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ABSTR ACT: Autophagy is a complex pathway regulated by numerous signaling events that recycles macromolecules and can be perturbed in lysosomal 
storage diseases (LSDs). The concept of LSDs, which are characterized by aberrant, excessive storage of cellular material in lysosomes, developed following 
the discovery of an enzyme deficiency as the cause of Pompe disease in 1963. Great strides have since been made in better understanding the biology of 
LSDs. Defective lysosomal storage typically occurs in many cell types, but the nervous system, including the central nervous system and peripheral nervous 
system, is particularly vulnerable to LSDs, being affected in two-thirds of LSDs. This review provides a summary of some of the better characterized LSDs 
and the pathways affected in these disorders.

KEY WORDS: autophagy, lysosomal storage disease, mucolipidosis, mucopolysaccharidosis, sphingolipidosis

SUPPLEMENT: Molecular and Cellular Mechanisms of Neurodegeneration

CITATION: Onyenwoke and Brenman. Lysosomal Storage Diseases—Regulating  
Neurodegeneration. Journal of Experimental Neuroscience 2015:9(S2) 81–91  
doi:10.4137/JEN.S25475.

TYPE: Review

RECEIVED: September 4, 2015. RESUBMITTED: November 11, 2015. ACCEPTED 
FOR PUBLICATION: November 16, 2015.

ACADEMIC EDITOR: Lora Watts, Editor in Chief

PEER REVIEW: Four peer reviewers contributed to the peer review report. Reviewers’ 
reports totaled 998 words, excluding any confidential comments to the academic editor.

FUNDING: This study was supported by the National Institute of Health (grant number 
NS080108 to JEB). The authors confirm that the funder had no influence over the study 
design, content of the article, or selection of this journal.

COMPETING INTERESTS: Authors disclose no potential conflicts of interest.

COPYRIGHT: © the authors, publisher and licensee Libertas Academica Limited. 
This is an open-access article distributed under the terms of the Creative Commons 
CC-BY-NC 3.0 License.

CORRESPONDENCE: ronyenwo@nccu.edu 

Paper subject to independent expert single-blind peer review. All editorial decisions 
made by independent academic editor. Upon submission manuscript was subject to 
anti-plagiarism scanning. Prior to publication all authors have given signed confirmation 
of agreement to article publication and compliance with all applicable ethical and legal 
requirements, including the accuracy of author and contributor information, disclosure of 
competing interests and funding sources, compliance with ethical requirements relating 
to human and animal study participants, and compliance with any copyright requirements 
of third parties. This journal is a member of the Committee on Publication Ethics (COPE).

Published by Libertas Academica. Learn more about this journal.

Introduction
Cellular homeostasis is essentially a balancing act between 
anabolic and catabolic processes. Eukaryotic cells primarily 
use two distinct mechanisms for large-scale degradation of 
macromolecules and intracellular organelles: proteasomal deg-
radation and autophagy. However, only autophagy, which can 
be further subdivided into macroautophagy, microautophagy, 
and chaperone-mediated autophagy, has the capacity to 
degrade entire organelles.1 Here, we focus on macroautophagy, 
hereafter termed simply as autophagy, and its important 
physiological role in human health and in neurodegenera-
tion, including lysosomal storage diseases (LSDs). We  also 
discuss the possibility of autophagic regulation by various 
signaling pathways (eg, extracellular signal-regulated kinase 
[ERK], microtubule-associated protein kinase [MAPK], 
Akt, target of rapamycin [TOR], and AMP-activated protein 
kinase [AMPK]) and other mechanisms (eg, Ca2+ levels). We 
begin by outlining the complex steps required to complete 
autophagy, then address the neurodegeneration that has been 
described in multiple LSDs, and finally examine several LSDs 
individually and in more detail.

Autophagy is a pathway required for the degradation 
of cellular macromolecules.2,3 During autophagy, double 
membrane-bound vesicles (autophagosomes) isolate cytosolic 

material destined for degradation. Subsequently, autopha-
gosomes fuse with late endosomes to form amphisomes.4,5 
Amphisomes then coalesce with lysosomes, leading to the 
formation of autolysosomes (Fig. 1). Because lysosomes contain 
degradatory enzymes, the contents of amphisomes are broken 
down following autolysosome formation, with the produced 
metabolites partly feeding into pathways to satisfy the cell’s 
energy demands.4,5 Downregulation of autophagy leads to accu-
mulation of misfolded proteins and is speculated to be involved 
in chronic or late-onset diseases, such as neurodegenerative 
diseases, including Alzheimer’s disease (AD; characterized by 
two abnormal structures: amyloid plaques consisting of largely 
insoluble toxic b-amyloid peptides and intraneuronal fibrillary 
tangles/aggregates composed of highly phosphorylated forms 
of the microtubule-associated protein tau), Parkinson’s disease 
(PD; well characterized by the accumulation of α-synuclein 
and ubiquitin into intracytoplasmic inclusions known as Lewy 
bodies), and Huntington’s disease (HD; toxic oligomers and 
aggregates of mutant huntingtin protein that are not properly 
cleared accumulate).6–8 These aforementioned diseases have 
been extensively covered in the literature, and several excel-
lent reviews focusing on them as neurodegenerative diseases 
caused by aberrant autophagy exist.8,9 Therefore, we focus on 
rarer diseases involving aberrant autophagy, the LSDs.
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Since the discovery of the lysosome by De Duve,10,11 more 
than 60 distinct LSDs have been described, with the collec-
tive incidence of their occurrence estimated to be  ~1:5000 
worldwide.12,13 In general, LSDs can be described as a sub-
group of inborn errors of metabolism and primarily result 
from a deficiency/defect of one or more lysosomal enzymes 
involved in macromolecule degradation (several excellent 
reviews, which will be cited herein, exist14–18). However, in 
some LSDs, the exact function of the mutated protein(s) has yet 
to be determined.18,19 Roughly two-thirds to three-quarters 
of LSDs have some neurological component, affecting multi-
ple brain regions but dependent on the specific disease type.  
A few examples of LSDs that are associated with cen-
tral nervous system (CNS) and peripheral nervous system 
(PNS) pathology include Gaucher’s disease, Krabbe dis-
ease, Sandhoff disease (SD), Niemann–Pick type C (NPC), 
mucolipidoses, and the group of neuronal ceroid lipofusci-
noses (NCLs; commonly referred to as Batten disease).20 

