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Background: Triple-negative breast cancer (TNBC) has significantly worse prognosis. Acquired chemoresistance remains the
major cause of therapeutic failure of TNBC. In clinic, the relapsed TNBC is commonly pan-resistant to various drugs with
completely different resistant mechanisms. Investigation of the mechanisms and development of new drugs to target
pan-chemoresistance will potentially improve the therapeutic outcomes of TNBC patients.

Methods: In this study, 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT), combination index (CI)–isobologram, western
blot, ALDEFLUOR analysis, clonogenic assay and immunocytochemistry were used.

Results: The chemoresistant MDA-MB-231PAC10 cells are highly cross-resistant to paclitaxel (PAC), cisplatin (CDDP), docetaxel and
doxorubicin. The MDA-MB-231PAC10 cells are quiescent with significantly longer doubling time (64.9 vs 31.7 h). This may be caused
by high expression of p21Waf1. The MDA-MB-231PAC10 cells express high aldehyde dehydrogenase (ALDH) activity and a panel of
embryonic stem cell-related proteins, for example, Oct4, Sox2, Nanog and nuclealisation of HIF2a and NF-kBp65. We have
previously reported that disulfiram (DS), an antialcoholism drug, targets cancer stem cells (CSCs) and enhances cytotoxicity of
anticancer drugs. Disulfiram abolished CSC characters and completely reversed PAC and CDDP resistance in MDA-MB-231PAC10

cells.

Conclusion: Cancer stem cells may be responsible for acquired pan-chemoresistance. As a drug used in clinic, DS may be
repurposed as a CSC inhibitor to reverse the acquired pan-chemoresistance.

Triple-negative breast cancer (TNBC) is an aggressive variant of
breast cancer. Because of lack of molecular target to be tackled,
there are very few chemotherapeutic agents available for TNBC
chemotherapy. Paclitaxel (PAC) is one of the first-line therapeutic
agents in chemotherapy of the early-stage and metastatic TNBC.
Paclitaxel targets cancer cells mainly by binding to and stabilising
microtubules (Schiff et al, 1979), arresting cancer cells in G2/M

mitotic checkpoint and subsequently inducing apoptosis via an
intrinsic apoptotic pathway (Ferlini et al, 2009).

As with other anticancer drugs, TNBC can develop an acquired
resistance after repeated exposure to PAC. The acquired chemore-
sistance remains a major hurdle for the PAC-based chemotherapy.
The most recognised resistant mechanisms include overexpression
of P-glycoprotein (Pgp/MDR1) and alterations in microtubule
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system (Trock et al, 1997; Kavallaris, 2010). The acquired PAC
resistance can also be introduced by mutations in tubulin that
modulate the binding affinity of PAC to microtubules. The
following molecular mechanisms are also related to PAC
resistance; for example, HER2 overexpression (Knuefermann
et al, 2003) altered apoptotic and molecular signalling pathways
(Takahashi et al, 2005). Chemotherapy would be benefited from
identifying new compounds to target alternative chemoresistant
pathways and sensitise cancer cells to classical anticancer drugs.

It has been suggested that human breast cancer contains a small
population of cancer stem cells (CSCs) that can be detected by the
expression of stem cell markers (aldehyde dehydrogenases
(ALDHs), CD24Low/CD44High) and activation of embryonic-
related pathways (Sox2, Oct4, Nanog) (Tirino et al, 2013). Breast
cancer stem cells (BCSCs) are slow-cycling and quiescent
population expressing high levels of Pgp (Dean, 2009). The TNBC
cells with CSC phenotypes are resistant to a variety of conventional
anticancer drugs with poor prognosis (Dean, 2009; Ohi et al, 2011).
Targeting CSCs may improve the outcomes of TNBC chemotherapy
(Deng et al, 2012).

