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Abstract

We study the limits imposed by transcription factor specificity on the maximum number of

binding motifs that can coexist in a gene regulatory network, using the SwissRegulon Fan-

tom5 collection of 684 human transcription factor binding sites as a model. We describe

transcription factor specificity using regular expressions and find that most human transcrip-

tion factor binding site motifs are separated in sequence space by one to three motif-dis-

criminating positions. We apply theorems based on the pigeonhole principle to calculate the

maximum number of transcription factors that can coexist given this degree of specificity,

which is in the order of ten thousand and would fully utilize the space of DNA subsequences.

Taking into account an expanded DNA alphabet with modified bases can further raise this

limit by several orders of magnitude, at a lower level of sequence space usage. Our results

may guide the design of transcription factors at both the molecular and system scale.

Introduction

In order to understand and preserve molecular biodiversity, it is valuable to investigate if evo-

lution has explored all the options that are possible in theory. In recent years, theoretical limits

and empirical estimations for the diversity of protein folds [1], protein families [2], protein-

protein interactions [3] and protein linear motifs [4, 5] have been proposed.

Gene networks regulate the expression of up to thousands of genes via interactions between

genomic DNA and proteins such as transcription factors [6, 7]. In nature, the components of

gene regulatory networks interact in a specific manner: each transcription factor usually recog-

nizes a subset of all possible genomic DNA subsequences and different transcription factors

usually recognize non-overlapping sets of DNA subsequences. Some natural transcription fac-

tors show similar binding specificities [8]. However, crosstalk between the biological signals

read by the hundreds of different transcription factors in a proteome may be detrimental at a

cellular scale and may imposes a global constraint on the functioning and evolution of

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0263307 January 28, 2022 1 / 13

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Aptekmann AA, Bulavka D, Nadra AD,

Sánchez IE (2022) Transcription factor specificity

limits the number of DNA-binding motifs. PLoS

ONE 17(1): e0263307. https://doi.org/10.1371/

journal.pone.0263307

Editor: Chun-Hsi Huang, Southern Illinois

University, UNITED STATES

Received: August 10, 2021

Accepted: January 15, 2022

Published: January 28, 2022

Copyright: © 2022 Aptekmann et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

information files.

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0002-4119-9402
https://orcid.org/0000-0002-7860-3245
https://orcid.org/0000-0003-4284-9013
https://doi.org/10.1371/journal.pone.0263307
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0263307&domain=pdf&date_stamp=2022-01-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0263307&domain=pdf&date_stamp=2022-01-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0263307&domain=pdf&date_stamp=2022-01-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0263307&domain=pdf&date_stamp=2022-01-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0263307&domain=pdf&date_stamp=2022-01-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0263307&domain=pdf&date_stamp=2022-01-28
https://doi.org/10.1371/journal.pone.0263307
https://doi.org/10.1371/journal.pone.0263307
http://creativecommons.org/licenses/by/4.0/


regulatory networks [9]. The specificity of transcription factors is not without consequence.

The number of possible sets of genomic DNA subsequences of a given length is finite, regard-

less of the degree of overlap between the sets. This implies that the number of transcription fac-

tors regulating a given gene network through specific recognition of partially- or non-

overlapping sets of genomic DNA sequences is finite as well. In other words, the number of

binding motifs in a gene regulatory network can only be so large if the sets of DNA subse-

quences recognized by its transcription factors overlap only so much. This work aims at using

empirical measures of transcription factor specificity to calculate a theoretical upper limit for

the number of transcription factors that can properly function in the same gene network.

Transcription factor specificity is usually characterized in terms of transcription factor

binding sites (TFBS), i.e., the set of DNA subsequences that are recognized by a certain tran-

scription factor. Characterization of TFBS usually starts by the experimental and/or computa-

tional identification of several DNA subsequences (termed TFBS instances) that perform a

certain function. Once multiple instances of a TFBS are known, a TFBS motif is defined as the

set of all TFBS instances that match with a given model (i.e., the set of sites to which a tran-

scription factor binds preferentially) [10]. Most TFBS are short degenerate DNA subsequences

of up to 30 base pairs long [11]. The computational definition of the nucleotide pattern for a

TFBS motif can be a fixed consensus sequence, a regular expression, or a scoring matrix. This

work describes TFBS motifs using regular expressions, which state in a sequential manner

which characters are allowed in each position of the motif. For example, in this work we

describe the motif for the Arx transcription factor with the ten-character long regular expres-

sion [CA][AG][TC][TC]AATT[AG][AG] (S1 Fig). DNA subsequences that are instances of

the ARX motif may have a C or an A in the first position of the subsequence, an A or a G in

the second position, and so on. Here, we equal the number of coexisting transcription factors

to the corresponding number of TFBS motifs.

We focus on human transcription factors as a well studied and relevant example. Current

databases report a lower bound for the number of TFBS, since the current set of human tran-

scription factors may not have reached its maximal size. The SwissRegulon Fantom5 collection

currently contains annotations for 684 different TFBS motifs in the human genome [12], pro-

viding a first empirical lower bound. From a different viewpoint, there are 2604 predicted

human protein with DNA-binding domains [7]. If each of these proteins recognizes a different

TFBS motif, a second empirical lower bound would be 2604 TFBS motifs in the human

genome. Published theoretical estimations from first principles provide upper bounds for the

number of coexisting TFBS motifs as a function of motif length and specificity requirements.