This review highlights select LSDs that affect the CNS and 
PNS, briefly addresses the neuropathology associated with 
these disorders, and provides some mechanistic detail on 
the presumptive causes leading to the disorders, focusing on 
therapeutic strategies and/or targets. The various enzymes/
proteins that are mutated in the LSDs discussed in this 
review will be dissected since they play a critical role in lyso-
somal homeostasis/function. However, an intriguing finding 
is that not all LSDs have a dramatic CNS pathology, which 
brings into question the functional importance of mutated 
genes in the brain (and in neurons in general) compared to 
other organs.18

Neurodegeneration in LSDs
While the mechanistic details behind the neural degeneration 
observed in many LSDs are not completely understood, the 
abnormal accumulation of lysosomal storage material due 
to defective degradation processes was originally thought 
to contribute to neuronal loss in LSDs21–23 and other neu-
rodegenerative disorders typified by protein aggregation, 
such as AD and PD.24,25 However, this reasoning has more 
recently been called into question based on the finding 
that lysosomal storage material accumulation is typically 
widespread in neurons throughout the brain, even though 
only select neuronal populations are affected.18 Neverthe-
less, most neurons are postmitotic and unable to elimi-
nate unwanted/damaged organelles and macromolecules by 
dividing. Therefore, neurons must heavily rely upon func-
tional lysosomes/autophagy to efficiently clear these mol-
ecules. Autophagic defects have been reported in several 
LSDs, including Pompe disease, multiple sulfatase deficiency 
(MSD), NPC, Gaucher’s disease, and NCLs,23 and are sug-
gested to contribute to neurodegeneration.18

Data from electron microscopy (and other imaging) 
studies and biochemical analyses of cell lines and tissues 
from LSD mouse models also support the idea that mito-
chondrial dysfunction in neurons is responsible for vari-
ous LSDs, including Gaucher’s disease, MSD, NPC, and 
mucopolysaccharidoses.26–28 In addition, perturbed mito-
chondrial Ca2+ homeostasis and/or release has also been 
observed in the aforementioned LSDs, including decreased 
Ca2+ buffering capacity, reduced ATP production, and mito-
chondrial fragmentation.21,29–31 In fact, a reduction in mito-
chondrial membrane potential and a concomitant decrease 
in ATP yield have already been shown in a NPC1 mouse 
model.26 Decreased oxygen consumption and mitochondrial 
electron transport chain enzymes have also been reported 
in neurons from a mouse model of juvenile NCL (JNCL).32 
Similarly, enlarged mitochondria have been observed in 
a neuronal cell line derived from JNCL mice;33 however, 
it should be noted that this particular neuronal cell type is 
not lost during the progression of the disease. Therefore, 
mitochondrial abnormalities such as these may represent a 
common feature of LSDs, indicating that an energy deficit 

Figure 1. General organization and function of some integral membrane 
and soluble proteins important for lysosomal function, vesicle fusion, 
pH regulation, and calcium homeostasis (eg, MCOLN1); cholesterol 
homeostasis (eg, NPC1 and NPC2); and lysosomal function, vesicle 
fusion, and cholesterol homeostasis (eg, LAMP2). For MCOLN1, the 
model also illustrates how mTOR, AMPK, and MCOLN1 possibly interact. 
When active, AMPK inhibits mTOR (or its downstream effector molecule 
S6 kinase 1) activity, which in turn modulates MCOLN1 activity in a 
feedback loop (ie, inactive/less active mTOR leads to increased MCOLN1 
activity; however, activating MCOLN1 increases autophagy, leading to 
increased amino acid production and activating mTOR—a feedback loop 
that regulates/modulates mTOR, AMPK, and MCOLN1 activities).14,173
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could be one of the contributing mechanisms responsible for 
neurodegeneration.18

