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Islet allograft survival limits the long-term success of islet
transplantation as a potential curative therapy for type 1 diabetes.
A number of factors compromise islet survival, including re-
current diabetes. We investigated whether CD39, an ectonucleo-
tidase that promotes the generation of extracellular adenosine,
would mitigate diabetes in the T cell–mediated multiple low-dose
streptozotocin (MLDS) model. Mice null for CD39 (CD39KO),
wild-type mice (WT), and mice overexpressing CD39 (CD39TG)
were subjected to MLDS. Adoptive transfer experiments were
performed to delineate the efficacy of tissue-restricted overex-
pression of CD39. The role of adenosine signaling was examined
using mutant mice and pharmacological inhibition. The suscepti-
bility to MLDS-induced diabetes was influenced by the level of
expression of CD39. CD39KO mice developed diabetes more rap-
idly and with higher frequency than WT mice. In contrast,
CD39TG mice were protected. CD39 overexpression conferred
protection through the activation of adenosine 2A receptor and
adenosine 2B receptor. Adoptive transfer experiments indicated
that tissue-restricted overexpression of CD39 conferred robust
protection, suggesting that this may be a useful strategy to pro-
tect islet grafts from T cell–mediated injury. Diabetes 62:2026–
2035, 2013

P
ancreas or islet transplantation is a potentially
curative therapy for patients with type 1 diabetes
(T1D), eliminating the need for exogenous insulin
and the inherent risks of life-threatening hyper-

glycemic and hypoglycemic episodes. Unlike the complex
surgery of whole pancreas transplantation, isolated islets
are delivered percutaneously into the portal circulation.
However such transplanted islets face several challenges.
The first is an immediate response, termed the instant
blood-mediated inflammatory reaction (IBMIR), involving
platelet binding, activation of the complement and co-
agulation cascades, and infiltration of islets by monocytes

and neutrophils. Further loss of islets occurs within a day
of transplantation, mediated by activated hepatic natural
killer cells and neutrophils (1). Islets surviving these innate
immune processes are then subject to the alloimmune re-
sponse and recurrent autoimmunity.

Recipients of transplanted islets are patients with T1D
and as such are already primed for islet autoimmunity.
Recurrent autoimmune disease has been demonstrated in
animal models and in humans after either islet or pancre-
atic transplantation (2) and is intertwined with the
alloimmune response. There is some evidence that indi-
viduals who are particularly prone to autoimmunity are
more likely to experience rapid allograft rejection (3).
Further, an increase or re-emergence of islet autoanti-
bodies has been observed despite immunosuppression
(4,5), irrespective of complete human leukocyte antigen
match (6) or mismatch (7).

In animal models, recurrent autoimmune disease
potentiates the immune response, resulting in earlier graft
rejection after intraportal islet transplantation (8). Indeed,
strategies that have been demonstrated to prolong islet al-
lograft survival in chemically induced (high-dose streptozo-
tocin) diabetic recipients have failed to do so in autoimmune
NOD mice (9). These data suggest that recurrent autoim-
munity can destroy islet allografts even in the absence of an
alloimmune response. Although the mechanism of recurrent
autoimmunity is not fully defined, T cells are involved pri-
marily through major histocompatibility complex class II
recognition (10).

We are interested in the role of purinergic catabolism
and adenosine signaling in immune and thrombotic
responses to islet transplantation. CD39 is a membrane-
bound enzyme that hydrolyzes extracellular purinergic
nucleotides, including the platelet agonist ADP. We have
generated mice overexpressing CD39 (CD39TG) from the
H-2Kb promoter, which directs expression to all nucleated
cells. Ubiquitous expression has been demonstrated on
circulating cells by flow cytometry, and throughout the
tissues (including on b-cells) by immunohistochemistry
(11,12). We have previously shown that the overexpression
of CD39 on murine islets attenuated thrombosis when the
islets were mixed with human blood (11), and this ap-
proach has been heralded as a potential anti-IBMIR strat-
egy (13). The objective of this study was to examine the
impact of CD39 overexpression on diabetes induction us-
ing the multiple low-dose streptozotocin (MLDS) model, as
a prelude to investigations using CD39TG islets in trans-
plantation where recurrent diabetes may compromise graft
survival. Although it shares fewer features with human
T1D than the NOD model, we used the MLDS model
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because it is more convenient to investigate the effect of
various genetic modifications and its validity as a model of
T cell–mediated diabetes has recently been confirmed
(14).

