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Abstract
Neurogenin 3 (NGN3) commits pancreatic progenitors

to an islet cell fate. We have induced NGN3 expression

and identified upregulation of the gene encoding the

Ras-associated small molecular mass GTP-binding protein,

RAB3B. RAB3B localised to the cytoplasm of human

b-cells, both during the foetal period and post natally.

Genes encoding alternative RAB3 proteins and RAB27A

were unaltered by NGN3 expression and in human adult islets
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their transcripts were many fold less prevalent than those

of RAB3B. The regulation of insulin exocytosis in rodent

b-cells and responsiveness to incretins are reliant on Rab

family members, notably Rab3a and Rab27a, but not Rab3b.

Our results support an important inter-species difference in

regulating insulin exocytosis where RAB3B is the most

expressed isoform in human islets.
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Introduction

Understanding normal b-cell development and function

underpins various efforts aimed to restore b-cells in patients

with type 1 and type 2 diabetes. During the foetal

development, the pancreas contains epithelial progenitor

cells, which give rise to the adult cell lineages, including

b-cells (Murtaugh 2007). Experiments manipulating genes in

mice have discovered a multitude of transcription factors that

regulate this transition (Wilson et al. 2003). Within a subset of

progenitors, positive for the transcription factors Sry box 9

(Sox9) and pancreas-duodenal homeobox 1 (Pdx1), the basic

helix-loop-helix (bHLH) transcription factor Neurogenin-3

(Ngn3, also known as Neurog3) becomes transiently

expressed to commit cells to an endocrine fate (Schwitzgebel

et al. 2000, Lynn et al. 2007, Seymour et al. 2007). Without

Ngn3, islet differentiation fails (Gradwohl et al. 2000).

The transcription factor has also been shown necessary

for b-cell regeneration from adult precursors (Xu et al.

2008). Strategies, such as expression microarray following

retroviral ectopic Ngn3 expression, have identified direct

genetic targets of Ngn3 encoding transcription factors, such as

NeuroD1, paired homeobox factor 4 (Pax4), Nirenberg and

Kim (NK) homeobox family member Nkx2.2 and insuli-

noma-associated 1, all of which when inactivated in mice
impair b-cell differentiation (Sosa-Pineda et al. 1997, Sussel

et al. 1998, Huang et al. 2000, Heremans et al. 2002, Gasa et al.

2004, Smith et al. 2004, Mellitzer et al. 2006). Pdx1 is also

increased following Ngn3 expression (Gasa et al. 2004).

Several of these transcription factors downstream of Ngn3 are

then required for mature b-cell function. For instance, Pdx1

regulates GLUT2, glucokinase and insulin amyloid polypeptide

(IAPP) expression (McKinnon & Docherty 2001) and, in

association with NeuroD1, it transactivates the insulin gene

(Babu et al. 2008).

Many aspects of the b-cell phenotype are conserved across

species. Nevertheless, there are subtle differences in mature

b-cell function between mice and humans: the relative roles

of glucose transport and phosphorylation as a part of glucose

sensing (Schuit 1997); responsiveness to glucokinase activa-

tors ( Johnson et al. 2007); glucose-induced desensitisation

(Zawalich et al. 1998); responses to galanin (McDonald et al.

1994) and melatonin (Ramracheya et al. 2008); the roles of

Pax4 (Brun et al. 2008) and p57Kip2 (Potikha et al. 2005) in

b-cell proliferation; and, central to b-cell function, regulation

of the insulin promoter (Hay & Docherty 2006). This makes

direct study of human pancreas development and b-cells

worthwhile. Studying foetuses from first trimester termin-

ation of pregnancy has provided a framework for under-

standing early human pancreas development with b-cells
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increasing rapidly after 8 weeks post conception (wpc), first as
cell clusters and then within islets, where they express other
markers of maturity such as prohormone convertase 1/3,
IAPP, chromogranin A and some components of the glucose-
sensing apparatus (Piper et al. 2004, Richardson et al. 2007).
Similar studies first identified SOX9 as important for
pancreatic development and b-cell differentiation; the
pancreata of patients with campomelic dysplasia being
hypoplastic and composed of poorly formed islets (Piper
et al. 2002). Human pancreatic progenitor cells expressing
PDX1 (Piper et al. 2004) and NGN3 transcripts have been
identified at 8 wpc (Castaing et al. 2005).

