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ABSTRACT: Durian peels are an agricultural waste in Asian countries, including Thailand, Indonesia, and Malaysia, which can be
used as a precursor for the production of activated carbon. The objective of this work is to produce activated carbon from durian
peels by chemical activation using sodium sulfite (Na2SO3) as an activating and sulfur-doping agent. The process parameter
investigated in this study was the activation temperature (500−900 °C) at a fixed impregnation ratio (durian to activating agent of
1:1, by weight). Specific surface areas and pore structures were determined by nitrogen adsorption and desorption measurements,
and elemental compositions were characterized by CHNSO analysis. The chemical structure and surface functionality were
examined by X-ray photoelectron spectroscopy. The electrochemical behavior of the obtained activated carbon was characterized in
6 M KOH using a three-electrode configuration. It was found that the sulfur content decreases with activation temperature. In
contrast, the specific surface area of the activated carbon increases with activation temperature. However, the sample activated at 900
°C with the highest specific surface area (1499 m2 g−1) has a lower specific capacitance (166 F g−1) than the one activated at 700 °C
(183 F g−1). This could be due to the presence of a pseudocapacitance caused by the organic sulfur functional groups such as
thiophene, sulfone, and sulfoxide, which can trigger a surface redox reaction, leading to a higher capacitance.

1. INTRODUCTION

There are many materials that can be used as adsorbents in gas
adsorption and wastewater treatment, and the most commonly
used adsorbents are activated carbons (ACs). ACs are
carbonaceous materials that have high porosity, surface area,
and surface functional groups. ACs can be widely used not only
in gas adsorption and wastewater treatment but also in
numerous other applications such as catalyst supports, gas
separation and storage, solvent recovery and decolorization,
and an electrode for supercapacitors.
ACs can be produced from various precursors, which are

generally low-cost biomass. The precursors for the preparation
of AC usually contain carbon, such as coals1,2 and coconut
shells.3 Their adsorption capacity, wettability, and ion storage
capacity can be enhanced by introducing heteroatoms such as
nitrogen, oxygen, and sulfur into the carbon skeleton.4−7

Heteroatoms are usually introduced into the carbon framework
of ACs by the following approaches: (i) post-treatment of ACs
by chemical reactions with reagents containing the desired
heteroatoms,8 (ii) molecular grafting of heteroatoms onto the
carbon framework,9 and (iii) carbonization and activation of
heteroatom-rich carbonaceous materials.10 Chemical impreg-

nation with a chemical agent such as ZnCl2, H3PO4, and KOH
can prevent tar formation and enhance carbon conversion. In
addition, certain chemical agents can increase certain func-
tional groups in ACs (heteroatom-doped carbon).11−13

There are numerous reports on AC preparation from
biomass waste, but the uses of durian peels have rarely been
investigated. It is desirable to develop the effective utilization
of such biomass as it is cost-effective. Durian peels are one of
the most abundant biomasses from agriculture in Thailand,
Indonesia, and Malaysia. They naturally contain about 60%
carbon but low sulfur content (0.1%).14 Sulfur-containing
compounds such as Na2O3S2, Na2SO4, and H2SO4 have been
used as activating agents to incorporate sulfur into the carbon
frameworks.15−17 However, chemical activation with sodium
sulfite (Na2SO3) has never been reported to our knowledge.
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In this work, S-doped activated carbon is prepared from
durian peels using sodium sulfite (Na2SO3) as an activating
agent. The aim of this study is to investigate the effects of
activation temperature on the sulfur content of ACs as well as
their surface characteristics. Moreover, the electrochemical
behavior of the obtained ACs will be investigated. It was found
that the sulfur content can decrease the specific surface area of
the ACs. Interestingly, the specific capacitance does not
depend on the specific surface area of the ACs. Therefore, it is
suggested that sulfur would play an important role in the
electrochemical capacitance of electrodes made of S-doped
activated carbon. Although there are many methods to
synthesize sulfur-doped carbon from wasted biomass such
one-pot synthesis and post-treatment synthesis and H2SO4
have been used to incorporate sulfur with the carbon
framework, it unfortunately requires post-treatment to create
the porosity.17,18 In addition, H2SO4 is a strong acid, and the
process involved inevitably suffers from corrosion. Instead, salt-
containing sulfur, such as Na2SO4, Na2SO3, and Na2O3S2, can
be used as a sulfur source where the etching effect would play a
role in creating the porosity.16 Beneficially, sulfur-doped
carbon prepared with Na2SO3 is easy to handle without any
pre- or post-treatment as using Na2O3S2

15 and K2SO4.
19

Although the price of Na2SO3 is somewhat higher than that of
H2SO4 (as its usage is still limited to food preservative and
antioxidant), taking the aforementioned advantages as well as
the abundant amount of raw materials used into consideration,
this work could realistically be applied commercially.

