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Slower than anticipated, COVID-19 vaccine production and dis-
tribution have impaired efforts to curtail the current pandemic.
The standard administration schedule for most COVID-19 vaccines
currently approved is two doses administered 3 to 4 wk apart.
To increase the number of individuals with partial protection,
some governments are considering delaying the second vaccine
dose. However, the delay duration must take into account cru-
cial factors, such as the degree of protection conferred by a single
dose, the anticipated vaccine supply pipeline, and the potential
emergence of more virulent COVID-19 variants. To help guide
decision-making, we propose here an optimization model based
on extended susceptible, exposed, infectious, and removed (SEIR)
dynamics that determines the optimal delay duration between
the first and second COVID-19 vaccine doses. The model assumes
lenient social distancing and uses intensive care unit (ICU) admis-
sion as a key metric while selecting the optimal duration between
doses vs. the standard 4-wk delay. While epistemic uncertain-
ties apply to the interpretation of simulation outputs, we found
that the delay is dependent on the vaccine mechanism of action
and first-dose efficacy. For infection-blocking vaccines with first-
dose efficacy ≥50%, the model predicts that the second dose can
be delayed by ≥8 wk (half of the maximal delay), whereas for
symptom-alleviating vaccines, the same delay is recommended
only if the first-dose efficacy is ≥70%. Our model predicts that
a 12-wk second-dose delay of an infection-blocking vaccine with
a first-dose efficacy ≥70% could reduce ICU admissions by 400
people per million over 200 d.

outbreaks | vaccination | control | strategies

Immunization of a large proportion of the worldwide popula-
tion against the severe acute respiratory syndrome coronavirus

2 (COVID-19) is the most pressing current public health con-
cern globally. Despite the unprecedented speed at which safe
and effective vaccines were developed, tested, and approved,
slower than anticipated vaccine production and distribution have
hampered efforts to curtail the ongoing pandemic (1–3). The
delays have not only resulted in an alarming number of poten-
tially preventable deaths but also, contributed to the emergence
of more virulent strains that could reduce the efficacy of current
vaccines (4). Of the eight COVID-19 vaccines currently autho-
rized around the globe, most have a recommended schedule of
two doses separated by 3 to 4 wk. While awaiting replenishment
of vaccine supplies, some governments are considering or have
implemented delayed administration of the second vaccine dose
in order to increase the proportion of the population with at least
partial protection from a single dose. Recent debates argue in
favor of such delay strategies (1–3), but there are no guidelines as
to how the optimal delay duration should be determined, and this
has yet to be tested in clinical trials. Two major questions are the
extent to which delaying the second dose would impact hospital-
ization rates and alleviate mitigation measures when compared
with the standard 3- to 4-wk second-dose delay.

Here, we report a model-based strategy for identifying the
optimal delay time between vaccine doses using intensive care

unit (ICU) hospitalizations as the key metric. We show that the
optimal time is influenced by both the first-dose efficacy and
whether the vaccine prevents infection or alleviates symptoms.
The decision to delay the second vaccine dose is therefore not
trivial because single doses of infection-blocking and disease-
modifying vaccines are unlikely to have an equivalent impact on
curbing the pandemic (5), and a large number of infection sce-
narios and their effect on disease evolution must also be taken
into account.

To assist in decision-making about the optimal time to delay
the second COVID-19 vaccine dose, we extended the suscepti-
ble, exposed, infectious, and removed (SEIR) model to include
vaccination campaigns with two doses across populations. The
epidemiological dynamic is used to predict ICU bed occu-
pancy as a stochastic process that follows the disease trajectory.
This information feeds a larger model that maintains the ICU
occupancy within the operational capacity by restricting popu-
lation circulation when needed. This is a unique feature of our
approach, as other efforts to determine optimal dosing schedules
for the COVID-19 vaccines do not take into account social dis-
tancing (6–8). We describe an optimization algorithm to find the
best vaccination regimen that does not increase hospitalization
rates while successfully alleviating social distancing and travel
restrictions, thereby accelerating a return to “normality” as soon
as possible.

1. Results
The algorithm explores multiple scenarios to obtain the best
profile for delaying the second vaccine dose while safeguarding
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the health care system and lessening mitigation measures. The
second-dose delay mechanism is not explicit but emerges from
the solution of the optimization, and the solver decides when to
administer the second dose. As illustrated in Fig. 1, several fac-
tors are taken into account: age, mechanism of vaccine action
(symptom alleviation vs. infection prevention), vaccine availabil-
ity, ICU capacity and its variability, and ICU hospitalization rates
among different age groups.