To further address the potential inter-species differences
downstream of endocrine commitment, we induced human
NGN3 expression in a cell line with similarities to human
foetal pancreatic progenitors, leading to increased expression
of the Ras-associated small molecular mass GTP-binding
protein, RAB3B. RAB3 proteins regulate intracellular
trafficking and exocytosis in a range of cell types (Gonzalez
& Scheller 1999) with RAB3B recently implicated in
protecting and enhancing the function of dopaminergic
nerve terminals (Chung et al. 2009). Inactivation of either
Rab3a or Rab27, but not Rab3b, in mice causes glucose
intolerance (Yaekura et al. 2003, Aizawa & Komatsu 2005,
Kasai et al. 2005). In this study, we have identified RAB3B,
rather than RAB27A or other RAB3 isoforms, as the
predominant isoform in human islets implying an inter-
species difference and providing a new candidate for mutation
or abnormal function as a cause of diabetes and as a potential
therapeutic target for enhancing insulin secretion in humans.
C DAPI

PANC-1 cells

SOX9/CK19

Figure 1 PANC-1 cells express CK19 and SOX9. (A) Consecutive
5 mm sections of the human foetal pancreas at 8 wpc stained for
CK19 and SOX9. (B) Consecutive 5 mm sections of the human adult
pancreas stained for CK19 and SOX9. (C) Dual immunofluores-
cence of PANC-1 cells for SOX9 (red) and CK19 (green) counter-
stained with DAPI (blue) of the same image is shown to the right.
Size bars represent 250 mm (A and B) and 50 mm (C).
Materials and Methods

Human tissue collection

The collection of human foetal material under guidelines

issued by the Polkinghorne committee has been described

previously (Piper et al. 2004, Ostrer et al. 2006). Ethical

approval was granted by the Southampton and South West

Hampshire Local Regional Ethics committee. In these

experiments, material from at least two foetuses per stage

was examined. Human islets were obtained with appropriate

ethical approval from the King’s College Hospital Islet

Transplantation Unit (King’s College Hospital, London,

UK). Pancreata were removed from non-diabetic cadaver

organ donors and islets were isolated under aseptic conditions

as described previously (Huang et al. 2004).

Immunohistochemistry and immunoblotting

Tissue preparation, immunoblotting, immunohistochemistry

and immunofluorescence were performed as described

previously (Piper et al. 2004, Piper Hanley et al. 2008).

Antibodies are listed in Supplementary Table 1, see section

on supplementary data given at the end of this article with

dilutions, catalogue numbers and sources. Exceptions

to dilutions for immunoblotting were 1:1000 for NGN3
Journal of Endocrinology (2010) 207, 151–161
and RAB3B. For biotinylated secondary antibodies,

streptavidin (SA)–HRP (1:200, Vector Laboratories

Ltd, Peterborough, UK), SA–FITC (1:150, Sigma–Aldrich

Ltd), or SA–Texas Red (1:200; Vector Laboratories Ltd)

conjugates were used according to the manufacturers’

instructions. For bright-field immunohistochemistry, the

colour reaction was developed following SA–HRP with

diaminobenzidine (Merck) containing 0.1% hydrogen per-

oxidase (Sigma–Aldrich Ltd). Negative controls were

omission of primary or secondary antibody.
www.endocrinology-journals.org

http://joe.endocrinology-journals.org/cgi/content/full/JOE-10-0120/DC1


NGN3 and RAB3B in human b-cell differentiation . K PIPER HANLEY, T HEARN and others 153
Cloning of the PANC-1 cell line with inducible NGN3
expression

The human PANC-1 cell line (cat. no. 87092802) was

purchased from the European Cell and Animal Culture

Collection (ECACC, Salisbury, UK) and cultured in DMEM

containing 10% foetal bovine serum (FBS) and prokaryotic

antibiotics. All vectors were from Clontech Laboratories Inc.

