No text
Transporter 0.3576 TransE No text
Avg. (Macro) 0.3839 SimplE Initialization + Synonyms
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scoring function model without text information has a much
lower MRR than TransE or DistMult-based models, but the
performance was improved by using text information. The
Initialization and Augmentation methods show higher macro-
averaged MRR than the model without text information.

When we used SimplE scoring function, the model without
text information showed the lowest macro-averaged MRR,
however, the Initialization model that used the Synonyms
information showed a higher MRR than the model without
text information for all relation types except pathway, and
showed the highest macro-averaged MRR in all models. These
results showed that it is effective to utilize text information during
updating KG embeddings under the SimplE scoring function.

These results show that the utility of textual information for
learning KG embeddings depends on the scoring functions and
relation types. The textual information is always useful in
predicting categorical relations such as category and ATC,
while the text information can be harmful for other relations
and the utility depends on the scoring functions. We summarized
the best setting for each relation type in Table 5. This shows there
is no best single embedding method. The best method to
incorporate text information including No Text and the most
useful text type also depend on the relation types.

3.3 DISCUSSIONS

3.1 Experimental Settings
3.3.1 Analysis of the Data Imbalance of the
Constructed Knowledge Graph
Why some models that use text information show lower
performance in interact and pathway relation and show higher
performance in categorical relation and drug-protein relation? In
order to analyze these tendencies, we investigated the frequency
of nodes in the constructed KG. Figure 3 shows the distribution
of the frequencies of category nodes that have category link and
drug nodes that have interact link in train triples. Compared with

the distribution of drug nodes frequency, the frequency
distribution of category nodes is extremely imbalanced. The
distribution shows that a small part of category nodes have
the large number of triples between drugs, and many other
category nodes have few triples, thus it could be difficult to
predict triples that contain these nodes. Even if it is difficult to
train the representation of nodes from the structural information
of KG, it may be possible to predict the correct triples by utilizing
the textual embeddings encoded by pre-trained BERT.

3.3.2 Ablation Study of Augmentation Method
In the Augmentation method, multiple text items can be
considered at the same time. Table 6 shows the results of
removing each text item. Here, description and synonyms are
text items that heterogeneous entities have in common, indication,
pharmacodynamics, mechanism-of-action and metabolism are
text items that only drug entities have, and gene-name is that
only protein entities have. From the Table 6, it can be seen that the
averaged MRR becomes lower regardless of which text items are
removed, and these results show that all text items are effective for
the link prediction task. In addition, the averaged MRR drops
greatly when we exclude description or synonyms, these are the
text items that many entities have. The averaged MRR also drops
greatly when text information with high coverage is excluded, such
as metabolism-of-action.

FIGURE 3 | The distribution of the frequency of nodes in train data set. The frequencies of category nodes linked by category relation are highly imbalanced, while
the frequencies of drug nodes linked by interact relation are less imbalanced.

TABLE 6 | Ablation study of text information on Augmentation method (ComplEx
score function).

Averaged MRR

Full text nodes 0.3771
- Description 0.3626
- Synonyms 0.3655
- Indication (drug) 0.3761
- Pharmacodynamics (drug) 0.3727
- Mechanism-of-action (drug) 0.3646
- Metabolism (drug) 0.3689
- Gene-name (protein) 0.3754
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TABLE 7 | Comparison of averaged MRR performance for w/ and w/o entity type filtering.

— No text Initialization Alignment Aug

— — — Name Desc Syn Name Desc Syn —

TransE w/ type filtering 0.3319 0.2930 0.2950 0.3015 0.3337 0.3318 0.3302 0.2883
w/o type filtering 0.2759 0.2373 0.2265 0.2429 0.2738 0.2722 0.2753 0.1932

DistMult w/ type filtering 0.3380 0.3206 0.2979 0.3162 0.3261 0.3274 0.3265 0.3011
w/o type filtering 0.2217 0.2285 0.2423 0.2547 0.2462 0.2219 0.2464 0.1449

ComplEx w/ type filtering 0.3242 0.3681 0.3678 0.3692 0.3577 0.3190 0.3312 0.3771
w/o type filtering 0.2848 0.2906 0.2887 0.2981 0.2931 0.3052 0.3095 0.2373

SimplE w/ type filtering 0.2973 0.3829 0.3705 0.3839 0.3216 0.3387 0.3328 0.3549
w/o type filtering 0.2848 0.2906 0.2887 0.2981 0.2931 0.3052 0.3095 0.2373

TABLE 8 | The content of the text in the examples where the difference between the rank of textual model and the rank of non-textual model is largest for each relation type.
The score function SimplE was used for category, ATC and pathway relation and ComplEx was used for interact relation. The Augmentation model was selected as the
model with textual information. The bold is the mention common to head and tail entities. The Description and Synonyms are partly excerpted due to space limitations.