To illustrate, consider a single age group. At each incremen-
tal change in delay time, there are three decision variables: 1)
the reproduction number rt , 2) the number of first doses cur-
rently administered, and 3) the number of second doses currently
administered. Reducing mitigation measures (i.e., increasing rt )
increases the number of ICU admissions, whereas increasing
the vaccination rate has the opposite effect. However, a cer-
tain time delay between first and second doses may be beneficial
depending on the protection level conferred by the first dose.
Each iteration of the solution method adjusts the control vari-
ables taking into account the dynamics, the logistic constraints,
and the ICU capacity. The adjustment is performed in a man-
ner that favors large reproduction numbers rt . We can then
compute a second-dose delay for all time steps to obtain the
optimal delay.

1A. Multiple Subpopulation SEIR Model with Two Vaccine States. We
extend the SEIR model to include individuals receiving vaccines.

Given a subpopulation p, the proportions of the susceptible
subpopulation that have received zero, one, and two vaccine
doses are Sp,1,Sp,2, and Sp,3, respectively. The other SEIR
states, E , I , and R, were also similarly split. The parameters
a1, a2 ∈ [0, 1] decrease the probability that a vaccinated indi-
vidual will be infected when exposed to an infected individual,

considering one and two doses, respectively, while vp,1 and vp,2
represent the proportions of individuals who have received first
and second doses. The model is presented in Methods, and the
interactions are illustrated in Fig. 1. The main elements of our
optimization model are described below.
1A.1. Groups in the population. We stratify the population into
subgroups with specific demands on health care. We considered
four age groups of 0 to 19, 20 to 49, 50 to 64, and 65 to 90 y in
groups 1, 2, 3, and 4, respectively. The contact matrix C between
age groups is presented in Methods. We set the initial condition
as S0 =68.5%, E0 =1.0%, I0 =0.6%, and R0 =29.9%, corre-
sponding to typical values for multiple countries at the beginning
of February 2021. The algorithm was run with basal reproduc-
tion number r0 ranging between 1.8 and 3.0 without observing
a significant change in the output decisions. The subpopulation
breakdown by age is 30, 48, 14, and 8% for groups 1, 2, 3, and 4,
respectively.

Given a reproduction number r0, the reproduction number of
the subpopulation p is the product bpr0, where factor bp repre-
sents subpopulation susceptibility that is greater than or equal
to that of the overall population. This factor is one except for
b2 =1.3, which takes into account the increased mobility and
thus, contribution to disease transmission by the 20- to 49-y-old
age group.
1A.2. Objectives. To prevent collapse of the health care sys-
tem, the reproduction number must be decreased. This can be
achieved by restricting circulation and implementing a vaccina-
tion campaign: that is, deciding for each day t and subpopulation
p the values of vp,1(t) and vp,2(t) (9, 10) until the reproduction
number reaches a target value r(t).

Rather than performing simulations of known case studies
defined by experts (1, 2) in our model, the optimization algorithm

Fig. 1. A mathematical model combines data and optimization to obtain an optimal delay for administration of a vaccine second dose. The optimal second-
dose delay emerges from the solution of the optimization model. The model blends ICU usage data, the vaccine mechanism of action, vaccine availability,
and population demographics into an epidemiological model to predict future ICU admissions by age group. The model is solved using an optimization
algorithm that considers multiple scenarios and iteratively adjusts the decision variables to find the optimal delay between the first and second vaccine
doses and the target control reproduction number. The graphics used to prepare Fig. 1 are extracted from Freepik.
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drives selection of the best strategy by considering implicitly
all possible combinations of social distancing and vaccination
profiles. Accordingly, the optimization model casts r(t), vp,1(t),
and vp,2(t) as decision variables to be selected by the algo-
rithm among all scenarios that combines mitigation measure
and vaccine administration to save ICU admissions. The choices
range from complete lockdown (r(t)= 0) to free circulation
(r(t)= r0) in combination with single-dose administration to any
or no portion of a population (vp,1(t)∈ [0, 1]), and similarly for
the second dose (vp,2(t)∈ [0, 1]). To determine the best strat-
egy, the optimization process is guided by its objective function
that encourages higher values of r(t) and translates into a more
freely circulating population. For logistic reasons, the objective
function also includes a term that promotes smooth changes in
the vaccination profile.