The human NGN3 coding sequence was amplified by PCR

using primers containing HindIII and XbaI restriction sites

(forward, 5 0-CCCAAGCTTGACTCAAACTTACCCTT-

CCCTCTG-3 0; reverse, 5 0-GCTCTAGAGCTCCGGCC-

GGGTAGTGCT-3 0) and cloned using these restriction sites

into the pTRE2 vector to create pTRE2–NGN3. PANC-1

cells were transfected sequentially with pTet-On and

pTRE2–NGN3 plus pTK-Hyg using Transfast (Promega

Ltd). Stable PANC-1 clones demonstrating inducible NGN3

expression (PANC-1iNGN3) were isolated in DMEM

containing tetracycline-free FBS by selection with G418

and hygromycin according to the manufacturer’s instructions

(Clontech Laboratories). To assess the expression of functional
B 

PANC-1iNGN3 clone Fold induction S·E·M.

Clone 9 2·24 ±0·48

Clone 15 1·71 ±0·39

Clone 40 1·45 ±0·48

Clone 51 1·97 ±0·27
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Figure 2 Inducible NGN3 expression in PANC-1 cells
following the addition of doxycycline for 48 h to a clone
NeuroD1 promoter with two E-box motifs at K348/K343
regulated by Ngn3-E47 dimers (Huang et al. 2000). (C) F
transient transfection of p-1613NeuroD1-Luc measured 4
four PANC-1iNGN3 clones. (D) Fold increase GS.E.M. of N
analysis of PANC-1iNGN3 clone 51 by adding 2 mg/ml do
of clone 51 PANC-1iNGN3 cells showing NGN3 (E) and R
increasing concentrations of doxycycline for 48 h.
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NGN3 protein, the proximal 1613 bp of 5 0 flanking region

from the mouse NeuroD1 gene was amplified to create a

luciferase construct, p-1613NeuroD1-Luc. This construct

contains two E-box motifs regulated by Ngn3 (Huang et al.

2000). Luciferase assays (Promega Corp.), as described

previously (Hanley et al. 2001), were conducted 48 h after

the addition of doxycycline (Dox) to screen PANC-1iNGN3

clones for induction of functional NGN3.
Isolation of RNA, northern blotting, reverse transcription and
real-time PCR

Total RNA was isolated from PANC-1iNGN3 cells, human

foetal pancreas and adult islets using Tri reagent (Sigma–

Aldrich Ltd) for subsequent gel electrophoresis and reverse

transcription (RT) using Superscript III (Invitrogen Ltd).

RNA gel electrophoresis was carried out under denaturing

conditions using 5 mg of total RNA per lane followed by

washing and transfer overnight to Hybond NC membrane

(Amersham Pharmacia Biotech Ltd). The membrane was
Gene Fold induction S.E.M.

NGN3 2·98 ±0·28

RAB3B 2·50 ±0·08

Doxycycline (µg/ml)

Doxycycline (µg/ml)
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b-Actin
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b-Actin

0 0·1 0·5 1·0 2·0 4·0
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. (A) Northern blot analysis for NGN3 expression
of PANC-1iNGN3 cells. (B) Schematic of the mouse
and K241/K236 bp in its 5 0 flanking region that are

old induction GS.E.M. of luciferase activity from
8 h after the addition of 2 mg/ml doxycycline in
GN3 and RAB3B expression from microarray
xycycline for 48 h. (E and F) Western blot analysis
AB3B (F) protein expression following addition of

Journal of Endocrinology (2010) 207, 151–161



0

0·5

1

1·5

2

2·5

3

3·5

RAB3A RAB3B RAB3C RAB3D RAB27A

R
el

at
iv

e 
ex

pr
es

si
on

–Dox

∗

+Dox

A

B
Gene Fold induction across all

PANC-1iNGN3 clones

S.E.M.