Disulfiram (DS), a commercially available antialcoholism drug
(Schreck et al, 1992), shows anticancer activity in vitro and in vivo
(Chen et al, 2006; Yip et al, 2011). It also potentiates cyclopho-
sphamide, cisplatin and radiation in vitro and protects normal cells
in kidney, gut and bone marrow in vivo while increasing the
therapeutic index of cytotoxic drugs (Hacker et al, 1982; Bodenner
et al, 1986). Our previous studies demonstrate that DS enhances
5-fluorouracil (5-FU)-, PAC- and gemcitabine (dFdC)-induced
apoptosis in colon and breast cancer cell lines (Wang et al, 2003;
Guo et al, 2010; Yip et al, 2011). The randomised clinical trial
indicates that in combination with chemotherapy, ditiocarb, the
derivative of DS, significantly improves the 5-year overall survival
of high-risk breast cancer patients (Dufour et al, 1993). The
anticancer activity of DS is copper (Cu) dependent (Cen et al, 2004;
Chen et al, 2006). Copper plays a crucial role in redox reactions
and triggers the generation of reactive oxygen species (ROS) in
human cells. The DS/Cu is a strong ROS inducer (Nobel et al,
1995) and proteasome–NF-kB pathway inhibitor (Chen et al,
2006). Disulfiram specifically inhibits the activity of ALDH, a
functional CSC marker and ROS scavenger (Estey et al, 2007;
Ginestier et al, 2007). A combination of DS with Cu may target
cancer cells by simultaneous modulation of both ROS and NF-kB.
Disulfiram and its metabolites can also covalently modify cysteine
residues within the nucleotide-binding domain of Pgp and
permanently inhibit Pgp activity (Loo et al, 2004). This will
potentially reverse multidrug resistance.

In clinic, the relapsed TNBC is commonly pan-resistant to
anticancer drugs with completely different resistant mechanisms.
In this study, we demonstrated that MDA-MB-231PAC10 cells
express various CSC markers and are cross-resistant to cisplatin
(CDDP), docetaxel (DOC) and doxorubicin (DOX). Disulfiram
eradicates CSC characters and reverses PAC and CDDP resistance
in MDA-MB-231PAC10 cells.

MATERIALS AND METHODS

Cell lines and reagents. The PAC-resistant cell line MDA-MB-
231PAC10 (PAC10) was generated from MDA-MB-231 (MDA)
(purchased from ATCC, Middlesex, UK) by continuously cultured
in medium containing PAC (Sigma, Dorset, UK) in a stepwise
concentration-increasing procedure. Cisplatin, DOC, DOX, DS
and copper (II) chloride (CuCl2) were purchased from Sigma.

Cell culture and cytotoxicity analysis. All cell lines were
cultured in DMEM (Lonza, Wokingham, UK) supplemented
with 10% FCS, 50 units ml� 1 penicillin and 50mg ml� 1 streptomycin.

The MDA-MB-231PAC10 cells were maintained in the medium
containing 10 nM of PAC. For in vitro cytotoxicity assay, the
overnight cultured cells (5000 per well) in 96-well flat-bottomed
microtiter plates were exposed to drugs for 72 h (PAC) or 120 h
(CDDP) and subjected to a standard MTT assay (Plumb et al, 1989).

Analysis of the combinational effect of PACþDS/Cu and
CDDPþDS/Cu by CI–isobologram. Overnight cultured cells
were exposed to various concentrations of PAC, CDDP, DS/Cu1 mM

or in combination of PAC/DS/Cu1 mM or CDDP/DS/Cu1 mM at a
constant ratio of PAC/DS (10 : 1) and CDDP/DS (500 : 1)
determined by IC50 data generated from previous experiments.
The cells were exposed to DS/Cu for 4 h and then cultured in
DS/Cu-free fresh medium containing PAC or CDDP for another
72 and 120 h, respectively, and subjected to MTT analysis as
described above. The combinational cytotoxicity of PAC/DS/
Cu1 mM and CDDP/DS/Cu1 mM was analysed by combination index
(CI)–isobologram analysis using CalcuSyn software (Biosoft,
Cambridge, UK) (Chou and Talalay, 1984). The CI was determined
by mutually exclusive equations.

Growth curves and doubling time analysis. The cells (5� 103

cells per well) were cultured in 24-well plates in triplicate. The cells
were collected by trypsinisation and cell numbers in each of three
wells were counted every 24 h for 120 h. The cell doubling time was
calculated using the program from the Doubling Time Online
Calculator http://www.doubling-time.com/compute.php.

Clonogenic assay. Cells (5� 104 cells per well) were cultured in
six-well plates overnight and then exposed to designated
concentration of DS in combination with 1mM CuCl2 (DS/Cu1 mM)
for 4 h or PAC (20 nM) for 72 h. The cells were collected and
further cultured for 10 days in six-well plates containing drug-free
medium at a cell density of 2.5� 103 cells per well. Clonogenic cells
were determined as those able to form a colony consisting of at
least 50 cells.