We may consider as upper bound that there may be as many specific TFBS motifs of length n
as the maximum number of sequences of length n, which is A(n) = 4n. This seems unrealistic

because most TFBS include multiple instances. A finer theoretical upper bound comes from

treating the mapping between transcription factors and binding sequences as a coding prob-

lem, where the code words are DNA subsequences of length n and the messages are transcrip-

tion factors [13]. In the limit of large errors, the maximal number of coded messages is

bounded by the coloring number of the minimal surface which can embed the code word

graph. This provides a second upper bound for the number of minimally overlapping TFBS

motifs: AðnÞ � 3:5þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:75 � 4n � ðnð4 � 1Þ � 4ÞÞ

p
. An alternative approach [14] takes into

account motif specificity, measured as the minimal Hamming distance (the minimal number

of sequence changes between two instances belonging to different TFBS). The number of

TFBS motifs of length n with a minimal Hamming distance d between sequences belonging to

different motifs has a third theoretical upper bound of A(n, d)� 4n−d+1. Thus, a linear increase

in transcription factor specificity d leads to an exponential decrease in the maximal number of
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coexisting TFBS motifs A. In sum, the effects of both motif length and specificity on the theo-

retical upper bounds for the maximal number of TFBS motifs are strong.

Published estimations for the maximal number of coexisting TFBS motifs assume a four let-

ter DNA alphabet. However, many genomes harbor up to dozens of different modified bases

[15] that are a key aspect of epigenetic regulation. These modified bases include N4-methylcy-

tosine, 5-methylcytosine and 6-methyladenine [16], 5-Hydroxymethylcytosine [17], 5- Formyl

and 5-Carboxylcytosine [18] and N6-methyldeoxyadenosine [19]. Modified bases can modu-

late binding of transcription factors to DNA and thus play a role in TFBS motif encoding. For

example, 8-oxo-7,8-dihydroguanine is a signaling agent for gene activation [20] and the pres-

ence of 5-methylcytosine can both increase and decrease binding, depending on the transcrip-

tion factor [21]. We propose that the effective alphabet size of DNA may be over ten letters,

which would significantly increase all theoretical estimates for the maximal number of coexist-

ing TFBS motifs.

Maximizing the number of TFBS motifs encoded in a genome should also increase the frac-

tion of all DNA subsequences of length n that are an instance of a TFBS motif. In turn, this

reduces the number of DNA subsequences that can be used to code exclusively for protein

sequences [22] and for other molecular processes involving DNA. To our knowledge, this

trade-off between TFBS encoding and the occupancy of DNA sequence space has not been

investigated.

Previous work from our group studied the theoretical limits for the number of functional

protein motifs [5]. We measured the distance in sequence space for a pair of protein motif clas-

ses by quantifying how many motif-discriminating positions prevent a protein subsequence

from matching the regular expressions for two classes at once. We derived theorems for the

maximal number of motif classes that can simultaneously maintain a certain number of motif-

discriminating positions between all pairs of classes in the motif universe, for a given amino

acid alphabet. We also calculated the fraction of all protein subsequences that would belong to

a motif class if all potential motif classes came into existence. Here, we tackle the question of

how many TFBS motifs can potentially coexist in a genome by applying the same theory to

empirical data specific for transcription factor binding sites, such as length, specificity and sta-

ble base modifications.

Methods

Database of transcription factor binding site motifs

All available 684 TFBS weight matrices from the SwissRegulon hg19 database Fantom5 collec-

tion [12] were retrieved in June 2018. As expected from the biophysics of protein-DNA inter-

actions [23], TFBS motifs present different levels of sequence conservation at each position.

We use the base frequencies bi as input to convert each TFBS weight matrix from the original

database to a regular expression as follows. For each position of the matrix we used the

observed frequencies bi for A, C, G and T to calculate the Effective Alphabet Size (EAS) [24].

The EAS can be interpreted as the number of equally frequent letters whose Shannon entropy

equals the Shannon entropy of the observed frequencies bi [24]:

EAS ¼ 2
�
P

bi log2 bi ð1Þ

Following Shannon´s definition of entropy [24], if a bi = 0, the corresponding term in EAS is

zero.

Our model incorporates conservation in a quantitative manner that determines that more

conserved (lower entropy) positions will allow less letters than less conserved, (higher entropy)
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positions. The use of this formula implies that the information content of the regular expres-

sion is as close as possible to the information content of the base frequencies used in the calcu-

lation. We then assigned EAS letters to that position of the regular expression, by order of

decreasing frequency. Last, we removed from the regular expression flanking positions that

allow for all four bases. Example calculations for the Arx TFBS motif are shown in the S1 Text

and the resulting TFBS are included in the S1 File.

Sequence specificity of transcription factor binding site motifs

We follow previous work [5], in which we used the pigeonhole principle to to calculate the

maximal number of coexisting protein linear motifs. Application of this theory to TFBS motifs

uses the same formula but accounts for the differences in alphabet size, motif length and motif

specificity.

Briefly, the regular expression for a TFBS motif of length n can be written as a sequence

A = (A1, . . ., An) where each Ai is a subset of A ¼ fA;C;G;Tg. A TFBS motif instance is

a sequence (a1, . . ., an) with ai 2 Ai for all i. We define the structure of A as the sequence

e = (|A1|, . . ., |An|), i.e., the number of allowed bases at each position.

We characterize TFBS specificity using the separation in sequence space between two TFBS

regular expressions, measured as the number of motif-discriminating positions. Given an

alignment of two TFBS regular expressions A = (A1, . . ., An) and B = (B1, . . ., Bm), the number

of motif-discriminating positions is the number of aligned positions where no letter can match

both regular expressions:

mdpAB ¼ jfi 2 f1; . . . ; ng : Ai \ Bi ¼ ;j: ð2Þ

If the two TFBS regular expressions A and B present different lenghts, multiple alignments

are possible. We then calculate mdp AB for all the alignments between the two corresponding

regular expressions that do not leave a hanging end for the shorter regular expression and

match at least one pair of positions with less than four allowed letters. Finally, we take the min-

imal mdp AB across all relevant alignments as a lower limit for the separation in sequence

space between the two TFBS motifs.