The overexpression of CD39 on the islet surface does
not impact glucose homeostasis (11) and thus such islets
would be potentially suitable for transplantation. In addi-
tion to preventing IBMIR, the overexpression of CD39 on
islets may confer additional downstream benefits for islet
grafts attenuating T cell–mediated islet graft loss from re-
current autoimmunity and allograft rejection. The end
product of CD39’s catalytic activity is AMP, and over-
expression of CD39 increases the level of AMP available
for conversion to adenosine (12) by the ecto-enzyme CD73
(15). Extracellular adenosine binds to four specific re-
ceptors (A1R, A2AR, A2BR, and A3R), promoting a range
of effects that are predominantly anti-inflammatory (16).
Studies using CD39KO mice have identified a role for
ectonucleotidase expression in the regulation of organ-
protective adenosine receptor signaling (17). Consistent with
this, mice overexpressing CD39 are protected from renal
ischemia-reperfusion injury (IRI) by an A2AR-dependent
mechanism (18). Kidney isografts from these mice performed
significantly better after prolonged cold storage than control
isografts, indicating that organ-restricted overexpression
of CD39 was sufficient for this protective effect (18).
Adenosine receptor signaling influences the development
of diabetes in nontransplant settings in the NOD and MLDS
models. Activation of adenosine receptors by the non-
specific agonist 59-N-ethylcarboxamidoadenosine (NECA)
ameliorated diabetes in both models (19). In the MLDS
model, A1R and A3R agonists had a modest protective
effect compared with NECA, whereas the A2AR agonist
had no effect. The A2BR antagonist reversed the effect of
NECA, suggesting that A2BR signaling played the pre-
dominant role in regulating MLDS-induced diabetes (19).

In this study, we hypothesized that the level of CD39
expression may affect susceptibility to T cell–dependent
diabetes by influencing the rate of proinflammatory ex-
tracellular nucleotide catabolism and subsequent genera-
tion of anti-inflammatory adenosine. CD39TG and CD39KO
were examined for their response to MLDS and compared
with wild-type (WT) controls. To examine the utility of
tissue-restricted expression of CD39, which is of direct
relevance to clinical transplantation, adoptive transfer of
bone marrow (BM) between selected lines was performed
prior to MLDS treatment. Finally, we examined the impor-
tance of adenosine receptor signaling by using mutant mice
and pharmacological inhibition of the adenosine receptors.

RESEARCH DESIGN AND METHODS

Mice. Male C57BL/6 CD39TG (12), CD39KO (20), A2AR null (A2ARKO) (21),
and WT mice were maintained in the BioResources Centre (St. Vincent’s
Hospital) and fed ad libitum with commercial rodent diet. All animal experi-
ments were approved by the St. Vincent’s Hospital Animal Ethics Committee.
Induction of diabetes. Mice were injected intraperitoneally with 50 mg
streptozotocin (Sigma-Aldrich, Sydney, NSW, Australia) per kilogram body
weight (BW) daily for 5 days (22). Nonfasting blood glucose levels (BGLs) in
tail vein blood were measured using an AccuChek glucometer (Roche, Haw-
thorn, VIC, Australia). Two consecutive nonfasting BGL readings between 15
and 20 mmol/L or $20 mmol/L were considered hyperglycemic and diabetic,
respectively.
Isolation of pancreatic islets. Pancreata were perfused with ice-cold Hank’s
buffered saline solution with 0.45 mg/mL collagenase P (Roche), incubated at
37°C for 15 min, and passed through a 500-mm nylon mesh. Digested pancreata
were washed with RPMI. Islets separated by density gradient centrifugation in
histopaque-RPMI (Life Technologies, Mulgrave, VIC, Australia) were picked
manually.