Western blotting analysis. The protein expression levels were
determined by staining with primary antibodies and relevant HRP-
conjugated secondary antibodies. The primary antibodies (Bcl2,
Bax, MDR1, p53, p21, p65, CDK2, cyclin D1 and cyclin E supplied
by Santa Cruz, Dallas, TX, USA; HIF2a, Sox2 and Oct4 by Cell
Signaling, Herts, UK) were diluted in a ratio of 1 : 1000 in 5%
fat-free milk-TBST. Anti-a-tubulin (Amersham, Buckinghamshire,
UK; 1 : 8000 diluted) and nucleolin (Sigma) were used as a loading
control. The signal was detected using an ECL western blotting
detection kit (GeneFlow, Dallas, TX, USA, Staffordshire, UK).
The strength of western blotting bands was determined by ImageJ
density measurement program (http://imagej.en.softonic.com).

Immunofluorescent flow cytometry and confocal microscopy.
The expression of Nanog, Oct4 and Sox2 was determined by
immunofluorescent flow cytometry and confocal microscopy. For
immunocytochemistry confocal microscopy analysis, the cells were
grown on culturing chamber slide (Sigma) overnight and fixed by
acetone/methanol and permeabilised by 0.1% Triton X-100. After
being blocked with 3% BSA for 1 h, the cells were stained with
primary antibodies (1 : 50 dilution) and FITC-conjugated second-
ary antibody for 1 h at RT. The coverslips were mounted on glass
slides with VectaShield mounting media containing the nucleic
acid stain, 4,6-diamidino-2-phenylindole (DAPI; Vector Labora-
tories Inc., Burlingame, CA, USA), and examined by laser scanning
confocal microscopy using a Zeiss Axiovert 200 microscope and
ZEN 2009 software (Carl Zeiss Canada Ltd, Mississauga, ON,
Canada). For immunofluorescent flow cytometric analysis, the cells
were cultured in T25 flasks until 80% confluence and collected by
trypsinisation. The cells were stained in suspension using the same
concentration of antibodies and procedure as immunocytochem-
istry analysis. The positively stained population was detected using
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a FACSCalibur flow cytometer with 488-nm blue laser and
standard FITC 530/30 nm bandpass filter.

Flow cytometric analysis of DNA content. The untreated and
drug-treated cells (1� 106) were harvested by trypsinisation. The
cells were fixed in 70% ethanol and then incubated with RNase
A (100 mg ml� 1) and propidium iodide (Sigma, 50 mg ml� 1) for
30 min. The data from 10 000 cells of each sample were collected by
FACS Scan (Becton Dickinson, NJ, USA) and the DNA contents
were analysed using CellQuest software (BD Biosciences,
Oxford, UK).

Flow cytometric analysis of ALDH activity. The parental and
PAC-resistant cells (2.5� 105) were stained for 30 min at 37 1C
using ALDEFLUOR kit (StemCell Tech., Durham, NC, USA)
following the manufacturer’s instructions. Cells treated with
diethylaminobenzaldehyde (DEAB), a specific ALDH inhibitor,
were used as a control to determine the specificity of ALDEFLUOR
assay. The ALDHþ population was detected using a FACSCalibur
flow cytometer with 488-nm blue laser and standard FITC
530/30 nm bandpass filter. The ALDHþ cells were determined
by dot plot.

Statistical analysis. The data statistical analysis in this study was
performed using Student’s t-test.

RESULTS

MDA-MB-231PAC10 cell line is pan-resistant to anticancer
drugs. First, the cytotoxic effect of PAC on both sensitive and
resistant cell lines was compared by MTT assay (Table 1 and
Figure 1A). The MDA-MB-231 cells are sensitive to the
cytotoxicity of PAC with an IC50_72 h of 8.7 nM. In contrast, the
MDA-MB-231PAC10 cell line is highly resistant to PAC with an
IC50_72 h of over 1000 nM. The cytotoxic effect of CDDP, DOC and
DOX on MDA-MB-231PAC10 cell line was also evaluated. Table 1
and Figure 1B demonstrate that MDA-MB-231PAC10 cells are also
significantly cross-resistant to CDDP, DOC and DOX. In line with
the MTT data, PAC (20 nM) abolished the clonogenicity of the
parental cell line but had no effect on MDA-MB-231PAC10 cells
(Figure 1C and D). Because of the slower proliferation rate, the
colonies developed from the resistant cell line are smaller than that
from the parental cell line (Figure 1C). The overexpression of
MDR1 is the most common mechanism involved in multidrug
resistance that includes PAC resistance. High expression of Pgp