When the number of TFBS motif-discriminating positions is 0 for a given pair of motifs, we

calculate an alternative measure of specificity as 1—(number of sequences that match both reg-

ular expressions / number of sequences that match at least one of the regular expressions) (i.e.,

1 minus the Jaccard similarity index). A DNA sequence matches a regular expression if all let-

ters in the DNA sequence are allowed by the regular expression. If a letter in one or more posi-

tions of a DNA sequence is not allowed by the regular expression, the DNA sequence does not

match the regular expression.

Number of potential transcription factor binding site motifs

For a given TFBS motif structure e = (e1, . . ., en) of length n and a number k of motif-discrimi-

nating positions, jMðkÞj denotes the maximal number of TFBS motifs satisfying the property

that every pair of motifs have at least k motif-discriminating positions [5].

jMð0Þj �
Y

1�i�n

3

ei � 1

� �

; ð3Þ

Y

1�i�n

b4=eic � jMð1Þj �
Y

1�i�n

4=ei; ð4Þ
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jMðk < nÞj �
Y

1�i�n� ðk� 1Þ

4=ei ð5Þ

jMðnÞj ¼ min
1�i�n
b4=eic: ð6Þ

Where bxc denotes the floor of x, i.e. the greatest integer less than or equal to x.

The maximal number of TFBS motifs is bounded by inequality. Since we are focused on

estimating a theoretical upper limit, all calculations reported in the results section use the

upper limit in these formulae. None of the equations in this section are affected by the fre-

quency of bases in the genome, as they deal with the number of different bases allowed on a

position, not with which specific base is allowed or its background frequency. Example calcula-

tions for the Arx TFBS motif are shown in the S1 Text.

Occupancy of the sequence space

The fraction of the DNA sequence space occupied by a motif of structure e = (e1, . . ., en) is the

fraction of all possible DNA subsequences of length n that are an instance of the motif:

PotentialOccupancyðe; kÞ ≔
Y

1�i�n

ðei=4Þ ð7Þ

For a set of coexisting TFBS motifs of length n, the potential occupancy of sequence space is

the fraction of all possible DNA subsequences of length n that are an instance of any of the

TFBS motifs in the set. In the case of zero motif-discriminating positions, each DNA subse-

quence may belong to multiple motifs and we were not able to find a formula for the potential

occupancy of sequence space [5]. For values of k of one or more motif-discriminating posi-

tions, motif instances belong to a single motif and the total occupancy of the DNA sequence

space is the result from Eq 7 times the number of coexisting motifs, jMðkÞj. Example calcula-

tions for the Arx TFBS motif are shown in the S1 Text.

Results

Sequence specificity of known transcription factor binding site motifs

SwissRegulon is a database containing genome-wide annotations of regulatory sites in the

intergenic regions of genomes [12]. The regulatory site annotations are produced using a num-

ber of recently developed algorithms that operate on multiple alignments of orthologous inter-

genic regions from related genomes in combination with, whenever available, known sites

from the literature, and ChIP-on-chip binding data. We consider positional weight matrices

for 684 TFBS motifs in the SwissRegulon Fantom5 collection (section). We generate a regular

expression from each matrix, using information theory to minimize the loss of information

(section). Fig 1A shows the frequency of each motif length in the database and of the number

of symbols allowed at each position. TFBS motif length ranges from 4 to 30 characters. As

expected for eukaryotic TFBS motifs, most motifs have lengths between 5 and 20 characters,

with a peak at 10 characters.

We quantify the separation in sequence space between a pair of TFBS motifs as the number

of motif-discriminating positions (section and S1 Fig). This number is the minimal count of

positions where no symbol can match both regular expressions, for every possible alignment

where the number of aligned positions is the length of the shorter regular expression [5]. Since

other positions might not fully overlap, this is a lower limit for the separation in sequence
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space between the two TFBS motifs. We calculate the number of motif-discriminating posi-

tions for all possible 233586 pairs of TFBS motifs in our database (Fig 1B, white bars and left Y

axis). In 77% of the comparisons the two regular expressions are separated in sequence space

by at least one motif-discriminating position. This is in agreement with the use of regular

expressions, where a mismatch at a single position is enough to rule out that a DNA subse-

quence belongs to a given TFBS motif. On the other hand, it is rare to find pairs of regular

expressions separated by more than five motif-discriminating positions. 23% of regular expres-

sions pairs are not separated in sequence space by a motif-discriminating position. In this case,

we measure the separation in sequence space using the fraction of DNA subsequences match-

ing any of the two regular expressions that match only one of them (section). We find that

95% of motif pairs share less than 5% of sequences (S2 Fig). We conclude that SwissRegulon

Fantom5 motif pairs show significant separation in sequence space, in agreement with our

assumption that there is little cross-talk between natural TFBS motifs.

Fig 1. Known and predicted transcription factor binding site motifs. (A) Regular expression length and number of letters allowed for TFBS motifs in

the SwissRegulon Fantom5 collection. (B) Bars (left Y axis): Motif-discriminating positions for every pair of TFBS motifs in the SwissRegulon Fantom5

collection. Black circles (right Y axis): Theoretical estimation of the maximal number of coexisting TFBS motifs, as a function of the minimal

requirement of motif-discriminating positions. (C) Theoretical estimation of the maximal number of coexisting TFBS motifs, as a function of alphabet

size. (D) Potential occupancy of the DNA sequence space by TFBS motifs for an alphabet size of 4 as a function of the number of motif-discriminating

positions.

https://doi.org/10.1371/journal.pone.0263307.g001
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Number of potential transcription factor binding site motifs

We use our theory based on the pigeonhole principle (section and [5]) and the structures of

TFBS motifs in the SwissRegulon Fantom5 collection (Fig 1A) to estimate the number of Swiss-