The optimization model also takes into account ICU occu-
pancy and maintains it below maximum capacity with a 95%
probability. The number of ICU patients on day t follows a
stochastic process calibrated as a time series for the proportion
of infected individuals who will need intensive care on day t .
We estimate that the average stay in the ICU is 7 d (11). Using
official records for Brazil for the last quarter of 2020, we com-
puted the mean number of patients in the ICU for each day t
between day t − 7 and day t and divided that by the number
of new cases reported in day t. After the time series is cali-
brated for the ratio, knowing the number of infected individuals
in the SEIR dynamics at day t gives a stochastic trajectory of
ICU bed occupancy from which we derive a probabilistic con-
straint. The considered ICU bed capacity is 17.5 per 100,000
inhabitants, and the mean ICU bed demand is 1.2% (SD 0.64%)
of the infected population, distributing the values among the
age groups.
1A.3. Vaccine mechanisms. We consider two types of vaccine
(5): infection blocking and symptom alleviating. An infection-
blocking vaccine can prevent infection by decreasing the likeli-
hood of becoming infected from an encounter with an infectious
individual by one minus the dose efficacy. This is modeled
by multiplying the respective reproduction number by this fac-
tor, represented by the parameters a1 and a2 in the model.
In the case of a vaccine that alleviates symptoms, we keep
a1 = a2 =1 and assume that the effect of the vaccine is only to
decrease the likelihood of an infected individual requiring ICU
admission. This is modeled by multiplying the estimate of ICU
beds needed for vaccinated individuals by one minus the dose
efficacy.

1A.4. Profile of available doses. Available dose numbers are
given as a proportion of the population size, with an initial
number of 0.1% ramping up linearly to 1.0% over 150 d and
remaining constant thereafter. Small modifications to this profile
do not affect the main results.

1B. Standard Vaccination by Age Groups as Baseline. For both types
of vaccine mechanisms over a period of 364 d, we first per-
formed a simulation in which the standard two-dose vaccination
strategy is administered to the most at-risk age group (65 to 90
y) first. As a “baseline” strategy, the second dose is automati-
cally reserved for administration 4 wk later, and subpopulations
are parsed in order of decreasing age. To evaluate the bene-
fits of postponing the second dose, we used the number of ICU
admissions as a measure of benefit gained by optimization of
the vaccination strategy compared with the baseline strategy. A
complementary metric is to assess the closeness of the reproduc-
tion number rt to the maximum value r0 = 2.5. Since a value of
2.5 represents no circulation restriction, closeness to r0 reflects
proximity to an “open society” without enforced mitigation
measures.

1C. Delaying the Second Dose. To address whether delaying the
second vaccine dose is desirable, the optimization model deter-
mines the best combination of target reproduction number r(t)
and vaccine distribution among the age groups. In our model, the
second dose can be administered at any time up to 12 wk after the
first dose.
1C.1. Impact of first-dose efficacy and the vaccine mechanism. We
fixed the second-dose efficacy at a2 =82.4%, as observed for the
AstraZeneca Oxford vaccine (AZD1222) (12), and let the first-
dose efficacy a1 vary from 0 to 80% in steps of 5%. The goals are
1) to determine if an optimal delay exists (other than the stan-
dard 4 wk) and 2) to determine if a threshold exists that would
trigger a switch in the best delay time from the recommended
(i.e., 4 wk) to as late as possible (12 wk).

The results for infection-blocking and symptom-alleviating
vaccines are shown in Fig. 2, where the dotted lines mark the
delay at r0 =2.5 and the whiskers correspond to all possible val-
ues when r0 is varied from 1.8 to 3 in 0.2 steps. For r0 across this
range, the threshold efficacy to obtain herd immunity (defined
as the point at which the effective reproduction number is below
one) ranges from 44.4 to 66.6%. For example, for r0 =1.8, the
model predicts that a fully open society can be reached by week
5, well before the maximum allowed delay for the second dose