RAB3A 1·05

RAB3B 1·85

RAB3C 1·00

RAB3D 1·15

RAB27A 1·12

0·03

0·24*

0·12

0·02

0·03

Figure 3 Expression of RAB3 family members and RAB27A
following induction of NGN3 expression in PANC-1iNGN3 cells.
(A) Expression of RAB3 isoforms and RAB27A in PANC-1iNGN3

clone 51 after 2 mg/ml doxycycline for 48 h. Bars show mean
GS.E.M. from at least two experiments. (B) Mean fold induction
GS.E.M. of expression for RAB3 isoforms and RAB27A in the other
PANC-1iNGN3 clones (Fig. 2B) after 2 mg/ml doxycycline for 48 h.
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Figure 4 Timing of RAB3B expression following the induction of
NGN3 in PANC-1iNGN3 cells. The relative expression of RAB3B and
NEUROD1 is shown following the addition of 2 mg/ml doxycycline
to PANC-1iNGN3 clone 51. Bars show meanGS.E.M. from two
experiments. *P!0.05 following analysis by ANOVA and
Dunnett’s post hoc test.
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cross-linked by exposure to ultraviolet light and hybridised at

68 8C overnight with radiolabelled DNA probes to the

NGN3 coding sequence. Following post-hybridisation

washes, the membrane was exposed to autoradiography film

at K80 8C and developed.

Real-time PCR in the foetal tissue and the PANC-1 cells

used pre-designed Taqman Gene Expression assays for each

gene (Applied Biosystems, Warrington, UK) and an ABI

PRISM 7900HT system with standard cycling conditions.

TBP and HPRT1 were used as endogenous controls. Results

were analysed with SDS v2.1 software (Applied Biosystems)

using the relative quantification method. mRNA was isolated

from human pancreatic islets using the RNeasy Mini kit

(Qiagen Ltd) according to the manufacturer’s instructions and

was quantified using a Nanodrop spectrometer (NanoDrop,

Rockland, ME, USA). cDNA was synthesised and quan-

titative RT-PCR standards ranging from 10 to 109 copies

DNA were prepared as described previously (Persaud et al.

2002). Real-time PCR amplification was performed using a

LightCycler rapid thermal cycler system. Reactions were

performed in 10 ml comprising nucleotides, Taq DNA

polymerase and buffer (all included in the LightCycler

FastStart Reaction Mix SYBR Green I); template cDNA;

3 mM MgCl2; and 0.5 mM primers. All PCR protocols

included an initial 10 min denaturation step and each cycle
Journal of Endocrinology (2010) 207, 151–161
subsequently included a ramp at 95 8C for denaturation,

annealing for 10 s at the temperatures listed in Supplementary

Table 2, see section on supplementary data given at the end of

this article and a 72 8C extension phase for 14 s (b-ACTIN) or

18 s (all other genes). The amplification products of both the

primer pairs were subjected to melting point analyses and

subsequent gel electrophoresis to ensure specificity of

amplification.
Statistical analysis

Data were expressed as meansGS.E.M. Statistical analysis

used paired t-test or one-way ANOVA followed by Dunnett’s

post hoc test, as indicated. Values with P!0.05 were

considered significant.
Results

Inducible NGN3 expression by PANC-1iNGN3 cells

In the human pancreas, cytoplasmic CK19 and nuclear SOX9

were restricted to the foetal epithelial progenitor cells and

adult ductal cells (Fig. 1A and B; Piper et al. 2004). A similar

profile was identified uniformly in the human pancreatic

ductal carcinoma cell line, PANC-1 (Fig. 1C), which was

negative for amylase (data not shown), confirming this cell

line as a suitable source in which to engineer inducible

NGN3 expression. Sequential stable transfection of vectors

for dox-inducible NGN3 expression resulted in the isolation

of more than 60 human PANC-1iNGN3 clones for further

analysis. These starting clones retained SOX9 and CK19
www.endocrinology-journals.org
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expression (data not shown). From selected clones, northern