was detected in the resistant cell line by western blot (Figure 1E).
Paclitaxel induces apoptosis mainly via intrinsic apoptotic pathway
(Ferlini et al, 2009). Therefore, the protein expression status of Bax
and Bcl2, the two major components involved in intrinsic
apoptotic pathway, was examined by western blot. Figure 1F
shows that MDA-MB-231PAC10 cell line expresses significantly
higher background levels of Bcl2 protein than those in the parental
cells. The Bcl2/Bax ratio in the resistant cell line is markedly higher
than that in the parental cell line.

Resistance of MDA-MB-231PAC10 cell line to PAC-induced
apoptosis. After a 72-h exposure to 20 nM PAC, the phase-
contrast microscopic images demonstrate apoptotic morphologies
(cell blebbing and nuclear condensation and fragmentation) in
MDA-MB-231 but not in the MDA-MB-231PAC10-resistant cells
(Figure 2A). Flow cytometry DNA content analysis manifested that
PAC induced a significantly higher (Po0.01) apoptotic sub-G1
population (30.4%) in the parental cell line than those in the
untreated cells (0.4%). Paclitaxel (20 nM, 72 h) also introduced
G2/M-phase blockade leading to an increased G2/M population
(untreated: 17.9%, treated: 36.4%; Po0.01) and a decreased G0/G1
population (dropped from 64.9 to 15.6%, Po0.01; Figure 2B and C)
in the parental cell line. In contrast, there is no significant effect of
PAC on the apoptotic status in the resistant cells. The cell cycle
status in MDA-MB-231PAC10 cell line is also not affected by PAC
exposure (Figure 2D). Paclitaxel exposure induces Bax expression
leading to high Bax/Bcl2 ratio in the parental cells but not the
resistant cells (Figure 2E).

MDA-MB-231PAC10 has longer doubling time. In the cell
culture, the MDA-MB-231PAC10 cells grow markedly slower than
MDA-MB-231 cells. Therefore, we compared the doubling time
and cell cycle parameters in these two cell lines. Figure 3A shows
the growth curves of both cell lines. The doubling time of
MDA-MB-231PAC10 cells (64.9 h) is significantly longer than that
of the sensitive cells (31.7 h; Po0.01). Flow cytometry analysis
shows that in comparison with the parental cell line, the MDA-
MB-231PAC10 cells have significantly higher G0/G1 and lower
S-phase population (Figure 3B and C). The expression levels of
cell cycle-determinant proteins were examined by western blot.
Figure 3D shows the western blotting image and relative band
density analysed by ImageJ program. The relative density ((Target
protein/Tubulin)� 100) of p21 protein is markedly higher in the
resistant cell line. The other moderately upregulated proteins
include p53, cyclin D1 and cyclin E.

MDA-MB-231PAC10 cells demonstrate CSC characteristics. It
has been widely accepted that CSCs are responsible for chemo- and
radio-resistance (Dean, 2009). The resistant cell line is slow cycling
with high expression of p21 protein and expresses high levels of
Pgp, which are the common features in CSCs (Tirino et al, 2013).
Therefore, we examined CSC markers in the resistant and parental
cell lines. High ALDH activity is a functional marker of CSCs
derived from different cancer types including breast cancer. Figures 3E
and G show that in comparison with the parental cells, the
MDA-MB-231PAC10 cell line possesses higher ALDHþ population
that also expresses higher levels of embryonic stem cell markers
(Oct4, Sox2 and Nanog). The overexpression of Oct4 and Sox2
protein was detected in nuclear protein by western blotting assay
(Figure 3G). High expression of Oct4 and Sox2 in the resistant cell
line was detected by immunofluorescent confocal microscopy
(Figure 3H). The nuclear translocation of Oct4 was detected but for
some unknown reason Sox2 nuclear translocation was not detected
by immunocytochemistry. The specificity of ALDEFLUOR assay
was determined by treating the cells with DEAB, a specific
inhibitor of ALDH (Figure 3F). The expression of NF-kB and
HIF2a protein was also examined by western blotting analysis
because emerging evidence indicates that hypoxia and NF-kB are

Table 1. Cytotoxicity of disulfiram and conventional anticancer drugs to
MDA-MB-231 and MDA-MB-231PAC10 BC cell lines