Fig. 2. Optimization of the delay between the first and second doses of a COVID-19 vaccine based on first-dose efficacy and vaccine mechanism. The shaded
areas represent the first-dose efficacy that results in doubling the time to second dose from the baseline (4 wk). Left shows the second-dose delay when
the vaccine alleviates symptoms; in this case, the best strategy delays the second dose for ≥8 wk when the first-dose efficacy is ≥70%. Right shows the
second-dose delay when the vaccine blocks infection; here, the best strategy delays the second dose for ≥8 wk when the first-dose efficacy is ≥50%. For
both vaccine types, the second-dose efficacy reaches 82.4%. The filled circles show the time to the second dose for r0 = 2.5, and the bars represent the
variability across simulations when r0 is varied from 1.8 to 3 in 0.2 steps.
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(12 wk). In contrast, for r0 =3.0, the model predicts that mitiga-
tion measures will still be required beyond 12 wk. The decision
to postpone the second dose is robust across the considered
reproduction numbers. These results show that the vaccine
mechanism plays a major role in the decision. Thus, when the
vaccine blocks infections, the algorithm suggests that the second
dose can be delayed by ≥8 wk if the first-dose efficacy is ≥ 50%
and by the maximum delay of 12 wk if the first-dose efficacy is ≥
70%, whereas a delay≥ 8 wk is advisable for symptom-alleviating
vaccines only when the first-dose efficacy is ≥ 70%.
1C.2. Effect of augmented transmission in a subpopulation. Indi-
viduals within specific age groups may play a more active role
than other age groups in spreading the disease due to a higher
degree of social activity or less stringent attention to sanitary
measures. For this analysis, we considered people in the 20- to
49-y-old age group, most of whom would be working and socially
active. We fix r0 at 2.5 and compute the second-dose timing as a
function of the first-dose efficacy for b2 ranging from 1 to 1.6. We
observed only a small variability in the optimal time to second
dose; in fact, all curves fell within the shaded area of Fig. 2. Thus,
postponing the second dose is robust with respect to changes in
both r0 and the reproduction number of specific subpopulations.

1C.3. Comparison between the optimally delayed second dose and
baseline strategy. We let r0 =2.5 for all age groups except the
20- to 49-y-old group, where r0 was set 30% higher. We fixed the
first- and second-dose efficacies at 76 and 82.4%, respectively, as
estimated for the AZD1222 vaccine (12).

To quantify the effect of delaying the second dose on health,
we computed the difference in ICU demand when comparing
the optimization model and baseline strategies. We varied the
efficacy of the first dose from 0 to 80% and determined the
impact on COVID-19–related ICU admissions over a specific
period, which we set here as 200 d. The algorithm finds an opti-
mal second-dose delay in which social distancing values are no
worse than those with the baseline strategy. To achieve this, the
model includes the mean baseline rt as a lower bound and runs
the optimization problem with a metric that decreases the overall
ICU usage.

The results for the first 200 d are reported in Fig. 3. The
data show that a second-dose delay beyond the standard 4 wk
will result in a progressive reduction in ICU admissions as the

Fig. 3. Reduction in ICU occupancy using the optimized second-dose delay
strategy compared with the standard delay strategy. The graph shows the
predicted reduction in ICU admissions when the first-dose efficacy is varied
from 0 to 80% in 5% increments and is normalized to the baseline strategy
of 4 wk between doses.

Fig. 4. SEIR model for age group p with a two-dose vaccine that blocks
infection.

first-dose efficacy increases, with a threshold of 50%. As a com-
parison, this model would predict that for an infection-blocking
vaccine such as AZD1222, which has an actual first-dose effi-
cacy of about 76%, an optimized second-dose delay would save
45 ICU admissions per 100,000 individuals compared with the
baseline strategy.

Assuming a first-dose efficacy of ≥50%, the optimization
model indicates that each 6% increase in first-dose efficacy
reduces the number of ICU admissions by 10 per 100,000 individ-
uals for infection-blocking vaccines and 8 per 100,000 individu-
als for symptom-alleviating vaccines.The optimized second-dose
delay strategy is also supported by complementary metrics that
examine the extent to which the vaccination campaign leads
progressively to a fully open society. Whereas the baseline
strategy results in three periods of 2 wk each of strict lock-
down, an optimized second-dose delay of 12 wk results in a
single initial lockdown of 2 wk followed by a gradual relax-
ation of social distancing measures. Thus, the optimization
model predicts that a second-dose delay would be beneficial
not only in reducing the burden on the health care system
but also, in accelerating the return of society to a normal
lifestyle.

2. Discussion
We developed a model to examine the impact of optimizing the
delay between doses of a two-dose COVID-19 vaccine on ICU
admissions and societal restrictions compared with a standard
delay of 4 wk. Our study demonstrates that the mechanism of
vaccine action has a profound effect on the delay. Thus, if the
vaccine blocks infection with a first-dose efficacy of ≥50%, the
second dose can be delayed by at least 8 wk after the first dose
(half of the maximal delay allowed). In contrast, the same delay
would be advisable for a symptom-alleviating vaccine only if the
first-dose efficacy is at least 70%.
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Strategies to extend the reach of available vaccine supplies,
such as halving the dose or increasing the delay interval between
doses as considered here, could have a significant beneficial
effect on disease transmission and mortality until vaccine sup-
plies increase (1, 2). Critics of these strategies fear that induced
immunity may wane before the second dose can be administered
or result in weak immunity that would favor the emergence of
variant strains with higher virulence (13). However, even partial
immunity may reduce disease and/or infection and concomi-
tantly lessen the opportunity for viral mutation and propagation
(14–17).