Regulon Fantom5-like TFBS motifs that can potentially coexist in nature. We first convert each

regular expression in our database to a motif structure (section), which is a vector that quanti-

fies the number of allowed bases at each position. For each structure and a number of motif-dis-

criminating positions, we calculate the number of potential TFBS motifs. As expected from the

heterogeneity in motif lengths and structures, the calculated numbers of potential TFBS motifs

span several orders of magnitude (S3 Fig). We report the median of the distribution of the num-

ber of potential TFBS motifs in order to give an order-of-magnitude estimation that takes into

account all existing motif lengths and structures and their abundances. Requiring one motif-

discriminating position maximizes the number of potential TFBS motifs to over 9700 (Fig 1B,

black circles and right Y axis). The lower value for two or more motif-discriminating positions

is due to higher non-overlap requirements. On the other hand, the value for zero motif-discrim-

inating positions is lower than for at least one motif-discriminating position. This is the case

because the condition of zero motif-discriminating positions acts on all positions of the motif at

once (motifs in the set have common letters at all positions), while the condition of one motif-

discriminating position restricts only one position at a time (motifs in the set are separated by

one position). As a consequence, the overlap imposed by “zero motif-discriminating positions”

is more restrictive than the non-overlap imposed by “one or more motif-discriminating posi-

tion”. It is interesting to compare bars and circles of Fig 1B. On one hand, natural TFBS motif

pairs are most often separated in sequence space by a single motif-discriminating position. On

the other hand, this relatively low level of sequence specificity maximizes the number of poten-

tial TFBS motifs that can coexist while fulfilling the specificity requirement.

Role of alphabet expansion

Current genome sequences frequently only inform the four canonical bases, and it is often for-

gotten that base modifications are varied and frequent [15] and can influence transcription

factor binding [20, 21]. Regardless of the frequency of such modifications, an expanded DNA

alphabet could potentially increase the number of potential TFBS motifs. An expanded DNA

alphabet could be achieved by including new or modified bases using synthetic biology, while

not the same as new bases, modified bases increase the capacity of DNA to code for TFBS

motifs [20, 21] (section). We calculate the number of SwissRegulon Fantom5-like TFBS motifs

that can potentially coexist in nature for expanded DNA alphabets including up to 10 different

bases. Example calculations for the Arx TFBS motif are shown in the S1 Text. Fig 1C shows the

median number of potential TFBS motifs as a function of alphabet size for 0 to 4 motif-dis-

criminating positions. Increasing the alphabet size from 4 to 10 increases the number of poten-

tial TFBS motifs by several orders of magnitude for all specificity requirements tested. When

we consider an effective alphabet size of 10 letters, the increase relative to an alphabet of four

letters is highest at over 9500-fold for one motif-discriminating position (S4 Fig). This effect

decreases sharply with increasing motif specificity, becoming lower than ten-fold for 9 or

more motif-discriminating positions. This is notable since a single motif-discriminating posi-

tion is the most frequent separation in sequence space between naturally occurring TFBS

motifs (Fig 1B).

Sequence space occupancy

A TFBS motif of length n is a subset of the sequence space of all possible 4n DNA subse-

quences. We calculate the size of the sequence space determined by the regular expression for
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each SwissRegulon Fantom5 TFBS motif (section). S5 Fig shows that 82% of the TFBS motifs

in our database potentially include between 1 and 10000 DNA subsequences, with over 50% of

them including between 10 and 1000 DNA subsequences. We use this result and the corre-

sponding maximum number of coexisting motifs to calculate the potential occupancy of

sequence space for 1 to 10 motif-discriminating positions, i.e., the fraction of DNA subse-

quences of length n that are an instance of a motif if the maximum number of coexisting

motifs is realized (section). The calculated values span several orders of magnitude (S6 Fig). As

done for the number of potential motifs, Fig 1D reports the median of the distribution. For a

single motif-discriminating position, a maximally large set of TFBS motifs occupies all the

sequence space of length n: all possible DNA subsequences belong to a potential TFBS motif.

The potential occupancy of sequence space drops steeply for two or more motif-discriminating

positions. The commonest numbers of motif-discriminating positions (Fig 1B) maximize the

potential occupancy of sequence space by the resulting TFBS motifs (Fig 1D). For a single

motif-discriminating position, the potential occupancy of sequence space is 100% regardless of

alphabet size (S7 Fig). For two or more motif-discriminating positions, the potential occu-

pancy of sequence space is lower than one for an alphabet size of 4 and decreases further as

alphabet size increases. For two or more motif-discriminating positions, increasing alphabet

size leads to a trade-off between increasing the number of potential TFBS motifs (Fig 1C) and

decreasing the potential occupancy of sequence space (S7 Fig).

Discussion

The observed sequence specificity for human transcription factors (Fig 1A and 1B, bars) not

only avoids most crosstalk between them but may also allow the simultaneous activity of sev-

eral thousand TFBS motifs (Fig 1B, dots) that maximizes sequence space usage (Fig 1D).

Increasing the DNA alphabet size would allow for an even larger number of TFBS motifs

(Fig 1C). The results in (Fig 1C and 1D) are valid for any set of TFBS motifs, while the results

in (Fig 1A and 1B) may vary to some degree as additional TFBS are described.

Studies of TFBS specificity usually look for similarities between the DNA binding prefer-

ences of transcription factors [25]. The main result is that DNA binding domains with similar

protein sequences bind to similar sets of DNA subsequences [25]. On the other hand, we focus

on quantifying in an intuitive and comprehensive manner the differences in specificity

between human TFBS, which according to our definition are significant and widespread. Our

finding that most human TFBS are separated in sequence space to some degree does not con-

tradict the fact that many of them are similar to some degree. Let us consider two TFBS motifs

of length 10. The two corresponding regular expressions are identical in the first nine positions

and different only in position 10. The first motif allows A and C at position 10, while the sec-

ond motif allows G and T at position 10. On one hand, the two motifs are similar since nine

out of ten positions allow the same letters. On the other hand, no DNA subsequence can

match both two regular expressions and the two motifs are separated in sequence space by one

motif-discriminating position. In other words, a full understanding of TFBS motif specificity

requires quantitative definitions for both motif similarity and motif separation in sequence

space.