PAC CDDP DOC DOX DS

IC50

MDA 8.7 (2.3) 256.7 (26.1) 4.6 (3.3) 27.6 (2.5) 151.9 (12.1)
MDAPAC10 41000** 645.4* (127.3) 4250** 1575** (169.3) 116.4 (30.0)

CI value

IC50 0.61 0.64 NA NA NA
IC75 0.64 0.41 NA NA NA
IC90 0.72 0.28 NA NA NA

Abbreviations: CDDP¼ cisplatin; CI¼ combination index; DOC¼docetaxel; DOX¼
doxorubicin; DS¼disulfiram; IC¼ inhibitory concentration; NA¼not available; PAC¼
paclitaxel. The half-maximal inhibitory concentration (IC50) value (nM) from three experi-
ments (mean (s.d.)) is shown. *Po0.05, **Po0.01 (n¼ 3). The CI value lower than 1.0:
synergistic effect. The cells were exposed to drug for 72 or 120 h (CDDP). DS/Cu¼DS in
medium supplemented with 1mM CuCl2.
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responsible for maintaining stemness in CSCs (Hinohara et al,
2012). In comparison with the parental cell line, higher levels of
HIF2a and NF-kBp65 protein were detected in the nuclear extract
of MDA-MB-231PAC10 cells. The expression levels of NF-kBp65 in
whole-cell lysate are comparable in the resistant and parental cell
lines (Figure 3G).

Disulfiram is highly cytotoxic in MDA-MB-231PAC10 cells. Our
previous studies demonstrate that DS is a strong CSC inhibitor and
highly cytotoxic to a wide range of cancer cell lines (Yip et al, 2011;
Liu et al, 2012). In spite of resistance to PAC and CDDP, the
sensitivity of MDA-MB-231PAC10 cell line to DS is comparable to
that of parental cells (Figure 4A and Table 1). The clonogenecity of
both parental and resistant cell lines is completely abolished after
very short exposure (4 h) to DS1mM/Cu1 mM (Figure 4B). The DS/Cu
induces apoptosis in MDA-MB-231PAC10 cells. After exposure to
DS/Cu for 24 h, massive apoptotic cells were detected (Figure 4C
and D). The DS/Cu inhibits and induces the expression of Bcl2
and Bax in MDA-MB-231PAC10 cells, respectively, leading to

significantly increased Bax/Bcl2 ratio in the resistant cell line
(Figure 4E). Although DS is a specific inhibitor of MDR1 enzyme
activity, the protein expression of Pgp in MDA-MB-231PAC10 cell
line was not affected by DS/Cu (Figure 4F). The effect of DS/Cu on
cell cycle-regulating proteins was analysed by western blot.
Figure 4G shows that DS/Cu induces the expression of p21 and
p53 protein but has no effect on CDK2, Cyclin D1 and E.

Disulfiram inhibits CSC marker expression and reverses PAC
and CDDP resistance in MDA-MB-231PAC10 cells. The MDA-
MB-231PAC10 cell line is composed of high population of cells
expressing stem cell markers that may play a key role in the pan-
resistance. Furthermore, we examined if DS/Cu inhibits the CSCs
in the resistant cell line. The ALDH activity in the resistant cell line
is inhibited after 4 h of exposure to DS/Cu. In addition, DS/Cu
inhibits the expression of Sox2 and Nanog in the resistant cells
(Figure 5A). We also examined if DS/Cu can enhance cytotoxicity
of PAC and CDDP and reverse PAC and CDDP resistance in
MDA-MB-231PAC10 cell line. In combination with DS/Cu the
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cytoxicity of PAC and CDDP in MDA-MB-231PAC10 cells is
significantly higher than PAC, CDDP or DS/Cu single-drug
exposure (Figure 5B–E). The CI–isobologram indicates that the
cytotoxicity of DS/Cuþ PAC is synergistic in a wide range of
concentrations (IC50� IC90, Figure 5F and G and Table 1).

DISCUSSION

Triple-negative breast cancer has worse chemotherapeutic out-
comes than other BC subtypes, with at best 12 months of median
survival of advanced TNBC (Gelmon et al, 2012). Although in the
recent years taxane- and platin-based primary chemotherapy
demonstrates efficacy (Frasci et al, 2009), TNBC commonly

acquires chemoresistance and the relapsed cancer is commonly
pan-resistant to all anticancer agents (Borst, 2012).