2. RESULTS AND DISCUSSION
2.1. Elemental Analysis. The elemental compositions of

the raw materials (dried durian peels, DP) and the obtained
ACs, including carbon, hydrogen, nitrogen, and sulfur, are
listed in Table 1. Compared with the sulfur content of the raw
material (DP, 0.19% w/w), the sulfur content of all ACs is
drastically increased. By increasing the activation temperature,
the carbon content of the sample is increased up to the
optimum at 800 °C and then slightly decreased. However, the
sulfur content decreases exponentially with increasing
activation temperature. This can be clearly seen in Figure 1
when considering S/C as a function of activation temperature.
These trends are common as a result of many reactions at high
temperatures such as dehydrogenation, desulfurization, and
condensation.20 This relationship shows that sulfur content
could be decomposed at high temperatures as COS, SO2, H2S,
and CS2.

21,22

2.2. Porosity Analysis. N2-sorption measurement was
employed to characterize the porosity of ACs. Figure 2a reveals
that DP900 and AC500 adsorb deficient nitrogen gas,
indicating the nonporosity of the material. This result is also
confirmed in Table 1, which shows that these two samples only

consist of less than 25 m2 g−1 SBET. The pore size distribution
calculated by the NLDFT method in Figure 2b shows a plateau
line for these samples (DP900 and AC500). When the
activation temperature is increased, the sorption isotherm
transitions to the IV type, indicating the combination of
mesopore and micropore structures.23 The hysteresis loops in
the range of relative pressure of 0.4−1.0 become more evident
by increasing the activation temperature, indicating the
abundance of mesopore structures.24 These results are also
confirmed by the pore size distribution shown in Figure 2b. As
listed in Table 1, AC900 has the highest porosity in terms of
SBET, Vtotal, Vmicro, and Vmeso. Decreasing the activation
temperature leads to a decrease in the surface area and pore
volume of the samples.
The relationship between the activation temperature and the

pore characteristic of ACs is shown in Figure 3a,b. As the
activation temperature increases, the surface area and total
pore volume increase linearly. As shown in Figure 3b, the total
pore volume is dominated by mesopores at low activation
temperature. At higher activation temperature, more micro-
pores are formed so that the micropore volume and mesopore
volume are almost equal. In contrast, the surface area decreases
exponentially with the S/C value (Figure 3c), suggesting that
sulfur in the carbon framework could collapse the structure or
enlarge the pores, leading to a decrease in the specific surface
area.17,25,26 This explanation is also supported by the fact that
the sample activated at 500 °C (the highest S/C value) is
dominated by mesopores, as shown in Figure 3d. Moreover,
volatile sulfur could be evaporated at high activation
temperatures, resulting in a more ordered and condensed
carbon structure, leading to the formation of micropores.27

2.3. Surface Characteristics. The surface functionality of
the obtained ACs was investigated by FTIR spectroscopy
(Figure S1). The spectra show several vibrations including
CC (aromatic, 1580−1615 cm−1), SO2 symmetric stretching
(1120−1190 cm−1), SO stretching (1020−1060 cm−1), C−
S stretching (600−700 cm−1), and S−S stretching (450−550

Table 1. Carbon, Hydrogen, and Nitrogen Contents of the Raw Materials and the As-Prepared ACs

elemental composition

sample C (%w w−1) H (%w w−1) N (%w w−1) S (%w w−1) S/C SBET (m2 g−1) Vtotal (cm
3 g−1) Vmicro (cm

3 g−1) Vmeso (cm
3 g−1)