Regular expressions divide DNA subsequences into sites and non-sites, in parallel with the

specific and non-specific modes of protein-DNA binding [26], but do not take into account

affinity and transcription factor concentration. As a consequence, our model can describe how

TFBS motifs make use of the available sequence space but does not attempt to describe the

dynamics of transcription factor activity. It may be interesting to investigate the separation of

TFBS in sequence space for other eukaryotic and prokaryotic organisms and in relation to the
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information content of the TFBS motif [10]. Since TFBS specificity is generally well conserved

[25], we expect to find similar results in other species.

TFBS motifs from the SwissRegulon Fantom5 collection are commonly ten base pairs long,

which corresponds to a space of * 106 DNA subsequences. Our theory, together with the

observed sequence specificity, predicts that this sequence space can be organized into a maxi-

mum of * 9.7 � 103 TFBS motifs, separated by a single motif-discriminating position. In turn,

coding theory [13] predicts a maximum of * 4.5 � 103 minimally overlapping TFBS motifs of

length 10. A similar maximum of * 1.6 � 104 TFBS motifs can be obtained within the sphere

packing approach of [14] and a minimal Hamming distance of 4 mutations between DNA sub-

sequences belonging to different motifs. We find it reassuring that three different specificity-

focused theories lead to estimates for the maximum number of TFBS motifs that are in the

same order of magnitude. The actual upper bound for the number of TFBS motifs may be

lower than 9700 due to phenomena not included in the theory. For example, the molecular

interactions mediating protein-DNA interactions [6] may prevent some DNA subsequences

from becoming actual TFBS motifs and a need for mutational robustness [27] may further

constrain the maximal number of TFBS motifs. Also, binding of palindromic sequences by

transcription factor dimers might cut the maximum number of TFBS up to 50%. This is

because the binding sites of the two monomers would appear in our model as different TFBS

motifs with regular expressions that are the reverse complement of each other, while actually

being only one TFBS motif.

The symmetry in our equations implies that if a genome operated at or close the theoretical

limit for the number of TFBS, the resulting base frequencies would all be 25% each. Thus, the

maximum number of TFBS given by our calculation can be reached only in a genome whose

TFBS have an overall GC content of 50%. This figure seems reasonable for the human genome,

where the GC content is close to 41%. A quantitative assessment of this effect would require

the deduction of additional theorems and will be addressed in future work. Similarly, if modi-

fied bases were present and the number of TFBS was close to the theoretical limit, the resulting

frequencies of modified bases would be of the same magnitude as the frequencies of unmodi-

fied bases. Tackling this point would require the application of sequencing techniques sensitive

to multiple modified bases at the genomic scale.

There are 2604 predicted DNA-binding proteins in the human proteome [7]. Since most of

the 684 known human TFBS [12] are significantly separated in sequence space, we suggest that

a significant number of human TFBS as defined in this work remain uncharacterized. This is

compatible with the observation of conserved DNA subsequences of unknown function [28].

There is a second gap, between the 2604 predicted DNA-binding human proteins [7] and the

predicted maximum number of * 9.7 � 103 coexisting TFBS motifs. This difference may be

explained in terms of never born TFBS, which are physically possible but do not occur at pres-

ent in nature due to incomplete exploration of the TFBS coding space during evolution [29].

Our theory is in principle valid for any set of molecules recognizing stretches of a linear

polymer, regardless of the interacting partners. The overall picture for TFBS motifs is similar

to our previous results for protein-protein interactions mediated by linear motifs [5]. In that

case, the observed sequence specificity also maximizes the potential number of motifs up to

around ten thousand. The main differences are that increasing the DNA alphabet size has a

much larger effect than increasing the protein alphabet size and that sequence space usage is

much larger for TFBS motifs than for protein linear motifs at the same level of specificity [5].

These differences arise from both alphabet size and the motif regular expressions, i.e., from the

physicochemical basis of protein-protein versus protein-DNA complex formation [6].

The observation of 684 different TFBS motifs [12] and 2604 predicted DNA-binding pro-

teins [7] suggests that encoding the binding sites for human transcription factors takes up 7 to
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27% of the DNA subsequences of lengths 5 to 20. Other genome subsequences of functional

significance, such as coding sequences or splicing sites also make use of the DNA sequence

space. Because of this, our estimations for the potential number of coexisting TFBS motifs and

for potential sequence space usage should be regarded as upper limits. It should also be consid-

ered that a given region of the genome may simultaneously code for different molecular activi-

ties. For example, the genetic code is nearly optimal for allowing additional information

within protein-coding DNA subsequences [22].

Our results may aid the design of transcription factors at two different scales. At the molecu-

lar scale, the finding that naturally occurring human TFBS motifs are commonly separated in

sequence space by one to three motif-discriminating positions may guide the design of new spe-

cific DNA binding proteins, be it TALEN, Zinc-finger, CAS9 or others. A specific DNA binding

protein designed to function in a human cell should in principle have a low level of crosstalk

with incumbent transcription factors, i.e., its binding site should be separated from most (if not

all) other transcription factor binding sites by at least one motif-discriminating position. This is

a well-defined design requirement that could be incorporated in current algorithms for the

design of specific DNA binding proteins. At the network scale, the finding that the observed

TFBS sequence specificity may also allow the coding a gene regulatory network with up to ten

thousand TFBS motifs suggests that the human transcription factor binding site repertoire has

not reached its maximum size and may be significantly enlarged through engineering [7, 30].

The use of an expanded DNA alphabet with modified bases may assist both scales of design.