Adoptive transfer experiments. Male mice (4–5 weeks old) were subjected
to 5 Gy of irradiation and received 5 3 106 BM cells intravenously from age-
matched mice the next day. Mice received MLDS treatment 5 weeks later.
Immunohistochemistry. Paraffin-embedded pancreas sections (4 mm) were
stained with hematoxylin and eosin (H&E). After antigen retrieval, sections
were stained with polyclonal guinea pig anti-insulin antibody (Dako, Camp-
bellfield, VIC, Australia) and rabbit anti–guinea pig-horseradish peroxidase
(Dako) or monoclonal rabbit anti-CD3+ antibody (Abcam, Cambridge, U.K.)
and biotinylated donkey anti-rabbit antibody (GE Healthcare, Rydalmere,
NSW, Australia). Sections were then developed using 3,39-diaminobenzidine.
TUNEL staining was performed with the Klenow FragEL DNA fragmentation
detection kit (Merck Serono, Frenchs Forest, NSW, Australia).
Flow cytometry. Peripheral blood leukocytes were incubated with fluorescein
isothiocyanate–conjugated anti-human CD39 (Ancell, Australia) and analyzed
using a FACSCalibur flow cytometer and CellQuest software.
In vitro cytokine treatment. Hand-picked islets (n = 100) were cultured for 72
h with combinations of mouse interleukin-1b (IL-1b) (100 units/mL), mouse tu-
mor necrosis factor-a (1,000 units/mL), and mouse interferon-g (1,000 units/mL).
After cytokine treatment, islets were incubated for 1 h at 37°C with 0.5 mg/mL
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. After addition of
DMSO, the concentration of formazan produced by viable cells was measured at
an absorbance of 550 nm. Results were calculated as percentage viability versus
untreated control wells.
KT3 treatment.Mice were administered intraperitoneally with a 0.75-mg dose
of the T cell–depleting anti-CD3 monoclonal antibody (KT3) (23) at days 22
and 0, followed by MLDS from day 0 to 4. T-cell numbers were assessed at
days 23, 15, and 30.
Pharmacological agents. A2BR inhibitor (A2BRi) PSB1115 (0.5 mg/kg BW b.i.
d.; Tocris Bioscience, Bristol, U.K.), A1R inhibitor PSB-36 (0.5 mg/kg BW b.i.d.;
Sigma-Aldrich), and A1R agonist CCPA (0.1 mg/kg BW daily; Sigma-Aldrich)
were administered intraperitoneally.
Reverse transcription quantitative real-time PCR. Quantitative real-time
PCR (qRT-PCR) was performed on an ABI 7500 Fast Real-Time PCR System (Life
Technologies). Islet RNA was isolated using the PureLink RNA Mini Kit (Life
Technologies). Complementary DNA was generated by reverse transcription
using primer-probe sets (IL-1b, Mm01336189_m1; IL-6, Mm00446190_m1;
intercellular adhesion molecule-1 (ICAM-1), Mm00516023_m1; inducible nitric oxide
synthase (iNOS), Mm00440502_m1; CD3g, Mm00438095_m1; A1R, Mm01308023_m1;
A2AR, Mm00802075_m1; A2BR, Mm01285229_s1; A3R, Mm00802076_m1) and
TaqMan universal PCR Mastermix (Life Technologies). Gene expression was
analyzed against the reference gene 18S (24). Relative expression was calcu-
lated as 22ΔCt (where Δ denotes the change in the threshold cycle [Ct]), and
fold change (as calculated by 22ΔΔCt) was determined against the WT
untreated islets.
Statistical analysis. Results are expressed as mean 6 SEM. The data were
analyzed by Student t test and one-way ANOVA test.

RESULTS

The level of CD39 expression modulates susceptibility
to MLDS-induced diabetes. After MLDS treatment, the
mean BGL of WT mice rose steadily after day 6, reaching
hyperglycemic levels (15.8 6 1.2 mmol/L) by day 12 and
progressing to diabetes (21.2 6 2.4 mmol/L) by day 42.
CD39KO mice exhibited a heightened susceptibility to
MLDS, with a faster and more pronounced rise in BGL. In
contrast, CD39TG mice were significantly protected (Fig.
1A). Incidence of diabetes was 71% for WT, 100% for
CD39KO, and 14% for CD39TG mice (Fig. 1B).