Our findings suggest that several societal benefits can be
obtained by delaying the second dose of a vaccine, especially if
the first-dose efficacy is high (e.g., 76% for AZD1222). First,
an optimized delay could lead to a massive reduction in the
number of ICU admissions. Given that ICU mortality rates for
COVID-19 have reached about 60% in some countries (18),
our findings suggest that an optimized second-dose delay for
infection-blocking and symptom-alleviating vaccines could save
90,000 and 40,000 lives, respectively, over 200 d in a country
with 300 million inhabitants. The second benefit obtained by an
optimized second-dose delay is the extent to which it reduces
mitigation measures. Our model predicts a reduction in full
lockdowns from three 2-wk lockdowns when using the standard
second-dose delay of 4 wk to a single 2-wk lockdown followed by
a gradual social distancing relaxation with the optimized delay.
Thus, a second-dose delay can save lives and accelerate the
return to free circulation.

3. Methods
3A. SEIR Model with Multiple Doses of Vaccine. First, we discuss the SEIR
dynamic when a two-dose vaccination campaign is put in place. For a fixed
population p and a vaccine mechanism that blocks transmission, we consider
the diagram represented by Fig. 4.

The mean incubation and infectious times are Tinc and Tinf, respectively.
The variable Sp,1 represents the proportion of the subpopulation p that is in
the first stage of the vaccination process: that is, susceptible individuals in
age group p who did not receive any dose of the vaccine yet or who have
been recently inoculated and the first-dose immunity is still building up.
Likewise, Sp,2 is the proportion of susceptible individuals who are already
protected by the effect of the first dose while still waiting for the second
dose to be inoculated or become effective. Finally, Sp,3 represents the frac-
tion of susceptible already protected by the full effect of the two doses. The
meaning of the other compartments, Ep,i , Ip,i , Rp,i = 1, . . . , 3, is similar. The
intermediate states EIp,i and IRp,i represent individuals in Ep,i−1 and Rp,i−1

for whom the ith vaccine dose has just made effect and who are transition-
ing to the new states Ip,i and Rp,i , respectively. Note that they spend only
half of the time in this state, as they have already spent some time in the
original state before moving to the next stage.

The variable vp,i , i = 1, 2, models the number of people from the level
i− 1 for which the ith dose of the vaccine made effect at a given moment in
time, afterwards their state changes and they move to the next level i. Other
transition relations can be found in Table 1, where a1, a2 stands for the level
achieved in attenuating the infection after receiving one and two doses of
the vaccine. The factor bp models the effect that behavioral patterns of the
subpopulation p have on the chances of getting infected when encounter-
ing infectious individuals (for instance, younger and active individuals being
more prone to agglomerate have an increased risk of infection). The vari-
able r(t) denotes the target reproduction number that is needed at time t
to control the spread of the disease with nonpharmaceutical measures, such
as social distancing or mask wearing. Also, we note that the diagram in Fig.
4 has no transitions from EIp,1 and IRp,1 to the lower levels because we are

Table 1. Transition ratios for levels in the diagram in Fig. 4

αp,i βp,i δp,i

i = 1 bprt (1−vp,1)
Tinf

1−vp,1
Tinc

1−vp,1
Tinf

i = 2 a1bprt (1−vp,2)
Tinf

1−vp,2
Tinc

1−vp,2
Tinf

i = 3 a2bprt
Tinf

1
Tinc

1
Tinf

Table 2. ICU demand by age for the state of São Paulo, Brazil

Population
group, p

Age
group, y

Demography, %
Actual ICU
usage, %

Correcting
factor, γp

1 0–19 29 2 0.06
2 20–49 48 28 0.58
3 50–64 14 30 2.06
4 65–90 8 40 5.16

assuming that the meantime in these states, Tinc/2 and Tinf/2, is significantly
lower than the time required for a vaccine dose to make an effect.