DP 43.64 6.32 0.78 0.19 0.0043
DP900 74.67 1.62 1.44 0.04 0.0005 4.36 0.062 0.002 0.060
AC500 51.23 2.84 0.82 17.55 0.3426 24 0.23 0.01 0.22
AC600 59.59 2.80 1.07 11.19 0.1878 133 0.30 0.06 0.24
AC700 71.08 2.77 0.93 2.20 0.0309 852 0.75 0.33 0.42
AC800 79.12 2.62 0.87 1.86 0.0235 1279 1.09 0.47 0.62
AC900 73.56 5.78 1.35 0.65 0.0088 1499 1.19 0.56 0.63

Figure 1. Relation between the sulfur content (S/C) of the ACs and
the activation temperature.
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cm−1).28,29 Further investigation on the surface functionality
has been done by XPS, and their S 2p spectra are shown in
Figure 4. Based on the deconvolution using the Gaussian
equation, each AC consists of sulfur functional groups in the
form of mercaptan (C−SH3, 161.2−163.6 eV), thiophene (C−
S−C, 164.0−164.4 eV), sulfoxide (C−SO−C, 165.0−166.0
eV), sulfone (C−SO2−C, 167.0−168.3 eV), and inorganic
sulfur (168.4−175.0 eV).30−32 The atomic percentage
estimated from the peak area after the deconvolution of each
sulfur functional group is listed in Table 2. With the exception
of DP900, all samples contain a small amount of mercaptan
(less than 3.5%), while the content of thiophene, sulfoxide, and
sulfone varies from 10 to 35%.
To understand the change of the surface functional group

during activation, the relationship between the atomic
percentage of each sulfur functional group and the activation
temperature is established, as shown in Figure 5. However, the
chemical transformations of the sulfur surface functional group
during pyrolysis are still a complex issue. Mercaptan, which
combines aliphatic C with S, has a lower content at each
activation temperature. This is the cleavage of S−C at low
temperatures to form S radicals (·S·), which further react with

carbon sources to form other sulfur functional groups.21 If the
activation temperature is increased up to 700 °C, the
thiophene content decreases to a certain extent and then
remains constant. This could be due to the presence of
unstable thiol groups, which transform into a stable thiophene
structure at high temperatures.33,34 The sulfone content
decreases to the minimum at an activation temperature of
700 °C, which is due to the thermal reduction of the sulfone to
a sulfoxide group, so that the sulfoxide content increases up to
700 °C. Another possible explanation for the unpredictable
thermal decomposition of the sulfone is due to the chemical
neighborhood of the sulfone. Sulfone with aliphatic carbon can
decompose at low temperatures, while sulfone with cyclic
carbon can decompose at the temperatures up to 500 °C.35 In
addition, thiophene and oxygen-containing sulfur functional
groups (sulfone and sulfoxide) can decompose as H2S, SO2, or
COS, which could further reduce the sulfur content.21,36

2.4. Electrochemical Capacitive Behaviors. The elec-
trochemical behavior of the obtained ACs was investigated
using cyclic voltammetry (CV, a sweep rate of 1 mV s−1) and
galvanostatic charge−discharge measurement (GCD, a current
density of 1 A g−1). As shown in Figure 6a,b, the

Figure 2. (a) Nitrogen-sorption isotherms at −196 °C and (b) DFT pore size distributions of the obtained ACs.

Figure 3. (a) Dependence of the specific surface area on the activation temperature, (b) effect of activation temperature on the formation of pore
size, and (c, d) the relations of S/C to the specific surface area and pore volume, respectively.
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voltammograms of the ACs (except AC500) have a quasi-
rectangular shape and GCD straight discharge lines typical of
the EDLC mechanism. However, AC, which was activated at
500 °C, shows low CV and GCD performances due to its low
electrical conductivity, consistent with a large IR drop in the

initial discharge curve. Cyclic voltammograms at various scan
rates, galvanostatic charge/discharge curves at various current
densities, and specific capacitance as a function of current
density of the obtained ACs can be found in the Supporting
Information (Figures S2−S4).
According to the results of CV and GCD, the specific