CD39KO mice have both hepatic insulin resistance,
which portends to glucose intolerance (25), and hyper-
proliferative T cells secondary to dysfunctional regulatory
T cells (26). To investigate whether these features con-
tributed to the heightened MLDS response, CD39KO mice
were sublethally irradiated and adoptively transferred with
WT BM (CD39KOWTBM) prior to treatment with MLDS.
Diabetes incidence in CD39KOWTBM was similar to that of
WTWTBM mice (Fig. 1C), suggesting that in this model, the
dysfunctional T-cell phenotype due to CD39 deficiency
rather than hepatic insulin resistance was responsible for
the increased susceptibility to diabetes.

To confirm the role of T cells in this model, WT mice
were depleted of T cells prior to MLDS. These mice
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showed a significant reduction in the incidence of diabetes
(Supplementary Fig. 1). In a separate experiment, MLDS-
treated mice were killed at the onset of diabetes for
histological and immunohistochemical analysis of the
pancreas. For WT and CD39KO mice, this was performed
when BGL first exceeded 20 mmol/L (days 24 and 10, re-
spectively); for CD39TG mice, which never reached this
level, the pancreas was harvested on day 30. Although the
architecture of islets from MLDS-treated WT mice was
largely preserved (Fig. 2A, i), a reduction in the intensity
of insulin staining (Fig. 2A, ii) and a CD3+ T-cell infiltrate
were observed (Fig. 2A, iii). Consistent with the more
severe diabetes in MLDS-treated CD39KO mice, islets from
these mice showed disrupted morphology (Fig. 2A, iv),
weaker insulin staining (Fig. 2A, v), and a heavier cellular
infiltrate (Fig. 2A, vi). In contrast, the architecture of
CD39TG islets was preserved (Fig. 2A, vii) and they
stained strongly and uniformly for insulin (Fig. 2A, viii),
with minimal CD3+ T-cell infiltration (Fig. 2A, ix). The
mean insulitis scores were 47, 33, and 20% for the
CD39KO, WT, and CD39TG animals, respectively.
CD39 overexpression prevents islet T-cell infiltration
and inflammatory gene expression after MLDS. Cyto-
kines released from T cells are critical in the progression
of T1D through the inhibition of b-cell function and pro-
motion of apoptosis. Islets were isolated from untreated or
MLDS-treated WT and CD39TG mice 10–12 days after
MLDS treatment, the time of maximum insulitis in this
model (27), and analyzed by qRT-PCR. Expression of the
specific T-cell marker CD3g was detected only in islets
from treated WT mice (Fig. 2B), consistent with the T-cell
staining pattern (Fig. 2A, iii). Expression of the proin-
flammatory cytokines IL-1b and IL-6, the adhesion mole-
cule ICAM-1, and the cytokine-inducible enzyme iNOS was
significantly upregulated in WT islets after MLDS but was
not significantly changed by MLDS in CD39TG islets (Fig.
2C–F).
Overexpression of CD39 on tissues is sufficient to
protect against MLDS. CD39TG mice have an enhanced
capacity to generate adenosine (12), and isolated islets
from these mice have increased nucleoside triphosphate
diphosphohydrolase (NTPDase) catalytic activity (11).
CD39TG mice also have a selective partial CD4+ T-cell
lymphopenia, and the residual T cells are hypoproliferative
(28). Adoptive transfer experiments were used to in-
vestigate whether the reduced susceptibility of CD39TG
mice was due to the CD4+ T-cell lymphopenia or to the
effects of CD39 expression on tissues. Transfer of WT BM
into sublethally irradiated CD39TG mice produced chi-
meric mice with CD39 overexpression restricted to the
tissues (CD39TGWTBM). Successful reconstitution was
verified by flow cytometric analysis of peripheral blood
leukocytes (Supplementary Fig. 2). WTWTBM chimeric mice
were used as controls. The reconstitution of CD39TG BM
in irradiated WT (WTCD39TGBM) or CD39TG recipient mice
(CD39TGCD39TGBM) was incomplete (data not shown; 28),
and these mice were not further examined.