Supporting information

S1 Fig. Example calculation for the number of motif-discriminating positions for two

TFBS motifs (Arid3B and Arx). The two possible alignments are shown. All nine positions in

the first alignment present at least one matching symbol. Thus, there is at least one DNA sub-

sequence matching both regular expressions and the number of motif-discriminating positions

for this alignment is 0. For the second alignment, seven positions present at least one matching

symbol, while there is no overlap at positions 5 and 7. Thus, the number of motif-discriminat-

ing positions for this alignment is 2. The minimal number of motif-discriminating positions

across the two possible alignments is zero. We take this number of motif-discriminating posi-

tions as a lower limit for the separation in sequence space between these two TFBS motifs.

(TIFF)

S2 Fig. Separation in sequence space between TFBS motifs in the SwissRegulon Fantom5

collection that are not separated in sequence space by a motif-discriminating position. The

X axis is the fraction of DNA subsequences matching any of the two regular expressions that

match only one of them (i.e., 1 minus the Jaccard similarity index).

(TIFF)

S3 Fig. Number of potential TFBS motifs as deduced from the SwissRegulon Fantom5 col-

lection. Cumulative distribution function of the number of potential TFBS motifs for different

numbers of motif-discriminating positions. Red: 0 positions. Black: 1 position. Dark green: 2

positions. Blue: 3 positions. Orange: 4 positions. Brown: 5 positions. Purple: 6 positions. Pink:

7 positions. Cyan: 8 positions. Magenta: 9 positions. Light green: 10 positions.

(TIFF)

S4 Fig. Quotient of the number of potential TFBS motifs for alphabet sizes of 10 and 4, as

a function of the number of motif-discriminating positions.

(TIFF)

PLOS ONE Transcription factor specificity limits the number of DNA-binding motifs

PLOS ONE | https://doi.org/10.1371/journal.pone.0263307 January 28, 2022 10 / 13

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0263307.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0263307.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0263307.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0263307.s004
https://doi.org/10.1371/journal.pone.0263307


S5 Fig. Histogram for the number of potential unique sequence instances belonging to a

SwissRegulon Fantom5 TFBS motif, calculated from the corresponding regular expres-

sion.

(TIFF)

S6 Fig. Cumulative distribution function of the potential occupancy of the protein

sequence space by TFBS motifs for different numbers of motif-discriminating positions.

Black: 1 position. Green: 2 positions. Blue: 3 positions. Orange: 4 positions. Brown: 5 positions.

Purple: 6 positions. Pink: 7 positions. Cyan: 8 positions. Magenta: 9 positions. Light green: 10

positions.

(TIFF)

S7 Fig. Potential occupancy of the protein sequence space by TFBS motifs for different

numbers of motif-discriminating positions, as a function of alphabet size. Black: 1 position.

Red: 2 positions. Blue: 3 positions. Green: 4 positions.

(TIFF)

S1 Text. Example calculations.

(DOCX)

S1 File. All TFBS regular expressions and data used in the figures.

(ZIP)

Acknowledgments

We would like to thank Dr Yana Bromberg for discussion of an earlier version of this work.

Author Contributions

Conceptualization: Ariel A. Aptekmann, Alejandro D. Nadra, Ignacio E. Sánchez.

Data curation: Ariel A. Aptekmann, Denys Bulavka, Ignacio E. Sánchez.

Formal analysis: Ariel A. Aptekmann, Denys Bulavka, Alejandro D. Nadra, Ignacio E.

Sánchez.

Investigation: Ariel A. Aptekmann, Denys Bulavka, Alejandro D. Nadra, Ignacio E. Sánchez.

Methodology: Ariel A. Aptekmann, Denys Bulavka, Ignacio E. Sánchez.

Project administration: Ignacio E. Sánchez.

Resources: Ariel A. Aptekmann, Denys Bulavka.

Software: Ariel A. Aptekmann, Denys Bulavka.

Supervision: Ariel A. Aptekmann, Alejandro D. Nadra, Ignacio E. Sánchez.

Validation: Ariel A. Aptekmann, Ignacio E. Sánchez.

Visualization: Ariel A. Aptekmann, Ignacio E. Sánchez.

Writing – original draft: Ariel A. Aptekmann, Alejandro D. Nadra, Ignacio E. Sánchez.

Writing – review & editing: Ariel A. Aptekmann, Alejandro D. Nadra, Ignacio E. Sánchez.

PLOS ONE Transcription factor specificity limits the number of DNA-binding motifs

PLOS ONE | https://doi.org/10.1371/journal.pone.0263307 January 28, 2022 11 / 13

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0263307.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0263307.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0263307.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0263307.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0263307.s009
https://doi.org/10.1371/journal.pone.0263307


References
1. Govindarajan S, Recabarren R, Goldstein Richard A. Estimating the total number of protein folds. Pro-

teins: Structure, Function, and Bioinformatics. 1999; 35(4):408–414. https://doi.org/10.1002/(SICI)

1097-0134(19990601)35:4%3C408::AID-PROT4%3E3.0.CO;2-A PMID: 10382668

2. Wolf Yuri I, Grishin Nick V, Koonin Eugene V. Estimating the number of protein folds and families from

complete genome data. Journal of molecular biology. 2000; 299:897–905. https://doi.org/10.1006/jmbi.

2000.3786

3. Aloy P, Russell RB. Ten thousand interactions for the molecular biologist. Nature biotechnology. 2004;

22:1317–1321. https://doi.org/10.1038/nbt1018 PMID: 15470473

4. Tompa P, Davey N, Gibson T, Babu M. A million peptide motifs for the molecular biologist. Mol Cell.

2014; 55(2):161–169. https://doi.org/10.1016/j.molcel.2014.05.032 PMID: 25038412

5. Bulavka D, Aptekmann AA, Méndez NA, Krick T, Sánchez IE. Thousands of protein linear motif classes

may still be undiscovered. PLoS ONE. 2021; 5(16):e0248841. https://doi.org/10.1371/journal.pone.