Examples where textual information is helpful and the gap between ranks is largest for each relation type

(a) Relation: category, textual model rank:1, non-textual model rank:65
Head ID DB13746 (drug entity)

Name Bioallethrin
Desc. Bioallethrin refers to a mixture of two of the allethrin isomers (1R,trans;1R and 1R,trans;1S) in an approximate ratio of 1:1,

where both isomers are active ingredients. A mixture of the two same stereoisomers, but in an approximate ratio of R:S in
1:3, is called esbiothrin.

Syn. Depalléthrine
Tail ID D013237 (category entity)

Name Stereoisomerism
Desc. The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic

arrangement, but differ in their spatial relationships.
Syn. Molecular Stereochemistry, Stereochemistry, Molecular, Stereoisomers, Stereoisomer

(b) Relation: ATC, textual model rank:1, non-textual model rank:25
Head ID DB00369 (drug entity)

Name Cidofovir
Desc. Cidofovir is an injectable antiviral medication employed in the treatment of cytomegalovirus (CMV) retinitis in patients

diagnosed with AIDS.
Syn. CDV, Cidofovir anhydrous, Cidofovirum

Tail ID J05A (ATC entity)
Name DIRECT ACTING ANTIVIRALS
Desc. ATC entity has no description
Syn. ATC entity has no synonyms

Examples where textual information is harmful and the gap between ranks is largest for each relation type
(c) Relation: pathway, textual model rank:25, non-textual model rank:1
Head ID P51589 (protein entity)

Name Cytochrome P450 2J2
Desc. This enzymemetabolizes arachidonic acid predominantly via a NADPH-dependent olefin epoxidation to all four regioisomeric

cis-epoxyeicosatrienoic acids.
Syn. 1.14.14.1, Arachidonic acid epoxygenase, CYPIIJ2

Tail ID SMP0000695 (pathway entity)
Name Etoricoxib Action Pathway
Desc. Etoricoxib (also named as Arcoxia) is a COX-2 selective inhibitor. It can be used to treat fever, pain, swelling, inflammation,

and platelet aggregation.
Syn. pathway entity has no synonyms

(d) Relation: interact, textual model rank:4,119, non-textual model rank:1
Head ID DB08893 (drug entity)

Name Mirabegron
Desc. Mirabegron is a beta-3 adrenergic receptor agonist for the management of overactive bladder. It is an alternative to

antimuscarinic drugs for this indication.
Syn. Mirabegron

Tail ID DB00937 (drug entity)
Name Diethylpropion
Desc. A appetite depressant considered to produce less central nervous system disturbance than most drugs in this therapeutic

category. It is also considered to be among the safest for patients with hypertension.
Syn. alpha-Benzoyltriethylamine, alpha-Diethylaminopropiophenone, Amfepramone
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3.3.3 Effect of Node Type Filtering
As explained in Sections 2.2.3, 3.1.4, 3.1.6, our model filters
impossible negative instances by restricting the types of entities in
the relations. Table 7 shows the effect of the entity type filtering.
Overall, by performing entity type filtering, averaged MRR is
improved. Especially, in the Augmentation method, entity type
filtering is very effective, this is because the Augmentation
method adds textual nodes to the graph and is more likely to
create an inappropriate negative example during negative
sampling.

3.3.4 Analysis of text content
As can be seen from Table 5, textual information acts
harmfully in some relations. In this section, we analyzed the
content of the text to investigate when the text information is
harmful or helpful. Table 8 shows examples of improved or
worsened score ranks on the link prediction task. The
examples are where the difference between the rank of
textual model and the rank of non-textual model is largest,
that is, examples where textual information is most useful or
harmful for each relation type. In addition, we have narrowed
down the cases where the better rank is 1. In example (a), the
highlighted “stereoisomers” in the description of the drug
entity appears in the synonyms of the category entity.
Similarly, in example (b), “antiviral” in the description of
the drug entity appears in the name of the ATC entity. The
description of the drug entity directly mentions the category in
which the drug is included, which is thought to have helped to
predict the link of the categorical relation type.

On the other hand, for the examples where the textual
information is most harmful, in example (c), the description
of protein “Cytochrome P450 2J2” does not directly mention
the “Etoricoxib Action Pathway” pathway. In example (d),
the description of each drug entity mainly describes
the indication of the drug, not the relationship to other
drugs. It is difficult to tell the cause of the poor rank
because multiple factors may be involved, but the
description of the head entity mainly explains the function
and role of the head entity itself, and there is no description
that mentions the relationship with the tail entity. This point
is considered to be one of the causes of the textual information
becoming noise.

4 CONCLUSIONS

We construct a new heterogeneous pharmaceutical knowledge-graph
containing textual information PharmaHKG from several databases.
We compared the combinations of three methods to use textual
information and four scoring functions on the link prediction task.
We found the utility of text information and the best combination for
the link prediction depend on the target relation types. In addition,
when we focus on the averaged MRR for all relation types, a method
that combines SimplE and text information achieved the highest
MRR, and this result showed the usefulness of text information in the
link prediction task in pharmaceutical domain.

As future work, we would like to investigate a better way to
incorporating text information into KG embeddings and consider
other models that utilize heterogeneous graphs. We also plan to
utilize the obtained representations for other tasks.
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