capacitance of ACs was estimated as listed in Table 3. AC700
exhibits the highest specific capacitance of 183 F g−1, which is
comparable to those in the literature using the same electrolyte
(Table S1),15,17,33,37 and decreases slightly at higher activation
temperature. Considering in terms of specific energy and
power (Figure S5), the obtained S-doped ACs still show
compatible performances to those reported in the litera-
ture.15,17,37 Moreover, the obtained ACs exhibit excellent
capacitance retention after 1000 cycles of the cyclability test
(Figure S6). To understand the effects of surface functional
groups on the charge storage capacity, the normalized
capacitance is considered by dividing the specific capacitance
by the specific surface area. As can be seen in Table 3, AC500
drives an excellent normalized capacitance (1.65 F m−2), which
is higher than the others. This could be due to the highest
sulfur content of this sample with the lowest specific surface
area. However, as mentioned earlier, this sample has low
conductivity, which could hinder the ion transport of the
electrode. Moreover, the normalized capacitance decreases at
high activation temperature when the sulfur content decreases
as aforementioned (Figure 7a). This clearly indicates the role
of sulfur in altering the surface properties and charge storage
capability of ACs.
The relationship between normalized capacitance and the

atomic percentage of each sulfur functional group is shown in

Figure 4. S 2p spectra of (a) DP900, (b) AC500, (c) AC600, (d) AC700, (e) AC800, and (f) AC900 samples.

Table 2. Atomic Percentages of Each Sulfur Functionality
Estimated from XPS Analysis

atomic percentage (%)

sample mercaptan thiophene sulfoxide sulfone
inorganic sulfur/

sulfate

DP900 10.49 15.29 15.25 31.50 27.47
AC500 1.71 31.82 14.23 34.65 17.59
AC600 2.11 24.91 17.02 27.54 28.42
AC700 2.87 19.63 19.06 10.32 48.12
AC800 2.34 19.12 17.54 19.94 41.06
AC900 3.50 21.37 11.33 32.75 31.05

Figure 5. Correlation of each sulfur functional group to the activation
temperature.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c03760
ACS Omega 2021, 6, 24902−24909

24905

https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c03760/suppl_file/ao1c03760_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c03760/suppl_file/ao1c03760_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c03760/suppl_file/ao1c03760_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c03760/suppl_file/ao1c03760_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c03760?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c03760?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c03760?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c03760?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c03760?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c03760?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c03760?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c03760?fig=fig5&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c03760?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Figure 7b−f. Although it can be seen in Figure 7b that
mercaptan-sulfur has a negative effect on the normalized
capacitance, its content is 10 times lower than those of the

other functional groups (see Figure 5). Therefore, these effects
could be reasonably negligible in this work.
It can be seen that thiophene (Figure 7c) and inorganic

sulfur (or sulfate, Figure 7f) could play a significant role in
normalized capacitance, while sulfoxide (Figure 7d) and
sulfone (Figure 7e) do not seem to have a clear tendency.
As shown in Figure 7c, thiophene sulfur has a positive impact
on normalized capacitance. Although sulfone and sulfoxide
species are expected to play a positive role in the overall
capacitance by undergoing faradic redox reactions,38 it has
been reported that thiophenic-like sulfur can also contribute to
the pseudocapacitance.33,39 Moreover, sulfur can induce
structural defects in the carbon framework due to its relatively

Figure 6. (a) Cyclic voltammograms and (b) discharge curves of the obtained ACs. The scan rate and current density were 5 mV s−1 and 1 A g−1,
respectively, using a three-electrode configuration in 6 M KOH.

Table 3. Specific Capacitance and Normalized Capacitance
of the Obtained ACs

sample specific capacitance (F g−1) normalized capacitance (F m−2)

AC500 41 1.65
AC600 118 0.89
AC700 183 0.21
AC800 170 0.13
AC900 166 0.11

Figure 7. Relations of (a) normalized capacitance versus S/C and (b−f) normalized capacitance versus atomic percentage of each sulfur functional
group.
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large covalent radius, resulting in more active sites for charge
localization.40 In addition, sulfur doping could alter the
electronic density of the carbonaceous material, and sulfur
possesses a lone pair, leading to an increase in the reactivity of
ACs.15,41 This further supports and highlights the use of S-
doped AC as an electrode in electrochemical energy storage
devices.