blotting revealed dose-responsive NGN3 expression

(Fig. 2A). Four clones, 9, 15, 40 and 51, were analysed in

greater detail. The ability of these clones to induce functional

NGN3 protein after the addition of dox to the media was

assessed using a luciferase construct containing two E-box

motifs from the wild-type mouse NeuroD1 5 0 flanking region

(Fig. 2B; Huang et al. 2000). All the four clones increased

luciferase activity on the addition of dox to the media

(Fig. 2C). Clone 51 gave the most reproducible results with

least background luciferase activity and, thus, was chosen for

the induction of NGN3 and subsequent microarray analysis

(see Supplementary Methods, see section on supplementary

data given at the end of this article). As expected, NGN3

upregulation was detected by the array (Fig. 2D). The gene

encoding RAB3B was also identified from candidates whose

expression was induced at least twofold by 2 mg/ml dox

treatment for 48 h. Reassuringly, both NGN3 and RAB3B

proteins showed dose-responsive increases following dox

treatment of clone 51 (Fig. 2E and F).
Expression of RAB3 family members and RAB27A in
NGN3-inducible PANC-1 cells

In the mouse central nervous system, Rab3 proteins functions

redundantly due to other co-expressed family members
A B

D E

52 dpc

NGN3 NGN3

10 wpc

NGN3/PDX1 NGN3/RAB3B

Figure 5 Expression of NGN3 during human pancreas develo
developing human pancreas at 52 dpc (A), 8 wpc (B, arrows p
immunofluorescence of NGN3 (red) and PDX1 (green) is shown
RAB3B (E) and insulin (F). Arrows in (F) point to NGN3-positive
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(Schluter et al. 2004). In mouse b-cells, inactivation of

Rab3a and Rab27a, but not Rab3b, caused glucose intolerance

(Yaekura et al. 2003, Kasai et al. 2005). Therefore, we analysed

whether NGN3 expression led to the expression of other

RAB3 genes as well as RAB27A. Following the induction of

NGN3 for 48 h, neither RAB3A, RAB3C and RAB3D

family members nor RAB27A was increased in either clone

51 (Fig. 3A) or the other PANC-1iNGN3 cell clones (Fig. 3B).

RAB3B was significantly increased in all the four PANC-

1iNGN3 clones, albeit to a lesser extent in clones 9, 15 and 40

than in clone 51. Spurious induction of RAB3B by the

antibiotic was excluded, as dox had no effect on RAB3B

expression in PANC-1 cells lacking the pTRE2–NGN3

vector (data not shown).

NGN3 is a transient requirement during mouse endocrine

cell differentiation (Schwitzgebel et al. 2000). As exocytosis of

stored hormone granules is a function of mature endocrine

cells, NGN3 would not be expected to directly regulate

RAB3B expression. We examined the timing of RAB3B

expression in the PANC-1iNGN3 cells. By northern blotting,

NGN3 transcripts were induced within 2 h of adding dox

(data not shown). mRNA levels of NEUROD1, a direct

target of NGN3 action (Huang et al. 2000), were increased by

w40% at 6 h and doubled at 12 h. In contrast, RAB3B

transcripts accumulated relatively slowly, levels being

increased only by w50% at 24 h after the addition of
C

F

NGN3

8 wpc 10 wpc

10 wpc 10 wpc

NGN3/insulin

pment. (A–F) NGN3 immunohistochemistry in sections of
oint to positive cells) and 10 wpc (C–F). Dual

in (C). (E and F) Dual immunofluorescence of NGN3 with
nuclei. Size bars represent 150 mm (A–C) and 40 mm (D–F).
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Dox (Fig. 4). This implies that the effect of NGN3 on

RAB3B transcription is indirect and mediated through

other transcription factors. We used RNAi to moderate the

increase in NEUROD1 expression (Supplementary Figure 1,

see section on supplementary data given at the end of

this article). The downstream induction of RAB3B was

unaltered, indicating that it does not rely on NEUROD1

(data not shown).
Expression of RAB3B during human pancreas development
and in islets

From analyses of four specimens at 50 and 52 dpc, the human

embryonic pancreas was largely devoid of cells positive for

NGN3 (Fig. 5A). In two specimens at 8 wpc, isolated

epithelial cells with nuclei stained for NGN3 immunor-

eactivity were apparent centrally within the organ (arrows in

Fig. 5B). At this stage, we have previously reported occasional

insulin-positive cells in the same location (Piper et al. 2004).