The MDA-MB-231PAC10 cell line is highly resistant to PAC-
induced cytotoxicity (4115-fold), inhibition of clonogenicity
(B400-fold) and apoptosis (B75-fold). It is also significantly
cross-resistant to CDDP, DOC and DOX. The resistant cells have
significantly lower proliferation rate and longer doubling time with
higher proportion of cells blocked in the G0/G1 phase. It has been
known for long time that classical anticancer agents primarily
target cycling cancer cells. The quiescent cancer cell population
located in the G0/G1 phase is resistant to chemotherapeutic agents
(Shah and Schwartz, 2001; Guo et al, 2008). Paclitaxel is pre-
dominately an M-phase-specific drug that stabilises microtubules
causing an M-phase arrest followed by apoptosis (Schiff et al, 1979).
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Similarly, CDDP, DOC and DOX can only target the cycling and
proliferating cells. Therefore, all of these drugs may lose their
anticancer activity if the cancer cells are prevented from entering
cell cycle by G0/G1-phase arrest. The p21Waf1 is a CDK inhibitor
inactivating the activity of cyclin A, E and CDK2 that are essential
for G1/S transition. Overexpression of p21Waf1 induces anticancer
drug resistance (Bunz et al, 1999; Lazzarini et al, 2008). Western
blot shows that p21Waf1 protein is massively upregulated in the
resistant cell line. Because MDA-MB-231 is p53 mutant (Phalke
et al, 2012), the upregulation of p21Waf1 in the resistant cell line is
p53 independent. The high p21Waf1 expression may be responsible
for the G0/G1 block in the resistant cell line. It has been
demonstrated that bryostatin-1 induced PAC resistance via
upregulation of p21Waf1 (Koutcher et al, 2000). Flavopiridol and
bryostatin-1 are CDK inhibitors that slow down cell cycle. After
pre-exposure to flavopiridol or bryostatin-1, breast cancer cells
become highly resistant to PAC because of flavopiridol- and
bryostatin-1-induced G0/G1 arrest. The cell cycle disturbance
may be one of the determinants of PAC resistance in the
MDA-MB-231PAC10 cell line. Previous studies indicate that over-
expression of p21 and cell cycle perturbations can also induce
resistance to CDDP, DOC and DOX (Wilkins et al, 1997; Shah and
Schwartz, 2001; Koster et al, 2010). The overexpression of p21 and
cell cycle perturbation in MDA-MB-231PAC10 cell line may be, at

least partly, responsible for its pan-resistance characteristics. In line
with previous report (Trock et al, 1997), markedly overexpressed
Pgp is also detected in the resistant cell line. Although high
expression of Pgp plays a role in PAC resistance, MDR1 has no
influence on cancer cell sensitivity to CDDP. High expression of Bcl2
protein and Bcl2/Bax ratio was detected in MDA-MB-231PAC10

cells that may desensitise the resistant cell line to apoptosis induced
by PAC and other drugs (Ferlini et al, 2009).