In terms of the potential molecular mechanisms whereby 
LSDs alter and affect the function and survival of neurons, 
other neurodegenerative diseases can serve as examples. For 
example, various signaling pathways are known to contrib-
ute to reactive astrocytosis (astrocyte activation) in acute 
and chronic neurological conditions.34,35 These include Janus 
kinase/signal transducer and activator of transcription 3 
(JAK/STAT3) signaling and ERK1/2 phosphorylation.36 
Notably, JAK/STAT3 activation has been observed in the 
mouse model of SD, which is mediated by tumor necrosis fac-
tor (TNF) α production. Inhibition of TNFα in this double 
knockout mouse significantly inhibits astrocyte activation and 
reduces neuronal death. In these mouse models, such changes 
coincide with a significantly increased lifespan, enhanced 
coordination, and improved neurological function. Interest-
ingly, these improvements in the mouse model of SD are 
not accompanied by alterations in ganglioside accumulation 
in neurons.37 Similarly, increased ERK phosphorylation has 
also been shown in a model of infantile NCL (INCL) where 
reactive astrocytes are a prominent feature and associated with 
aggressive neurodegeneration.18,38

Demyelination (either in the CNS or in the PNS), which 
also ultimately impacts neuronal survival and function, is 
another hallmark of LSDs.39 Specialized neuroglia, nonneu-
ronal cells (oligodendrocytes and Schwann cells) coat axons 
in the CNS and PNS, respectively, with their cell membrane, 
forming a membrane known as myelin, producing the myelin 
sheath.39,40 This sheath then provides insulation to the axon 
so that electrical signals can propagate more efficiently.39,40 
In a number of LSDs, eg, Krabbe disease, MSD, and NPC, 
myelination is aberrant (either delayed or abnormal), resulting 
in demyelination and subsequently severe neurological impair-
ments (as will be further discussed later).18,40

LSDs Associated with Nonmembrane-bound 
Lysosomal Hydrolases

Gaucher’s disease (a sphingolipidosis). Gaucher’s dis-
ease is a prototypical LSD (prevalence of ~1:50,000 in the 
general population) caused by mutations in the glucocerebro-
sidase (GBA1) gene, a lysosomal enzyme responsible for the 
degradation of glucocerebroside, which is an intermediate in 
glycolipid metabolism.41–43 Hundreds (nearly 300) of GBA 
mutations have been identified and include missense, nonsense, 
and frameshift mutations. Collectively, these mutations have 
been linked to three forms of Gaucher’s disease, types 1–3.44,45

Type 1, typically referred to as adult or visceral 
Gaucher’s disease, is generally late onset and represents the 
most common form, with an increased ethnic incidence 
among Ashkenazi Jews, a prevalence as high as 1:850 has 
been previously reported.46 Type 2 has the earliest onset 
(approximately three to six months of age), with death usu-
ally occurring by two years. Type 3 is a juvenile disease with 

an onset in early childhood. As a result of GBA deficiency, 
lysosomes accumulate several glycolipids, including glu-
cocerebroside and glucosylsphingosine.47,48 The major cell 
type affected in Gaucher’s disease is the macrophage, and 
resident macrophage populations within the spleen and liver 
have perturbed homeostatic functions.47 As a result, there is 
marked spleen enlargement (splenomegaly), which destroys 
hematopoietic cells leading to anemia.49 The neuronopathic 
forms of Gaucher’s disease (types 2 and 3, which are acute 
and chronic, respectively) are also characterized by microg-
lial proliferation, astrocytosis, and a robust neuroinflamma-
tory response and have no available treatment.50,51 Currently, 
it is not well understood why only particular brain regions 
are selectively targeted given the ubiquitous expression of 
GBA; however, it is clear that storage material accumulation 
is not the primary deciding factor, ie, a series of secondary 
events, including neuroinflammation and neurodegenera-
tion, are apparently triggered by a certain threshold of accu-
mulation, resulting in neuronal death but only in specific 
brain areas where the neurons are intrinsically more sensitive 
to the inflammatory response.48,50,52

A mouse model of Gaucher’s disease, where GBA is 
selectively deleted in neurons and glia, results in increased 
expression of the lysosomal enzyme cathepsin D;53 this 
may represent a compensatory mechanism to offset GBA 
deficiency. Compared to wild-type mice, the expression of 
brain-derived neurotrophic factor and nerve growth factor is 
reduced in the cerebral cortex, brainstem, and cerebellum of 
Gaucher mice, and ERK1/2 expression is downregulated in 
neurons from Gaucher mice, which correlates with a decreased 
number of neurons.54 Because brain-derived neurotrophic 
factor and nerve growth factor protect neurons and activate 
the MAPK pathway,55–57 these results suggest that a reduction 
in neurotrophic factors could be involved in neuronal loss in 
Gaucher’s disease.18,54