Similarly positioned NGN3-positive cells were more numer-

ous within two specimens of larger pancreas at 10 wpc

(Fig. 5C) and they did not co-localise with PDX1 (Fig. 5D).
A B

E F

IH

8 wpc 10 wpc

10 wpc

10 wpc

RAB3B RAB3B

Insulin

Grucagon

RAB3B

RAB3B

Figure 6 Expression of RAB3B during huma
immunohistochemistry in sections of developing
(B, arrow points to faintly positive cell cluster) an
(D, arrow and star indicate duct and acinar tissu
immunofluorescence at 10 wpc counterstained w
(A–C), 250 mm (D) and 40 mm (E–J).
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In keeping with an indirect induction by NGN3, neither

RAB3B nor insulin-positive cells stained for NGN3 (Fig. 5E

and F). RAB3B was first detected weakly by immuno-

histochemistry in the cytoplasm of clustered cells adjacent to

the duct-like epithelial structures of the foetal pancreas at

10 wpc (Fig. 6A and B). It was detected more robustly in the

earliest foetal islets at 12 wpc (Fig. 6C) and in the cells of adult

islets (Fig. 6D). RAB3B was not found in ducts or acinar cells

(Fig. 6D) of the adult pancreas. At 10 wpc, RAB3B

co-localised with insulin and glucagon (Fig 6E–J). In the

adult pancreas, RAB3B extensively co-localised with insulin

but was somewhat variable in different b-cells (Fig. 7A–C).

Some RAB3B was present in some a- and d-cell but at

relatively low level (Fig. 7D–I). In contrast, RAB3B did not

co-localise with pancreatic polypeptide in the adult pancreas

(Fig. 7G–L). Consistent with Fig. 6D, RAB3B was not

detected in CK19-positive duct cells in the adult pancreas

(Fig. 7M–O). These data are consistent with the timing of

RAB3B expression following its induction by NGN3 in

PANC-1iNGN3 cells (Fig. 4).

By real-time PCR, RAB3B was detected robustly in adult

islets. Its transcripts were w500-fold increased compared to
C D

G

J

10 wpc 10 wpc

10 wpc 10 wpc

12 wpc Adult

RAB3B RAB3B ∗

Insulin/RAB3B

Grucagon/RAB3B

n pancreas development. (A–D) RAB3B
human pancreas at 8 wpc (A), 10 wpc
d 12 wpc (C), and in the adult pancreas

e respectively). (E–J) Individual and dual
ith DAPI (blue). Size bar represents 150 mm
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Figure 7 Expression of RAB3B in the adult pancreas. (A–O) Immunofluo-
rescence counterstained with DAPI (blue) in sections of the adult pancreas.
Size bar represents 40 mm (A–F and J–O) and 150 mm (G–H).
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RAB3A, 25-fold increased compared to RAB3C and 17-fold

increased compared to RAB27A (Fig. 8). RAB3D did not

amplify despite 40 cycles of PCR, implying very low or

absent expression compared to the other isoforms under

investigation.
Discussion

Studies in mice have proven that Ngn3 is required for

pancreatic endocrine cell commitment. Without the bHLH

transcription factor, the islet differentiation programme fails

(Gradwohl et al. 2000). Conversely, driving ectopic Ngn3

expression in all pancreatic progenitor cells leads to premature

over-commitment to an endocrine cell fate (Apelqvist et al.

1999). Lineage tracing of Ngn3-positive cells marks all

mature pancreatic endocrine cell types (Gu et al. 2002).