The term of CSCs is adopted from normal stem cells. This is
based on the findings that a small proportion (o1%) of cancer
cells possess normal stem cell markers, for example, CD133, CD44,
Nanog, Oct4, Sox2, ALDH and so on. Some studies demonstrated
that this group of cancer cells is responsible for tumour initiation.
However, there are many contradictory reports as well (Clevers,
2011). In contrast with normal stem cells, the CSCs and non-CSCs
are reversible in vitro and in vivo. The stemness status of CSCs is
highly microenvironment dependent. Recent studies suggested that
hypoxia and some hypoxia-regulated transcription factors are the
determinants for the stemness of CSCs (Conley et al, 2012).
Actually, CSCs may reflect the microenvironment-dependent
heterogeneity and epithelial–mesenchymal transition within
tumour tissues. Although the role of CSCs in tumourigenesis is
still debatable, it is widely accepted that the cancer cells expressing
stem cell markers are highly resistant to radio- and chemotherapy
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and are the sources of cancer recurrence (Bjerkvig et al, 2005; Dean
et al, 2005; Clevers, 2011). Also, the cells with CSC markers are
resistant to all different anticancer drugs. Therefore, CSCs may be
the cause of pan-chemoresistance that is a common and a very
serious problem faced in cancer therapeutics. Elimination of these
cells may improve the outcomes of cancer chemotherapy. It has
recently been reported that CSCs are involved in acquired taxane
resistance (Domingo-Domenech et al, 2012; McAuliffe et al, 2013).
In contrast with the fast growing cancer mass, CSCs are slow-
cycling dormant cells expressing stem cell markers. High
expression of Pgp is also a common feature of CSCs (Dean,
2009). Recent reports indicate that p21Waf1 is indispensable for
maintaining the quiescent status, stemness and preventing excess
DNA-damage accumulation in CSCs (Viale et al, 2009). Our
findings in MDA-MB-231PAC10 cell line, for example, high p21
expression, cell cycle slowing down and high expression of Pgp,
indicate that the high population of CSCs in this cell line may play
a crucial role for the pan-resistance. Based upon this hypothesis, we
examined several other CSC phenotypes. High levels of ALDH, a
functional CSC marker, were detected in the resistant cells. The
resistant cell line also expresses higher levels of CD44 (data not
shown). The recent publications (Landen et al, 2010; Schafer et al,
2012) and our unpublished data indicate that high ALDH activity
confers chemoresistance upon cancer cells that can be reversed by
targeting ALDH. High expression of the embryonic stem cell-
associated genes Sox2, Oct4 and Nanog was also detected in the
resistant cell line. Hypoxia-induced HIFs overexpression and NF-
kB pathway activation is responsible for chemoresistance (Wang
et al, 2004) and also the determinant factors for maintaining
stemness of CSCs (Conley et al, 2012). Even cultured in normoxic
condition, the overexpression and nuclear translocation of HIF2a
and NF-kBp65 were detected in the resistant cell line. Further
studies are being performed in our lab to elucidate the relationship
between these factors and CSC-related chemoresistance.

Disulfiram is a very efficacious ALDH inhibitor and CSC-
targeting agent, demonstrating strong chemoresistance-reversing
activity (Yip et al, 2011; Hothi et al, 2012; Liu et al, 2012; Triscott
et al, 2012). Previous clinical studies manifest that DS and its
derivative effectively improve survival of breast and other cancer
patients (Lewison, 1977; Dufour et al, 1993; Brar et al, 2004). In
this study we examined its direct cytotoxicity and resistance-
reversing effect on PAC and CDDP in MDA-MB-231PAC10 cells.
Our results show that in contrast to its high resistance to PAC,
DOC, DOX and CDDP, the MDA-MB-231PAC10 cell line remains
very sensitive to DS-induced cytotoxicity. After exposure to DS for
only 4 h, the clonogenicity of the resistant cell line was completely
eradicated. The CI–isobologram analysis demonstrates that DS
synergistically enhances the cytotoxicity of PAC and CDDP in
MDA-MB-231PAC10 cells. In combination with DS/Cu, the PAC
and CDDP resistance in MDA-MB-231PAC10 cell line is completely
reversed. The stem cell markers, for example, ALDH activity and
the expression of Sox2 and Nanog in the resistant cell line, are
markedly inhibited by DS exposure. Therefore, DS may reverse
pan-chemoresistance in MDA-MB-231PAC10 cell line by targeting
BCSCs. The simultaneous inhibition and induction of Bcl2 and Bax
indicates that DS may induce apoptosis in the resistant cells via an
intrinsic pathway (Guo et al, 2010; Yip et al, 2011; Liu et al, 2012).
Although DS inhibits MDR1 activity (Loo et al, 2004), it has no
effect on the expression of Pgp. There is no effect of DS on cell
cycle status in the resistant cell line. Similar to many other DNA-
targeting agents, DS exposure further induces p21 expression in the
resistant cells. Anticancer stem cell is a hot spot for anticancer drug
development (Zhou et al, 2009). New drug development is a very
time-consuming and costly procedure. Disulfiram has been used as
an antialcoholism drug for over 60 years with preclinical and
clinical safety data available. Therefore, it is relatively easier for
repositioning of it into cancer indication (Cvek, 2012).

CONCLUSIONS

A newly developed PAC-resistant BC cell line, MDA-MB-
231PAC10, is cross-resistant to a panel of different anticancer drugs,
for example, DOC, DOX and CDDP. We first reported that
acquired BC cell line consists of high proportion of cells expressing
CSC markers that may be, at least partly, responsible for its
acquired pan-chemoresistant characteristics. We also manifested
that DS, an antialcoholism drug, abolishes the cancer stem-like
population and efficaciously reverses the PAC and CDDP
resistance in MDA-MB-231PAC10 cell line.
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