CD39TGWTBM chimeric mice were resistant to MLDS
(Fig. 3A), and their islets exhibited normal morphology
and insulin staining 30 days after MLDS treatment (Fig.
3B). Protection did not appear to be due to an inherent
resistance of the islets to proinflammatory cytokines, be-
cause islets isolated from CD39TG mice were equally
susceptible to proinflammatory cytokines in vitro as islets
from WT mice (Fig. 3C). We speculate that in vivo, in-
creased CD39 activity in the tissues enhances adenosine

FIG. 1. Expression levels of CD39 are inversely related to the suscep-
tibility to MLDS-induced diabetes. Nonfasting BGLs (mean 6 SEM) (A)
and diabetes incidence (B) in CD39KO (▲, n = 6), WT (■, n = 7), and
CD39TG (●, n = 6) mice after MLDS. WT mice treated with citrate
buffer (X, n = 2). ***P < 0.001 vs. MLDS-treated WT mice. Diabetes
incidence (C) of MLDS-treated chimeric CD39KOWTBM (▲, n = 4) and
WTWTBM (□, n = 6) mice. ns, not significant.
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generation, tempering the host’s immune response and
subsequent T-cell infiltration of islets. To investigate this
possibility, CD39TG mice were adoptively transferred with
BM from CD39KO or A2ARKO mice, both of which have
hyperproliferative T cells (26), and treated with MLDS.
Chimeric CD39TGCD39KOBM and CD39TGA2ARKOBM mice
remained resistant to MLDS (Fig. 3D and E).
The protective effect of CD39 overexpression is
mediated by A2 receptor signaling. Adenosine signals
via four receptors, the expression of which has been ex-
amined in whole pancreas (19). Given that the A2AR is
involved in b-cell regeneration (29), we sought to define
the expression of these receptors at the transcript level in
isolated islets (eliminating acinar and vascular tissue) from
untreated and MLDS-treated mice. Basal expression of
A1R (Fig. 4A) and A2AR (Fig. 4B) was similar in CD39TG
and WT islets, but expression of A2BR was significantly
higher in CD39TG (Fig. 4C). MLDS treatment did not sig-
nificantly affect expression of A1R or A2AR in either
mouse line (Fig. 4A and B). The A2BR was upregulated by

MLDS in WT but not CD39TG islets (Fig. 4C). No A3R
expression was detected on islets from either line, irre-
spective of treatment.

Antagonism or agonism of the A1R did not alter the sus-
ceptibility of the WT mice to MLDS-induced diabetes (Sup-
plementary Fig. 3); however, deletion of A2AR increased
susceptibility. Given the hyperproliferative T-cell response
of A2ARKO mice (26), A2ARKO mice were adoptively
transferred with WT BM, generating chimeric A2ARKOWTBM
mice that were treated with MLDS. The reverse experiment
(A2ARKO BM into WT mice: WTA2ARKOBM) was also per-
formed. Deletion of the A2AR on either the tissues or the
circulating cells conferred increased susceptibility to MLDS-
induced diabetes (Fig. 5B).

A2ARKO mice were bred with CD39TG mice to generate
A2ARKO/CD39TG mice (Supplementary Fig. 4). A2ARKO/
CD39TG mice were not protected from MLDS-induced
diabetes (Fig. 5A), implicating a role for A2AR signaling in
the protection mediated by CD39 overexpression. How-
ever, the response to MLDS was less severe than in

FIG. 2. Expression of CD39 reduces T-cell infiltration and proinflammatory cytokine gene expression. Pancreata were harvested from WT and
CD39KO mice when mean BGL exceeded 20 mmol/L (days 24 and 10, respectively), and from CD39TG mice at day 30, and were stained with H&E
(A, i, iv, and vii) and insulin (ii, v, and viii). Presence of T cells was determined by CD3