The transcription factor is extinguished before terminal

differentiation and hormone expression (Schwitzgebel et al.

2000). Thus, it can be concluded that, in rodents, transient

Ngn3 expression in an appropriate number of pancreatic

epithelial progenitor cells is the normal mechanism for islet

development and also appears important for potential b-cell

regeneration in adult mice (Xu et al. 2008). In this study,

consistent with previous data describing NGN3 transcripts in

the human foetal pancreas at 8 wpc (Castaing et al. 2005), we

found the transcription factor present at 8 and 10 wpc within

central cells of the pancreas where endocrine differentiation is

known to predominate away from the pro-proliferative,

exocrine-inducing effects of peri-pancreatic mesenchyme

(Miralles et al. 1998, Polak et al. 2000, Elghazi et al. 2002,
Journal of Endocrinology (2010) 207, 151–161
Piper et al. 2004). At this stage of development, large numbers

of insulin-positive cells are apparent before organisation into

islets at the end of the first trimester (Piper et al. 2004).

Coupled with the identification of hypomorphic NGN3

mutations in patients with juvenile-onset diabetes (Wang et al.

2006, Jensen et al. 2007), these findings make in vitro models

useful in the search for downstream target genes of NGN3

expression in human (Heremans et al. 2002, Mellitzer et al.

2006) and in mouse cell types (Gasa et al. 2004).

Our in vitro cell line model to study the downstream

consequences of NGN3 expression is an imperfect replica of

human foetal pancreatic progenitors. In our experience,

PANC-1 cells lack PDX1 protein. On the microarray,

hybridisation signal was weak for PDX1 and unaltered by

the dox treatment. However, similar in vitro models have been

used by others (Gasa et al. 2004) and PDX1 was absent in the

NGN3-positive foetal pancreatic cells both in this study and

in mouse (Schwitzgebel et al. 2000). Our cloned cells did

uniformly express SOX9 and CK19 mimicking foetal

pancreatic progenitor cells and an adult ductal phenotype.

Nevertheless, by the ectopic expression of a single gene in a

tumour cell line, it is inconceivable to generate bona fide

b-cell precursors with complete, faithful gene expression

profiles. Hence, our model of inducible NGN3 expression

was used as a tool to identify downstream candidate markers

of human b-cells for validation in the native cell type. NGN3

expression promptly activated NEUROD1, which encodes a

transcription factor that has been linked causally with various

forms of non-autoimmune diabetes (Frayling et al. 2001). Our

model also allowed detection of RAB3B, which was

subsequently shown to localise robustly to the human foetal

and adult b-cells.

There are four RAB3 family members. Regazzi et al.

(1996) previously showed RAB3B and RAB3C, but not

RAB3A, by immunoblotting of whole human islets,

comprising multiple hormone-secreting cell types. At that

time, RAB3D was not assessed. In rat and mouse, Rab3a and

Rab27a are very important regulators of exocytosis, both

in vitro and in vivo, in b-cells (Regazzi et al. 1996, Yi et al.

2002, Waselle et al. 2003, Yaekura et al. 2003, Kasai et al. 2005,

Abderrahmani et al. 2006). Through the interaction with a

network of interacting proteins, they coordinate the

intracellular trafficking of insulin granules that culminate in

docking at the cell membrane and insulin release (Yi et al.

2002, Waselle et al. 2003). Rab3a and Rab27a knockout mice

show defects in glucose-stimulated insulin secretion (GSIS)

similar to those observed in patients with type 2 diabetes and

in mice lacking the glucagon-like peptide-1 (GLP-1) receptor

(Scrocchi et al. 1996, Yaekura et al. 2003, Aizawa & Komatsu

2005, Kasai et al. 2005). Furthermore, hyperglycaemia

drastically reduced levels of Rab3a and Rab27a protein

in rat b-cells as a consequence of expression of the

transcriptional repressor, inducible cAMP early repressor

(Abderrahmani et al. 2006). It transpires that GLP-1

potentiation of insulin secretion requires a complex between

the cAMP sensor protein cAMP–GEFII, bound to the
www.endocrinology-journals.org
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sulphonylurea receptor 1, a protein called Piccolo and

Rab-interacting molecule 2 (RIM2; Ozaki et al. 2000,

Kashima et al. 2001, Fujimoto et al. 2002, Shibasaki et al.