3. CONCLUSIONS

In conclusion, S-doped activated carbon was successfully
synthesized from durian peels by chemical activation with a
mild activating agent, Na2SO3. The results indicate that the
sulfur content plays an important role in the specific surface
area and the formation of the microporous structure of ACs.
AC700 exhibits the highest capacitance of 183 F g−1 at 5 mV
s−1. Nevertheless, AC500 with the highest sulfur content can
store a large amount of charge even at a low SBET. It is
suggested that the presence of thiophene species could
contribute to increase the charge storage capacity of S-doped
AC.

4. MATERIALS AND METHODS

4.1. Preparation of Activated Carbons. Durian peels
(DP) were obtained from a local market (Talaad Thai, Pathum
Thani province, Thailand). It was washed and dried at 105 °C
for 24 h. It was then ground into powder form and
impregnated with the activating agent, Na2SO3 (weight ratio
1:1). After that, the impregnated sample was placed in an
alumina boat and inserted into a horizontal tube furnace. The
furnace was heated to 500−900 °C (5 °C min−1) under a
nitrogen atmosphere and held for 1 h. After the carbonization/
activation, it was cooled to room temperature under a N2 flow.
The AC products were washed with RO water and dried at 110
°C for 24 h. The samples were labeled as AC500, AC600,
AC700, AC800, and AC900, depending on the activation
temperature (500, 600, 700, 800, and 900 °C, respectively).
For comparison, the sample that was simply carbonized at 900
°C for 1 h (without Na2SO3) was labeled as DP900.
4.2. Characterization. The chemical composition of the

dried durian peels and the obtained ACs was analyzed by
elemental analysis (CHNSO analyzer, model: 628 series, Leco
Corporation, USA). The specific surface area (SBET) was
calculated from the N2 adsorption isotherms at 77 K (−196
°C) using the Brunauer−Emmett−Teller (BET) equation. The
total pore volume (Vtotal) was estimated from the N2
adsorption amount at a relative pressure of 0.95. The
micropore volume (Vmicro) was calculated using the Dubi-
nin−Radushkevich (DR) method.42 The mesopore volume
(Vmeso) was determined by subtracting the micropore volume
from the total pore volume. The pore size distribution was
characterized by density functional theory (DFT). The
chemical structure and surface functionality of the obtained
ACs were examined by X-ray photoelectron spectroscopy
(XPS) using Mg Kα radiation (12 kV and 25 mA). The
obtained ACs were also characterized by Fourier transform
infrared spectroscopy (FTIR, Nicole iS50, Thermo Fisher
Scientific, 2.5 wt % in KBr). The number of scans and
resolution were 16 and 4, respectively.
Electrochemical characterizations were performed using a

three-electrode configuration. To prepare the electrodes, the
obtained ACs were mixed with carbon black and polytetra-
fluoroethylene (PTFE) in a weight ratio of 9:0.5:0.5 to form a

uniform solid sheet. The sheet was then cut into a square shape
and pressed into a stainless-steel mesh. After that, it was
impregnated (overnight) with the electrolyte before the
measurements. Cyclic voltammetry (CV) and galvanostatic
charge/discharge (GCD) were performed to observe the
electrochemical behavior of the AC electrodes. The electrolyte,
reference, and counter electrodes are 6 M KOH, Ag/AgCl in 3
M KCl, and a platinum rod, respectively. The specific
capacitances (F g−1) were calculated from the integrated
voltammogram using the following equation:

C
i E E

E E vm
( )d

2( )
E

E

2 1
1

2∫=
− (1)

where ∫ E1

E1i(E)dE is the total charge resulting from the
integration of the positive and negative sweep of the cyclic
voltammogram (C), i(E) is the instantaneous current (A), E1
and E2 are the cut-off potentials (V), m is the mass of active
material in the samples (g), and v is the scan rate (V s−1). In
addition, charge/discharge measurements were performed on
the obtained ACs, and the resulting specific capacitance was
calculated using the following equation:

C
I

V
t

=
Δ
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where C is the specific capacitance (F g−1), I is the current
density, and V

t
Δ

Δ is the slope of the charge/discharge plot (V
s−1). The energy density (E, Wh kg−1) and power density (P,
W kg−1) (on an active mass) were calculated according to the
following equations:
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1
2

1
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1
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P
E
t

=
(4)

where V is the cell voltage after ohmic drop (V) and t is the
discharge time (h).
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