+
immunohistochemistry (A, iii, vi, and ix). Arrows indicate

presence of leukocytes. RNA from islets isolated from untreated (UT) or MLDS-treated (MLDS) mice was analyzed by qRT-PCR. Expression of
CD3g relative to 18S (B). Fold change of IL-1b (C), IL-6 (D), ICAM-1 (E), and iNOS (F). *P < 0.05. ND, not detected; ns, not significant.
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A2ARKO mice (Fig. 5A), suggesting that signaling via
a second adenosine receptor may also be involved. To
address this, WT and CD39TG mice were treated with
A2BRi, which led to a greater incidence of hyperglycemia
(Fig. 5C) and diabetes (Fig. 5D). CD39TG mice treated
with A2BRi rapidly became hyperglycemic with kinetics
similar to that of WT mice (Fig. 5C), although they did not
progress to diabetes, providing evidence for an in-
dependent role for the A2BR in early CD39-mediated

protection. Finally, to examine the effect of inhibiting both
A2AR and A2BR signaling, A2ARKO/CD39TG mice were
treated with A2BRi. Blockade of the A2BR did not further
augment the incidence of diabetes in these mice (Fig. 5E).

DISCUSSION

The major challenge for islet transplantation as a clinical
therapy is to improve the long-term function of the trans-
planted islets. Currently, the minority of islet recipients

FIG. 2. Continued.
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remain insulin independent, reflecting islet loss over time
(30). Significant factors contributing to this progressive
loss include IBMIR, recurrent autoimmunity, and the
alloimmune response. We have previously reported that
overexpression of CD39, a key antithrombotic and anti-
inflammatory enzyme, protected mouse islets from IBMIR
in vitro (11). In this study, we used the MLDS model to
investigate the role of purinergic catabolism and signaling
in the regulation of islet inflammation and injury in vivo.
Although MLDS is not a perfect model of autoimmunity
associated with islet transplantation or T1D, it shares
a dependence on the action of T cells in its pathogenesis.

The overexpression of CD39 on b-cells does not perturb
islet function (11). Fasting insulin levels in CD39TG mice
were comparable to WT mice (data not shown), suggesting
normal insulin sensitivity. Reduced insulin sensitivity has
been reported acutely after treatment of WT mice with
NECA, a nonspecific adenosine agonist (31). We have
previously shown that basal levels of adenosine in
CD39TG mice are comparable to that of WT but are in-
creased after a proinflammatory insult (12). Although
adenosine concentrations were not measured in the cur-
rent study, the protection of CD39 overexpression was
mitigated by A2R inhibition or deletion, implicating a role

FIG. 3. Overexpression of CD39 on tissues mediates protection in MLDS diabetes. A: Diabetes incidence of WTWTBM (□, n = 6) and CD39TGWTBM

(●, n = 6) mice. ***P < 0.001. B: H&E (i) and insulin staining (ii) of islets from CD39TGWTBM mice 30 days after MLDS. C: Viability of WT (black
columns) and CD39TG (white columns) islets after exposure to cytokines as indicated. Means of three independent experiments 6 SEM. ns, not
significant. D: Diabetes incidence of CD39TGCD39KOBM (●, n = 8) and CD39KOCD39KOBM (△, n = 8) mice. ***P < 0.001. E: Diabetes incidence of
CD39TGA2ARKOBM (●, n = 5) and A2ARKOA2ARKOBM (◇, n = 4) mice. ***P < 0.001.
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for adenosine signaling. It is possible that insulin sensi-
tivity was altered after MLDS; however, persistent nor-
moglycemia in CD39TG mice indicates an adequate b-cell
response.

The susceptibility of mice to MLDS was strikingly
influenced by the level of expression of CD39. Mice lacking
CD39 became diabetic faster and with a higher overall
incidence than WT mice, whereas mice overexpressing
CD39 were significantly protected. The rapid onset of di-
abetes in MLDS-treated CD39KO mice was likely due to
defective regulatory T-cell function (26) rather than

impaired glucose tolerance, as reconstitution with WT BM
reduced the incidence of diabetes to that of WT mice. In
the case of CD39TG mice, chimeric mice reconstituted
with a WT immune system retained protection from MLDS,
suggesting that tissue-generated adenosine was re-
sponsible for reduced susceptibility. In vitro data indicated
that CD39TG islets were not inherently resistant to
proinflammatory cytokines.