2004). RIM2 then interacts with the RAB protein at the

insulin granule, thus linking GLP-1 signalling and events at

the ATP-sensitive potassium channel to insulin secretion.

This emerging understanding of an important mechanism

underlying GSIS makes the identification of the prevalent

RAB isoform(s) in human b-cells important.

In this study, RAB3B was the only family member induced

as a consequence of NGN3 expression. Its induction by

NGN3 occurred later than that of NEUROD1, which, along

with the non-overlapping expression profiles in develop-

mental material, implies indirect regulation of RAB3B by

NGN3. We show that RAB3B was extensively localised to

b-cells both during human foetal development and in adult

islets with some expression in some adult a- and d-cells.

Analysis of human adult islets demonstrated RAB3B

expression to be approximately equal to the transcript

numbers of b-ACTIN, present in all islet cell types, and

greatly in excess of those for RAB3A, RAB3C, RAB3D and

RAB27A. The level of RAB3B transcripts detected equates to

w20–50% of those which we have previously found for

insulin (data not shown). In the mouse central nervous

system, Rab3 family members regulate the exocytosis of

neurotransmitters in a redundant manner, all isoforms

needing inactivation to generate an epileptic phenotype

(Schluter et al. 2004). This raises the question of whether

redundant function could also affect pancreatic b-cell

function. Although feasible, this seems unlikely: RAB3A

and RAB3C transcripts were only weakly detected and

RAB3D was not detected in islets whereas in the central

nervous system, under normal conditions, all Rab3 isoforms

are expressed (Schluter et al. 2004); in in vitro analysis of rat

melanotrophs, Rab3b could not substitute for the function of

Rab3a (Rupnik et al. 2007); inactivation of either Rab3a or

Rab27a in isolation produced glucose intolerance in mice

(implying non-redundant function; Yaekura et al. 2003, Kasai

et al. 2005); over-expression of Rab3a and Rab27a protein in

MIN6 cells generated different effects on insulin secretion

(Yi et al. 2002); and in dopaminergic nerves, over-expressing

RAB3B, but not RAB3A, was protective in the models of

Parkinson’s disease (Chung et al. 2009). Interestingly, on

searching the Unigene database, Rab3b is absent from cDNA

libraries generated from mouse or rat insulinoma cell lines.

Twelve of the 13 pancreatic clones for human RAB3B arise

from the islet or insulinoma sources. Conversely, RAB3A,

inactivation of which causes glucose intolerance in mice

(Yaekura et al. 2003), has not been identified from Unigene

human islet or insulinoma cDNA libraries.

There is a clear involvement of mutations in the pathway

between the ATP-sensitive potassium channel and insulin

secretion as causes of permanent neonatal diabetes (Gloyn

et al. 2004). RAB3B localises to 1p31–p32, a locus previously

linked to glucose intolerance and diabetes (Hsueh et al. 2003).

We have conducted preliminary screens in three cases of
www.endocrinology-journals.org
permanent neonatal diabetes with linkage to this locus

without identifying causative mutations in the RAB3B

coding region. Irrespective of this, the potential for agents

targeted at RAB function as novel potentiators of GSIS has

already been proposed (Aizawa & Komatsu 2005). It will be

important to ensure such efforts target the appropriate

protein. In this study, we identified RAB3B as an indirect

target of NGN3 expression. Under normal circumstances,

RAB3B is clearly the predominant family member in human

islets representing a significant difference in gene expression

across species. Specifically, neither RAB3A nor RAB27A

appears as likely to play the important role in human b-cells

that has been described for the equivalent rodent cells

(Regazzi et al. 1996, Yi et al. 2002, Waselle et al. 2003, Kasai

et al. 2005, Abderrahmani et al. 2006).
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