Fabry’s disease and GM1 gangliosidosis (sphingo-
lipidoses). GM1 gangliosidosis is an autosomal recessive 
lysosomal lipid storage disorder caused by mutations of the 
lysosomal β-galactosidase and results in the accumulation 
of GM1 ganglioside. The disease phenotype is character-
ized by severe CNS (primarily neurons but astrocytes may 
also be vacuolated) dysfunction and skeletal dysplasia.58 
Increased basal expression of the autophagosome marker 
microtubule-associated protein light chain 3 (LC3-II) is 
observed in several sphingolipidosis models, including GM1 
gangliosidosis58 and Fabry’s disease,59 while an increased 
number of autophagosomes (detected by the LC3 marker), 
elevated Beclin 1 levels, and dysfunctional (both morpho-
logically abnormal and with a decreased membrane potential) 
mitochondria are specifically observed in brains from GM1 
gangliosidosis mice.58 The Akt–mTOR and Erk signaling 
pathways are also activated in the GM1 mouse model,58 
thereby inducing autophagy; however, detailed mechanistic 
information is still unavailable.60
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In Fabry’s disease, deficiency of the lysosomal enzyme 
α-galactosidase A results in an accumulation of its substrate, 
globotriaosylceramide (Gb3), throughout the body, leading 
to neurological manifestations of disease in both the PNS 
and CNS, including Schwann cells and dorsal root ganglia 
together with deposits in CNS neurons.61 Measurement of 
LC3-II in cultured cells from patients with Fabry’s disease 
reveals increased basal levels when compared with wild-type 
cells and, as might be expected, a larger increase in response 
to starvation. Treatment of starved Fabry’s disease cells with 
lysosomal protease inhibitors reveals a block/impairment in 
autophagic flux, demonstrating a more severe disruption of 
degradation through macroautophagy than that observed in 
other sphingolipidoses. In addition, increased p62/SQSTM1 
and ubiquitin staining in renal tissues and in cultured fibro-
blasts from patients with Fabry’s disease further supports 
impaired autophagic flux.59 For Fabry’s disease and other 
sphingolipid storage diseases, defining where and how this 
impairment in autophagic flux occurs and establishing the 
extent to which alterations in macroautophagy contribute to 
the disease phenotype remain important research goals.18

SD, a GM2 gangliosidosis (a sphingolipidosis). 
SD is a rare autosomal LSD caused by a deficiency in 
β-hexosaminidases A and B and results in the excessive 
lysosomal accumulation of GM2 gangliosides and 
oligosaccharides.62 There are three clinical subtypes of SD, 
namely infantile, juvenile, and adult onset. The infantile form 
is the most aggressive—typically presenting between two and 
nine months of age—with death occurring before three years. 
The juvenile form of SD is less common than the infantile vari-
ant, with clinical symptoms evident between the ages of 3 and 
10 years, which include organomegaly, bone deformations, 
and CNS (ballooned neuronal cells, astrocytes, and histio-
cytes) manifestations, such as speech disabilities, cerebral 
ataxia, and severe psychomotor disturbances.63 Neuropatho-
logical abnormalities associated with SD include prominent 
brain atrophy and dilatation. Histologically, neurons harbor 
membranous cytoplasmic bodies formed by the accumulation 
of GM gangliosides and other lipopigments in the lysosome.62 
An earlier report examining primary astrocytes isolated from 
a mouse model of SD demonstrated an increased proliferation 
that was associated with elevated ERK phosphorylation and 
sphingosine-1-phosphate (S1P) synthesis.64 These changes 
were dependent on GM2 ganglioside accumulation within 
the lysosome. In addition, a direct relationship between S1P 
metabolism and reactive astrocytosis is indicated by the mouse 
model of SD, where the deletion of sphingosine kinase (which 
synthesizes S1P) or S1P receptor reduces astrocyte prolifera-
tion and, therefore, reactive astrocytosis.65 Interestingly, S1P 
has recently emerged as a key neuroinflammatory mediator 
in multiple sclerosis and is being explored as a potential 
therapeutic target to attenuate disease severity.18,66–68

SD shares many features with other neurodegenerative 
disorders, such as increased reactive astrocyte pathology,69 and 

activating the JAK2/STAT3 pathway using the inflammatory 
factor TNFα may be a mechanism for astrocyte activation in 
the disease.37 Bone marrow transplantation experiments have 
revealed that both CNS-derived and bone marrow-derived 
TNFα have a pathological effect in SD mouse models, with 
CNS-derived TNFα playing a larger role. Therefore, TNFα 
can presumably function as a neurodegenerative cytokine, 
mediating astrocytic pathology and neuronal cell death in SD, 
and as a potential therapeutic target to attenuate the observed 
neuropathology.37

Krabbe disease (a sphingolipidosis). Krabbe disease, 
also known as globoid cell leukodystrophy, results from 
β-galactocerebrosidase deficiency, the enzyme catalyzing the 
hydrolysis of galactose from several sphingolipids to generate 
ceramide and sphingosine.70,71 β-Galactocerebrosidase loss 
leads to the accumulation of the glycosphingolipid psychosine, 
which is toxic—in particular to oligodendrocytes.72 Krabbe 
disease is an early onset LSD—symptoms typically present 
at approximately six months of age—and mortality occurs 
by two years.73 Krabbe disease primarily affects the CNS, 
resulting in extensive demyelination of the myelin sheath, 
leading to ataxia, blindness, seizures, and severe dementia.74,75 
The neuropathology associated with Krabbe disease has been 
attributed, in large part, to the abnormal accumulation of psy-
chosine in the brain, which will be discussed further below.76–78 
Metabolic alterations in astrocytes have been reported in the 
mouse model of Krabbe disease, the twitcher mouse, and 
include increased glutamine levels and upregulation of lactate-
specific transporters.79 Microglial activation has also been 
reported in patients with Krabbe disease, which is consistent 
with a prominent neuroinflammatory response.80 This inflam-
matory response likely results from cell loss and the release 
of danger-associated molecular patterns from damaged/dying 
neurons, which can trigger inflammatory pathways and fur-
ther exacerbate neuronal damage. Indeed, psychosine has also 
been reported to exert inflammatory and apoptotic effects in 
glia,81 which correlates well with the increased concentration 
of psychosine in the brains of patients with Krabbe disease 
and in the respective animal model, the twitcher mouse.18,82–84 
Several mechanisms of action have been proposed for psycho-
sine in Krabbe disease:

I.	 Lysosphingolipids, such as psychosine, are potent 
reversible inhibitors of protein kinase C (PKC).85 It is 
well-known that PKC is activated by the lipid diacyl-
glycerol, which is generated from phosphatidylinositol 
bisphosphate in signal transduction pathways mediated 
by phospholipase C. As mentioned earlier, psychosine 
accumulates in Krabbe disease, leading to the apoptosis 
of neurons and astrocytes.86–88 It is, therefore, of interest 
that Schwann cells from twitcher mice are 10-fold more 
sensitive to staurosporine—a PKC inhibitor—than nor-
mal cells, indicating a preexisting inhibition of PKC—
possibly by psychosine. Interference with PKC-mediated 
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growth factor signaling could therefore partially account 
for the loss of myelin-producing cells in Krabbe disease.

II.	 In oligodendrocytes, insulin-like growth factor 1 (IGF-1)  
acts through the activation of the antiapoptotic PI3K-
Akt/Protein kinase B (PKB) or the MAPK/Erk1/2 
signal transduction pathways, and in murine oligoden-
drocyte precursor cells, psychosine leads to a dose-depen-
dent decrease in both Akt and ERK1/2 phosphorylation 
accompanied by an activation of caspase-3, resulting in 
apoptosis. When psychosine-treated cells are exposed to 
high doses of IGF-1, Akt phosphorylation, and to a lesser 
extent Erk1/2 phosphorylation, is restored. This leads to 
a reduced cleavage of caspase-3, resulting in a reduced 
apoptotic rate in oligodendrocyte precursor cells.89 Thus, 
the inhibition of IGF-1 mediated antiapoptotic signaling 
pathways by psychosine may be one reason for the death of 
oligodendrocytes in Krabbe disease.

III.	 Another major target of psychosine is phospholipase A2, 
which cleaves the membrane lipid phosphatidylcholine 
into lysophosphatidylcholine and arachidonic acid. Both 
products are biologically highly active lipids involved in 
numerous physiological and pathophysiological reactions, 
with the injection of lysophosphatidylcholine into the 
brain inducing demyelination in vivo.90

IV.	 Psychosine also reduces AMPK activity. AMPK, which 
is considered as an important enzyme in the regulation of 
glucose and lipid metabolism, senses cellular energy levels 
and maintains the balance between ATP production and 
consumption.91,92 In a status of low energy, it is activated, 
switching off anabolic pathways and activating catabolic 
pathways and vice versa.93,94 Exposing cells to psychosine 
downregulates AMPK activity, leading to a preponder-
ance of biosynthetic pathways in treated cells, eg, oligo-
dendrocytes treated with psychosine display an enhanced 
synthesis of fatty acids and cholesterol, while β-oxidation 
as a catabolic pathway is inhibited. Thus, psychosine may 
also influence the energetic status of a cell by modulating 
the master switch AMPK, affecting the energy balance.95 
The inhibition of this kinase by psychosine favors energy-
consuming pathways over energy-generating pathways, 
and the resulting lower energy load could also contribute 
to oligodendrocyte loss.

Glycogen storage disease type II (also known as Pompe 
disease) (a glycogenosis). Though first discovered more than 
80  years ago,96 Pompe disease would only later (~30  years 
later) be the first recognized LSD.97 The disease is caused by a 
deficiency in acid maltase, also known as acid α-glucosidase, 
leading to the accumulation of glycogen in the lysosome, lyso-
somal enlargement, a dramatic expansion of all vesicles of the 
endocytic/autophagic pathways, and a slowdown in the vesic-
ular trafficking in the overcrowded cells, ultimately leading to 
profound muscle and nerve cell damage.98–100 Clinical hetero-
geneity of the disease is a well-established phenomenon.101,102 

In the most serious infantile form, the disease leads to pro-
found weakness and heart failure and, if left untreated, causes 
death within one year.23,103–105 However, even in the milder late 
onset form, the illness is extremely debilitating, with patients 
eventually becoming confined to a wheelchair or bedridden, 
and many die prematurely from respiratory failure.23,103–105

Only recently has enzyme replacement therapy using 
recombinant human α-glucosidase designed to supplement 
the defective enzyme been approved for all forms of the dis-
ease. This therapy stemmed from a straightforward approach 
to explain the pathogenesis of the disease that the progressive 
enlargement of glycogen-filled lysosomes would lead to 
lysosomal rupture and to release of glycogen and other toxic 
substances into the cytosol.23 The assumption was that early 
treatment, initiated before lysosomal integrity was compro-
mised, would reverse this pathogenic cascade. However, this 
assumption is apparently only partially correct—cardiac muscle 
responds very well to therapy, but skeletal muscle does not. In 
particular, this poor muscle response to the therapy has led to a 
revisiting of the pathogenesis of the disease, and more recently 
modulating transcription factor EB has been proposed as a 
new approach to circumvent the problem of inefficient enzyme 
delivery by exploiting the ability of lysosomes to expel their 
contents into the extracellular space, providing clearance of the 
stored material.106,107 Indeed, transcription factor EB overex-
pression in Pompe disease muscle has been demonstrated to 
alleviate autophagic pathology—it promotes the formation and 
removal of excessive autophagic vacuoles. Thus, a promising 
new drug target for treating Pompe disease does exist.107