T1D is characterized by the expression of proin-
flammatory cytokines by islet-invading mononuclear cells
(32). Unlike high-dose streptozotocin treatment, which is
directly toxic to b-cells, MLDS promotes leukocytic in-
filtration of islets that peaks at 10–12 days (27), comprised
principally of CD3+ T cells. After activation, these cells
secrete cytokines such as IL-1b, which contribute to b-cell
dysfunction and death (33). Further, cytokine-induced
expression of iNOS by the b-cell itself is a key factor in
islet cell death. The increase in inflammatory cytokine
expression in islets from MLDS-treated WT mice likely
reflects T-cell infiltration, which was evident histologically
and associated with a reduction of insulin staining (Fig. 2).
Islets from MLDS-treated CD39TG mice showed minimal
leukocytic infiltration, no upregulation of inflammatory
cytokines, and preserved insulin content. Despite a rela-
tively high level of apoptosis in the islets (not shown),
CD39TG mice maintained near-normal glycemic control,
which may reflect enhanced b-cell regenerative capacity
due to increased pancreatic NTPDase activity (29,34).
Adenosine signaling has recently been implicated in
b-cell–specific regeneration. In a zebrafish model, the
nonselective agonist NECA did not protect against b-cell
death but promoted b-cell regeneration by increasing
proliferation through A2AR-dependent mechanisms (29).
Further, NECA treatment did not significantly increase the
number of b-cells in normal development but reduced BGL
by 30% and increased b-cell mass eightfold in mice treated
with 150 mg/kg streptozotocin for 2 days (29).

Ectonucleotidase expression has been defined within
the mouse, rat, and human pancreas (35–37). NTPDase1/
CD39 is localized to blood vessels and acinar tissue,
NTPDase2 to capillaries and connective tissue surround-
ing islets and acini, and NTPDase3 exclusively to islet
cells. NTPDase8 was not detected. CD73 completes the
enzymatic cascade for extracellular adenosine generation
(38) and has been detected on rat, but not human or
mouse, islets (35). CD73 expression is, however, well
documented both on leukocytes (39,40) and the vascula-
ture (41). This is similar to rat liver, where CD73 and CD39,
and other NTPDases, are expressed by different but adja-
cent cells in distinct compartments and differentially reg-
ulate adenosine generation and signaling (38). Adenosine is
a potent systemic anti-inflammatory molecule and inhibits
the proliferation of CD4+ T cells in a dose-dependent
fashion through the A2AR (26). The A2AR is expressed on
regulatory T cells (42) together with CD39 (26) and CD73
(43). Further, A2AR activation on regulatory T cells has
been shown to mitigate renal IRI through increased ex-
pression of the membrane protein programmed death-1
(42).

The adenosine receptor repertoire has previously been
defined at the transcript level within the whole pancreas
of CD-1 mice (19). All four adenosine receptors were
expressed at comparable levels at baseline, with in-
creased A1R expression after MLDS treatment (19). We
analyzed purified islets, thus eliminating the potentially
confounding contribution of exocrine tissue in the whole

FIG. 4. Expression of adenosine receptors in isolated islets. RNA from
islets isolated at day 10 from untreated (UT) or MLDS-treated (MLDS)
mice was analyzed by qRT-PCR for relative expression of A1R (A),
A2AR (B), and A2BR (C). Data are expressed as means of four in-
dependent experiments 6 SEM. *P < 0.05. ns, not significant.
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pancreas. The A3R was not detected and was not in-
vestigated further. Although the A1R was expressed on
islets, the effect of pharmacological inhibition or acti-
vation of A1R on MLDS-induced diabetes was minimal,
suggesting a redundant role in this model. This is in
contrast to data demonstrating a modest protective

effect of A1R activation in the MLDS model (19). How-
ever, the effect of the nonspecific agonist NECA in that
study was significantly greater than the specific A1R
agonist CCPA, suggesting that A1R was not the pre-
dominant receptor involved in the protection observed
(19).