0248841 PMID: 33939703

6. Rohs R, Jin X, West SM, Joshi R, Honig B, Mann RS. Origins of specificity in protein-DNA recognition.

Annual review of biochemistry. 2010; 79:233–269. https://doi.org/10.1146/annurev-biochem-060408-

091030 PMID: 20334529

7. Babu MM, Luscombe NM, Aravind L, Gerstein M, Teichmann SA. Structure and evolution of transcrip-

tional regulatory networks. Current opinion in structural biology. 2004; 14(3):283–291. https://doi.org/

10.1016/j.sbi.2004.05.004 PMID: 15193307

8. Jolma A, Yan J, Whitington T, Toivonen J, Nitta K, Rastas P, et al. DNA-Binding Specificities of Human

Transcription Factors. Cell. 2013; 152(1-2):327–339. https://doi.org/10.1016/j.cell.2012.12.009 PMID:

23332764

9. Friedlander T, Prizak R, Guet CC, Barton NH, Tkačik G. Intrinsic limits to gene regulation by global

crosstalk. Nature Communications. 2016; 7:1–12. https://doi.org/10.1038/ncomms12307 PMID:

27489144

10. Schneider TD, Stephens RM. Sequence logos: a new way to display consensus sequences. Nucleic

acids research. 1990; 18(20):6097–6100. https://doi.org/10.1093/nar/18.20.6097 PMID: 2172928

11. Pachkov M, Erb I, Molina N, Van Nimwegen E. SwissRegulon: a database of genome-wide annotations

of regulatory sites. Nucleic acids research. 2006; 35(suppl_1):D127–D131. https://doi.org/10.1093/nar/

gkl857 PMID: 17130146

12. Pachkov M, Balwierz PJ, Arnold P, Ozonov E, Van Nimwegen E. SwissRegulon, a database of

genome-wide annotations of regulatory sites: recent updates. Nucleic acids research. 2012; 41(D1):

D214–D220. https://doi.org/10.1093/nar/gks1145 PMID: 23180783

13. Itzkovitz S, Tlusty T, Alon U. Coding limits on the number of transcription factors. BMC genomics. 2006;

7(1):239. https://doi.org/10.1186/1471-2164-7-239 PMID: 16984633

14. Marathe A, Condon AE, Corn RM. On combinatorial DNA word design. Journal of Computational Biol-

ogy. 2001; 8(3):201–219. https://doi.org/10.1089/10665270152530818 PMID: 11535173

15. Sood Ankur J, Viner C, Hoffman Michael M. DNAmod: the DNA modification database. Journal of che-

minformatics. 2019; 11(1):30. https://doi.org/10.1186/s13321-019-0349-4

16. Ehrlich M, Wilson Geoffrey G, Kuo Kenneth C, Gehrke Charles W. N4-methylcytosine as a minor base

in bacterial DNA. Journal of bacteriology. 1987; 169(3):939–9432. https://doi.org/10.1128/jb.169.3.939-

943.1987 PMID: 3029036

17. Bachman M, Uribe-Lewis S, Yang X, Williams M, Murrell A, Balasubramanian S. 5-Hydroxymethylcyto-

sine is a predominantly stable DNA modification. Nature chemistry. 2014; 6(12):1049–1055. https://doi.

org/10.1038/nchem.2064 PMID: 25411882

18. Neri F, Incarnato D, Krepelova A, Rapelli S, Anselmi F, Parlato C, et al. Single-Base Resolution Analy-

sis of 5-Formyl and 5-Carboxyl Cytosine Reveals Promoter DNA Methylation Dynamics. Cell Reports.

2015; 10(5):674–683. https://doi.org/10.1016/j.celrep.2015.01.008 PMID: 25660018

19. Fu Y, Luo GZ, Chen K, Deng X, Yu M, Han D, et al. N6-methyldeoxyadenosine marks active transcrip-

tion start sites in Chlamydomonas. Cell. 2015; 161(4):879–892. https://doi.org/10.1016/j.cell.2015.04.

010 PMID: 25936837

20. Fleming Aaron M, Ding Y, Burrows CJ. Oxidative DNA damage is epigenetic by regulating gene tran-

scription via base excision repair. Proceedings of the National Academy of Sciences. 2017; 114(10):

2604–2609. https://doi.org/10.1073/pnas.1619809114

21. Yin Y, Morgunova E, Jolma A, Kaasinen E, Sahu B, Khund-Sayeed S, et al. Impact of cytosine methyla-

tion on DNA binding specificities of human transcription factors. Science. 2017; 356 (6337). https://doi.

org/10.1126/science.aaj2239 PMID: 28473536

PLOS ONE Transcription factor specificity limits the number of DNA-binding motifs