Multiple sulfatase deficiency (a mucopolysacchari-
dosis/sulfatidosis). Mucopolysaccharidoses represent a sub-
stantial proportion (~25%) of all LSDs.22 MSD is caused 
by a mutation in sulfatase-modifying factor 1 (sumf1), 
resulting in posttranslational defects in lysosomal sulfatases 
and the pathological accumulation of mucopolysaccharides 
and sulfatide.108,109 Therefore, MSD can be more accurately 
defined as both a mucopolysaccharidosis and a sulfatidosis, 
or a mucosulfatidosis.110,111 There are three types of MSD, 
neonatal, late infantile, and juvenile.112 The infantile form of 
MSD is the most aggressive, with symptoms beginning soon 
after birth. Clinical manifestations include coarsened facial 
features, deafness, splenomegaly, and hepatomegaly.113–115 
Children with MSD develop a specific neurodegenerative 
pathology (leukodystrophy), leading to movement disorders 
and developmental delay with occasional seizures.116,117 The late 
infantile form is the most common type of MSD. These chil-
dren have normal cognitive development in early childhood but 
experience a rapid decline in motor and cognitive abilities that 
are attributed to progressive leukodystrophy.75 Neuroimaging 
studies have revealed lesions extending into the brain stem.116 
MSD is also typified by extensive demyelination, with the 
accumulation of cholesterol and galactolipid pigments in the 
CNS.118 A recent study utilizing a mouse model demonstrated 
that the targeted deletion of sumf 1 in astrocytes results in 
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severe lysosomal storage material deposition and neuronal loss 
in vivo.119 A defective autophagic flux has also been demon-
strated by the accumulation of autophagy substrates, such as 
polyubiquitinated proteins and dysfunctional mitochondria, 
both of which are significantly increased in tissues from MSD 
and mucopolysaccharidosis type IIIA mice.18,22

Both of these mouse models, MSD and mucopolysac-
charidosis type IIIA, present an observed accumulation of 
autophagosomes resulting from defective/impaired autopha-
gosome–lysosome fusion. This impairment of the autopha-
gic pathway is demonstrated by the inefficient degradation 
of exogenous aggregate-prone proteins (ie, expanded hun-
tingtin and mutated α-synuclein) in cells from these mice; 
thus, these LSD models can be defined as autophagy disorders 
resembling more common neurodegenerative diseases, such 
as AD, PD, and HD. While there are major differences in 
the initial steps involved in all these diseases (ie,  impaired 
degradation of polyubiquitinated proteins in LSDs versus 
expression of aggregate-prone proteins in AD, PD, and HD), 
they may share common mechanisms, eg, blocked autophagy 
due to defective fusion between autophagosomes and lyso-
somes, suggesting the possibility of overlapping therapeutic 
strategies.22,120

Mucolipidosis type II and mucolipidosis type III. 
Mucolipidosis type II (MLII) and mucolipidosis type III 
(MLIII) are autosomal recessive diseases caused by deficiency of 
the enzyme N-acetylglucosamine 1-phosphotransferase.121–123 
This enzyme modifies newly synthesized lysosomal hydrolases 
by attaching a molecule of mannose-6-phosphate, which func-
tions as a tag for delivery to lysosomes.124 Mutations in GlcNAc-
phosphotransferase result in the missorting and cellular loss of 
lysosomal enzymes and the lysosomal accumulation of storage 
material.125 MLII is characterized by skeletal abnormalities, 
short stature, cardiomegaly, and developmental delays, while 
MLIII is a later onset, milder form of MLII.126 Alterations in 
autophagy have recently been reported in MLII and MLIII 
fibroblasts, including the accumulation of autophagosomes, 
p62/SQSTM1, ubiquitin, and fragmented mitochondria. 
Additionally, the lysosomal pH of MLII cells has been 
shown to be higher than that of normal cells.127 In contrast, 
no variations in the levels of Beclin 1 are observed, suggest-
ing that the formation of autophagosomes is not increased in 
these disorders.128 Accumulation of LC3-positive structures 
and ubiquitin aggregates has also been reported in neuronal 
cells from a patient with MLIII.129 Importantly, inhibition 
of autophagy restores mitochondrial alterations in MLII and 
MLIII cells, suggesting that increased autophagy might be 
detrimental for proper mitochondrial function.128

LSDs Associated with Integral Lysosomal 
Membrane Proteins

Niemann–Pick type C (a sphingolipidosis). NPC is 
caused by mutations in one of the two genes, NPC1 (95% 
of cases) and NPC2 (5% of cases), which manifest as severe 

abnormalities in lipid trafficking, eg, NPC1-positive vesicles 
are believed to be transiently targeted to lysosomes and once 
there to facilitate clearing of unesterified cholesterol from this 
organelle, with NPC1 loss of function and the subsequent 
accumulation of unesterified cholesterol commonly viewed 
as the principal lesion in NPC.130,131 Both NPC1 and NPC2 
are predicted to encode for proteins involved in cholesterol 
homeostasis, which accounts for the cholesterol accumulation 
within the lysosome.131–138 NPC affects both peripheral organs 
and the nervous system, and symptoms include neurologi-
cal abnormalities, ie, psychomotor disturbances, ataxia, and 
seizures.130,137 Neuroimaging studies have characteristically 
revealed diffuse cerebral atrophy and changes within the 
white matter of the CNS.132 In chronic progressive cases, 
neurofibrillary tangles similar to the aggregates of hyperphos-
phorylated tau protein found in AD have also been observed.139 
Astrocyte activation is also associated with NPC,140–142 with 
these cells exhibiting mitochondrial dysfunction.143 Increased 
levels of IL-1β and increased ApoE, a genetic risk factor 
for AD, have been reported in animal models of NPC.144 
Consistent with this study, increased expression of amyloid 
precursor protein as well as β- and γ-secretases has been found 
in reactive astrocytes in mice suffering from NPC disease,145 
suggesting an association between NPC and AD.18