FIG. 5. Protection by overexpression of CD39 is mediated by A2 receptor signaling. A: Diabetes incidence of A2ARKO (◆, n = 4), WT (■, n = 4),
CD39TG (●, n = 4), and A2ARKO/CD39TG (fx5.1, n = 7) mice. **P < 0.01 vs. WT; ***P < 0.001 vs. WT; ns, not significant vs. WT. B: Diabetes
incidence of A2ARKOWTBM (◆, n = 5), WTA2ARKOBM (■, n = 8), A2ARKOA2ARKOBM (◇, n = 4), and WTWTBM (□, n = 4) mice. *P < 0.05, WTA2ARKOBM

vs. WTWTBM; **P < 0.01, A2ARKOWTBM vs. WTWTBM. C: Hyperglycemia incidence of WT + saline (■, n = 8), CD39TG + saline (●, n = 8), WT + A2BRi
(□, n = 8), and CD39TG + A2BRi (○, n = 8) mice. *P< 0.05, WT + A2BRi vs. WT + saline (days 6–12) (i); **P< 0.01, CD39TG + A2BRi vs. CD39TG +
saline (ii). ns, not significant. D: Diabetes incidence of WT + saline (■, n = 8) and WT + A2BRi (□, n = 8) mice. *P < 0.05. E: Diabetes incidence of
A2ARKO/CD39TG + saline (fx5.2, n = 4) and A2ARKO/CD39TG + A2BRi (fx5.1, n = 9) mice. ns, not significant.
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A2AR transcripts were detected in islets under basal
conditions, with little change after MLDS. The A2AR has
well-defined effects on T-cell proliferation (26). In keeping
with this, deletion of the A2AR on circulating cells con-
ferred heightened susceptibility to MLDS-induced diabetes
(Fig. 5). Additionally, tissue-specific deletion of A2AR in-
creased susceptibility (Fig. 5), implicating a previously
unrecognized role for A2AR signaling on the tissues in this
model of diabetes. In mice overexpressing CD39, the role
of the A2AR on circulating cells was redundant as
CD39TGA2ARKOBM chimeric mice were fully protected (Fig.
3E). It is possible that the level of adenosine generated is
so high that it now signals via different adenosine recep-
tors on T cells or indeed via a different mechanism in-
volving other cell types.

The A2BR is recognized as a low-affinity adenosine re-
ceptor with activation occurring only in pathological con-
ditions when the adenosine concentration is substantially
increased (44). Expression of A2BR in islets was upregu-
lated after MLDS treatment, and antagonism of A2BR
hastened the onset and overall incidence of diabetes (Fig.
5). We speculate that the release of ATP secondary to cel-
lular injury parallels cellular infiltration. CD39 expressed on
tissues, together with CD73 expressed on intraislet capil-
laries or infiltrating cells, sequentially converts ATP to
adenosine, which activates A2BR to limit islet infiltration
and destruction. The greater capacity of CD39TG mice to
generate adenosine, and higher basal expression of the
A2BR in these mice, putatively provides protection against
early MLDS-induced injury.

The mechanism underpinning the protective effect of
CD39TG expression includes signaling through both the
A2AR and A2BR. Blockade or deletion of either receptor
mitigated the protective effect of CD39 overexpression.
Involvement of more than one adenosine receptor par-
allels the effects of adenosine in renal IRI, where A2AR
signaling predominates on circulating CD4+ T cells (45)
and macrophages (46), and A2BR signaling within the re-
nal parenchyma is also important (47). It is intriguing that
the treatment of A2ARKO/CD39TG mice with an A2BR
antagonist did not further exacerbate the diabetic re-
sponse. Recent speculation surrounds the requirement for
cooperation between the A2AR and the A2BR for each
receptor to be fully functional (48), which may account for
the lack of exaggerated response in the A2ARKO/CD39TG
mice with A2BRi.

Islets that survive the transplant process and recurrent
autoimmunity then face destruction by the alloimmune re-
sponse. A2AR agonists (49) and adenosine (50) prevent the
early loss of islets posttransplantation, and adenosine, to-
gether with low-dose immunosuppression, prevents islet
allograft rejection (50). The overexpression of CD39 is
protective in this T cell–mediated model of diabetes by
signaling through A2AR and A2BR, which combined with its
anti-IBMIR (11,13) and putative immunosuppressive effects,
makes CD39 overexpression an attractive strategy for pro-
longing islet survival after intraportal transplantation.
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