PLOS ONE | https://doi.org/10.1371/journal.pone.0263307 January 28, 2022 12 / 13

https://doi.org/10.1002/(SICI)1097-0134(19990601)35:4%3C408::AID-PROT4%3E3.0.CO;2-A
https://doi.org/10.1002/(SICI)1097-0134(19990601)35:4%3C408::AID-PROT4%3E3.0.CO;2-A
http://www.ncbi.nlm.nih.gov/pubmed/10382668
https://doi.org/10.1006/jmbi.2000.3786
https://doi.org/10.1006/jmbi.2000.3786
https://doi.org/10.1038/nbt1018
http://www.ncbi.nlm.nih.gov/pubmed/15470473
https://doi.org/10.1016/j.molcel.2014.05.032
http://www.ncbi.nlm.nih.gov/pubmed/25038412
https://doi.org/10.1371/journal.pone.0248841
https://doi.org/10.1371/journal.pone.0248841
http://www.ncbi.nlm.nih.gov/pubmed/33939703
https://doi.org/10.1146/annurev-biochem-060408-091030
https://doi.org/10.1146/annurev-biochem-060408-091030
http://www.ncbi.nlm.nih.gov/pubmed/20334529
https://doi.org/10.1016/j.sbi.2004.05.004
https://doi.org/10.1016/j.sbi.2004.05.004
http://www.ncbi.nlm.nih.gov/pubmed/15193307
https://doi.org/10.1016/j.cell.2012.12.009
http://www.ncbi.nlm.nih.gov/pubmed/23332764
https://doi.org/10.1038/ncomms12307
http://www.ncbi.nlm.nih.gov/pubmed/27489144
https://doi.org/10.1093/nar/18.20.6097
http://www.ncbi.nlm.nih.gov/pubmed/2172928
https://doi.org/10.1093/nar/gkl857
https://doi.org/10.1093/nar/gkl857
http://www.ncbi.nlm.nih.gov/pubmed/17130146
https://doi.org/10.1093/nar/gks1145
http://www.ncbi.nlm.nih.gov/pubmed/23180783
https://doi.org/10.1186/1471-2164-7-239
http://www.ncbi.nlm.nih.gov/pubmed/16984633
https://doi.org/10.1089/10665270152530818
http://www.ncbi.nlm.nih.gov/pubmed/11535173
https://doi.org/10.1186/s13321-019-0349-4
https://doi.org/10.1128/jb.169.3.939-943.1987
https://doi.org/10.1128/jb.169.3.939-943.1987
http://www.ncbi.nlm.nih.gov/pubmed/3029036
https://doi.org/10.1038/nchem.2064
https://doi.org/10.1038/nchem.2064
http://www.ncbi.nlm.nih.gov/pubmed/25411882
https://doi.org/10.1016/j.celrep.2015.01.008
http://www.ncbi.nlm.nih.gov/pubmed/25660018
https://doi.org/10.1016/j.cell.2015.04.010
https://doi.org/10.1016/j.cell.2015.04.010
http://www.ncbi.nlm.nih.gov/pubmed/25936837
https://doi.org/10.1073/pnas.1619809114
https://doi.org/10.1126/science.aaj2239
https://doi.org/10.1126/science.aaj2239
http://www.ncbi.nlm.nih.gov/pubmed/28473536
https://doi.org/10.1371/journal.pone.0263307


22. Itzkovitz S, Alon U. The genetic code is nearly optimal for allowing additional information within protein-

coding sequences. Genome Res. 2007; 17(4):405–412. https://doi.org/10.1101/gr.5987307 PMID:

17293451

23. Schneider T. Strong minor groove base conservation in sequence logos implies DNA distortion or base

flipping during replication and transcription initiation. Nucleic acids research. 2001; 29:4881–4891.

https://doi.org/10.1093/nar/29.23.4881 PMID: 11726698

24. Shannon CE. A mathematical theory of communication, Part I, Part II. Bell Syst Tech J. 1948; 27:623–

656. https://doi.org/10.1002/j.1538-7305.1948.tb00917.x

25. Weirauch MT, Yang A, Albu M, Cote AG, Montenegro-Montero A, Drewe P, et al. Determination and

inference of eukaryotic transcription factor sequence specificity. Cell. 2014; 158(6):1431–1443. https://

doi.org/10.1016/j.cell.2014.08.009 PMID: 25215497

26. von Hippel PH, Berg OG. Facilitated target location in biological systems. J Biol Chem. 1989; 264

(2):675–678. https://doi.org/10.1016/S0021-9258(19)84994-3 PMID: 2642903

27. Sengupta AM, Djordjevic M, Shraiman BI. Specificity and robustness in transcription control networks.

Proceedings of the National Academy of Sciences. 2002; 99(4):2072–2077. https://doi.org/10.1073/

pnas.022388499 PMID: 11854503

28. Bejerano G, Pheasant M, Makunin I, Stephen S, Kent WJ, Mattick JS, et al. Ultraconserved elements in

the human genome. Science. 2004; 304(5675):1321–1325. https://doi.org/10.1126/science.1098119

PMID: 15131266

29. Szoniec G, Ogorzalek MJ. Entropy of never born protein sequences. Springerplus. 2013; 2(1):200.

https://doi.org/10.1186/2193-1801-2-200 PMID: 23750329

30. Verbič A, Praznik A, Jerala R. A guide to the design of synthetic gene networks in mammalian cells.

FEBS J. 2020. PMID: 33289352

PLOS ONE Transcription factor specificity limits the number of DNA-binding motifs

PLOS ONE | https://doi.org/10.1371/journal.pone.0263307 January 28, 2022 13 / 13

https://doi.org/10.1101/gr.5987307
http://www.ncbi.nlm.nih.gov/pubmed/17293451
https://doi.org/10.1093/nar/29.23.4881
http://www.ncbi.nlm.nih.gov/pubmed/11726698
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
https://doi.org/10.1016/j.cell.2014.08.009
https://doi.org/10.1016/j.cell.2014.08.009
http://www.ncbi.nlm.nih.gov/pubmed/25215497
https://doi.org/10.1016/S0021-9258(19)84994-3
http://www.ncbi.nlm.nih.gov/pubmed/2642903
https://doi.org/10.1073/pnas.022388499
https://doi.org/10.1073/pnas.022388499
http://www.ncbi.nlm.nih.gov/pubmed/11854503
https://doi.org/10.1126/science.1098119
http://www.ncbi.nlm.nih.gov/pubmed/15131266
https://doi.org/10.1186/2193-1801-2-200
http://www.ncbi.nlm.nih.gov/pubmed/23750329
http://www.ncbi.nlm.nih.gov/pubmed/33289352
https://doi.org/10.1371/journal.pone.0263307