Danon disease (a glycogenosis). Danon disease, 
which is also known as lysosomal glycogen storage disease with 
normal acid maltase activity or glycogen storage disease due to 
lysosomal-associated membrane protein 2 (LAMP2) deficiency, 
is a lysosomal glycogen storage disease due to LAMP2 
deficiency.146,147 The disease is inherited as an X-linked trait 
and is extremely rare. The disease phenotype is character-
ized by severe cardiomyopathy and variable skeletal muscle 
weakness and is often associated with mental retardation.23 
Interestingly, Danon disease was the first LSD described in 
1981 involving a mutation in a lysosomal structural protein 
rather than an enzymatic protein,146,147 with the accumula-
tion of autophagic vacuoles in several tissues, particularly in 
muscle.148 In fact, a patient with Danon disease was initially 
believed to suffer from another rare LSD, Pompe disease, 
based on a tissue biopsy. However, the tests for Pompe disease 
were normal for acid maltase activity.146

Mucolipidosis type IV. Mucolipidosis type IV (MLIV) 
is an autosomal recessive disorder characterized by acute 
psychomotor delays, achlorydria, and visual abnormalities, 
including retinal degeneration and corneal clouding.19,149 
Lysosomal inclusions are found in most tissues in patients 
with MLIV, with the composition of the storage material 
being heterogeneous and including lipids and mucopolysac-
charides forming characteristic multiconcentric lamellae, as 
well as soluble, granulated proteins.150–155 MLIV is thought 
to be solely due to mutations in MCOLN1 (mucolipin 1; also 
known as TRPML1, transient receptor potential MCOLN1), 
an endolysosomal cation channel belonging to the transient 
receptor potential superfamily of ion channels.154,156–158 
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Whole cell patch clamping and native endolysosomal 
recordings have led to the conclusion that MCOLN1 func-
tions as an inwardly (from lumen to cytoplasm) rectifying 
channel permeable to Ca2+, Na+, K+, and Fe2+/Mn2+, whose 
activity is potentiated by low pH.159–163 Although the cellu-
lar role of MCOLN1 is still under investigation, the current 
model suggests that this protein mediates Ca2+ efflux from late 
endosomes and lysosomes.164,165 Localized Ca2+ release from 
such acidic stores is required for fusion between endocytic 
vesicles and to maintain organelle homeostasis, thus suggest-
ing that MCOLN1 is a key regulator of membrane trafficking 
along the endosomal pathway.

In MCOLN1-deficient fibroblasts, both the degradation 
of the autophagosome content and the fusion of autophago-
somes with late endosomes/lysosomes are delayed compared 
to control cells.166 This leads to a dramatic accumulation of 
autophagosomes in the cytosol of MLIV cells as demonstrated 
by indirect immunofluorescence, LC3-II/LC3-I immunoblot, 
and electron microscopy.166 This impairment of the autopha-
gic pathway has detrimental consequences for the cell leading 
to inefficient degradation of protein aggregates and damaged 
organelles. In particular, accumulation of p62/SQSTM1 
inclusions and abnormal mitochondria has been described in 
MLIV fibroblasts and epithelial cells.28,166,167

A mouse model for MLIV supports late endosomal 
defects as an important site of dysfunction, and autophagy 
has also been shown to be defective in primary neurons 
cultured from these mice.168–170 The MCOLN1-/- mice pro-
vide an excellent phenotypic model of the human disease, 
and all of the hallmarks of MLIV are present in the mice 
with the exception of corneal clouding.168 Analysis of the 
brain at eight months shows lysosomal inclusions in multiple 
cell types, including neurons, astrocytes, oligodendrocytes, 
microglia, and endothelial cells, with larger inclusions present 
in neurons, and electron microscopy of primary cerebellar 
neurons from MCOLN1-deficient mouse embryos demon-
strates significant membranous intracytoplasmic storage bod-
ies, despite the lack of gross phenotype at birth.170 Evaluation 
of macroautophagy in neurons by LC3-II/LC3-I immunoblot 
also shows increased levels of LC3-II, similar to that observed 
in human MLIV fibroblasts. LC3-II clearance is also defec-
tive, as treatment of the MCOLN1-/- neuronal cultures with 
protease inhibitors to stimulate autophagy does not result 
in increased LC3-II levels.170 Demonstration of defective 
autophagy in MCOLN1-deficient neurons suggests a possible 
mechanism underlying neurodegeneration, whereby increased 
protein aggregation and organelle damage lead to autophagic 
stress and eventual neuronal death.166 The MLIV mouse 
model provides an important tool for evaluating the compli-
cated interplay between chaperone-mediated autophagy and 
macroautophagy and their role in neurodegenerative disease.

As mentioned earlier, MCOLN1 is an inwardly recti-
fying channel permeable to Ca2+, Na+, K+, and Fe2+/Mn2+. 
Ca2+, in particular, is believed to be significant with regard 

to the physiological function and regulation of MCOLN1, 
with the channel releasing luminal Ca2+ to facilitate the Ca2+-
dependent fusion of amphisomes with lysosomes. The amino 
acids generated by the degradation of proteins in the autolyso-
somes promote TORC1 activation. In addition to inhibiting the 
initiation of autophagy, activated TORC1 (target of rapamy-
cin complex) also diminishes the endocytosis of MCOLN1.171 
In the absence of MCOLN1, fusion of amphisomes and lyso-
somes is impaired. This leads to a decrease in autophagic flux 
of amino acids, causing a reduction in TORC1 and upregu-
lation of autophagy. Biochemical (mass spectrometry [MS] 
and in  vitro phosphorylation) and Ca imaging data indicate 
that the MCOLN1 channel may be directly phosphorylated 
(at Ser572 and Ser576) and negatively regulated by the TOR 
kinase, but that AMPK could be involved indirectly through 
activity on the TOR pathway.172,173 This particular finding 
validates and expands upon previous studies that have strongly 
suggested links between TOR and the endocytic system, eg, 
TOR has been localized to endocytic membranes in yeast, fly, 
and mammalian cell culture.174–176

However, another study suggests that MCOLN1 activity 
is negatively regulated by protein kinase A phosphorylation at 
two different sites (Ser557 and Ser559).172

The Neuronal Ceroid Lipofuscinoses
Though not deemed classic LSDs,17 the NCLs are the most com-
mon cause of neurodegeneration among children.177 These dis-
orders typically manifest with blindness, seizures, progressive 
cognitive defects, and motor failure.178 NCL, commonly referred 
to as Batten disease, encompasses a family of disorders caused 
by mutations in the ceroid lipofuscinosis (CLN) genes.177,179,180 
Currently, mutations in 14 different CLN genes have been 
identified that are broadly classified into infantile, late infantile, 
juvenile (the juvenile form is not a typical LSD, ie, not associated 
with a typical lysosomal enzyme deficiency16,23,181), and adult 
onset forms.180,182,183 The childhood forms of Batten disease are 
characterized by the typical symptoms listed earlier and often 
result in premature death.183,184 A histopathological hallmark of 
all NCLs is the lysosomal accumulation of autofluorescent lipo-
pigments  and proteins; however, the structural appearance of 
inclusion material varies according to each disease type.185 Bio-
chemical characterization of storage material has also identified 
lipophilic proteins, including subunit C of mitochondrial ATP 
synthase (primarily in JNCL) and sphingolipid pigments (in 
other forms of NCL).33,186,187 The INCL is the most aggressive, 
with a life expectancy of two to six years.188,189 INCL is due to a 
mutation in CLN1, which encodes for palmitoyl protein thioes-
terase, an enzyme responsible for the cleavage of long-chain 
fatty acids on several proteins containing cysteine residues.190,191 
Late INCL is caused by mutations in CLN2, a lysosomal 
enzyme (tripeptidyl peptidase I), that cleaves tripeptides from 
the terminal amine groups of partially unfolded proteins.192,193 
JNCL results from mutations in the CLN3 gene.183 The precise 
function of CLN3 remains unknown; however, based on 
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several functional analyses, CLN3 is predicted to regulate 
lysosomal acidification, endocytic and vesicle trafficking, and 
proper maintenance of mitochondrial function.194–196 JNCL is 
similar to INCL and late INCL and also presents with visual 
impairment, seizures, and progressive cognitive and motor 
decline, however, with an advanced onset, typically between 5 
and 10 years of age.18,183 In addition, the accumulation of dys-
functional mitochondria, increased expression of LC3-II, and 
the downregulation of the mammalian target of rapamycin 
(mTOR) pathway, indicating the activation of autophagosome 
formation, are detected in JNCL due to mutations of the CLN3 
gene, with autophagy likely disrupted at the level of autophagic 
vacuolar maturation.197,198

Conclusion
LSDs are particularly debilitating metabolic disorders; 
however, the past several decades have witnessed our ever 
evolving understanding of their complex biology. At the very 
least, the study of LSDs has helped highlight vital cellular 
processes, including calcium homeostasis, pH regulation, 
apoptosis, autophagy, molecular trafficking, endocytosis, and 
exocytosis, as well as some of the intra- and intercellular sig-
naling events involved in these processes. This deeper under-
standing of the biology has broadened the range of therapeutic 
targets for LSDs and other neurodegenerative disorders, as 
well as for cancer, eg, targeting LAMP2 (a deficiency of which 
is the underlying cause of Danon disease) may be a viable 
treatment option for both AD and HD in the future.199,200 
Currently, we have no cure for these diseases, but approved 
therapies for a handful of LSDs, and many ideas for the devel-
opment of new treatment options, do exist. Genetic screening 
programs for at-risk populations, screening of newborns for 
treatable disorders, provisions for genetic counseling, prenatal 
diagnosis for at-risk pregnancies, and more recently, preim-
plantation diagnoses remain the best remedies to decrease, or 
to at least be better prepared for, the complexities that LSDs 
present to society.17 The current aim for these disorders is 
still timely diagnoses to enable the early implementation of 
available and emerging therapies when available.
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