Finally, the variable Ip binds all the subpopulations together by a contact
matrix that describes how the different age groups interact. This is a square
matrix C of dimension #subpopulations×#subpopulations in which the
entry Cp,p′ represents the proportion of contacts the subpopulation p makes
with individuals of the subpopulation p′. In particular, the sum by rows
equals 1.0. Using this matrix, we define

Ip :=
Ip,1 + Ip,2 + Ip,3 + IRp,1 + IRp,2

proportion of the overall population that belongs to p
.

Additionally,

Ip =

#populations∑
p′=1

Cp,p′ Ip′ ,

for which the contact matrix is

C =


0.57 0.27 0.10 0.06
0.20 0.59 0.15 0.06
0.15 0.46 0.27 0.12
0.18 0.24 0.18 0.39

.

3B. ICU Occupation. Since the percentage of the infected population that
needs intensive care at time t is represented by a stochastic process, a prob-
abilistic constraint keeps the ICU bed usage below the maximum capacity,
vmax

t . The use of a time series for the stochastic process makes it possible
to reformulate the probabilistic constraint into an equivalent deterministic
inequality. The detailed procedure is explained in ref. 19; here, we mention
a few key points only.

Suppose infected individuals spend on average ν= 7 days in intensive
care (20). At time t, if the bed usage for a given age group p is vt

p, then
the fraction of infected individuals who need ICU beds at time t can be
estimated by the ratio vt

p/J
t
p , where J p

t corresponds to individuals in the
subpopulation p moving to the compartment R at time t. In our setting,

this is equal to 1/Tinf

(∑t
k=t−ν

∑
d(Ikpd + 2IRk

pd)
)

. The total ICU demand is

distributed proportionally among the age groups using a correcting factor
γp that represents the proportion of the age group that uses ICU beds, when
compared with its demography. Table 2 reports the corresponding data for
2010 in São Paulo state, which has 44 million inhabitants.

To obtain the time series parameters, we computed the history of ratios
from the last quarter of 2020 until the end of January 2021 using official
records of São Paulo state. Autoregressive models with lag up to two and
no trend appeared as the best ones in terms of Bayesian information crite-
rion. Back testing over January gave mean absolute percentage error values
of 1.88, 2.02, and 9.84% for the lags two, one, and zero, respectively, with
an approximate normal-looking shape for the residual histograms. When
performing out of sample simulations until May 2021, we noticed that
both trajectories with positive lags stabilized at the same value as those
with zero lag. Since the mean absolute percentage error accuracy of the
latter model was acceptable and the optimization problem covers a long
time horizon, we chose the simplest time series, with lag zero, for the con-
straint. After scaling back, this procedure gave the following simple model,
icut(ω)∼ N (c0,σ2

ω) for c0 = 0.01 and σω = 0.002. After these parameters
are known, the pro rata per subpopulation is done as explained above to
make explicit the probabilistic constraints

P

icut(ω)
4∑

p=1

γpJ t
p ≤ vt

max

≥ δ,

which ensure the hospital capacity will not be exceeded, with δ probability.
In the experiments, we used δ= 95%. The deterministic equivalent of the
chance constraint is an affine inequality of the form c0

∑
p γpJ t

p ≤ vt
max + ∆,
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where the term ∆ involves the inverse cumulative function of the standard
Gaussian distribution. Ref. 19 has more details.

3C. Optimizing on Multiple Populations. Given the models for ICU demand
and vaccine supplies, the optimization algorithm finds the best strategy for
vaccination and social distancing that simultaneously avoids the collapse of
the health care infrastructure and controls the pandemic in the shortest
amount of time. To achieve these goals we initially use an objective function
f that encourages large values of the reproduction number rt . The optimiza-
tion is done over the decision variables rt , vp,1, and vp,2 that control the
trajectories of the state variables, defined by the different SEIR compart-
ments. The system of differential equations of the modified SEIR dynamic
illustrated by the diagram in Fig. 1 is discretized using central finite dif-
ferences over a horizon of K days (K = 364 in the simulations). Letting c
denote the vector whose components are the control variables ri

t , vi
p,1, and

vi
p,2, for i = 1, . . . , K and p = 1, . . . , #subpopulations, and letting s denote

the state vector, with all the SEIR compartments for all subpopulations, the
optimization problem has the abstract form

max
c,s

f(c)

s.t. s∈Discretization of SEIR(c)

c∈ logistic bounds

s∈ ICU usage,

where the latter set represents the reformulation of the probabilistic con-
straint defined in Section 3B. Logistic relations on the control variables refer
to the number of vaccines available each day taking into account both
vaccine availability and the inoculation capacity. Specific time windows for
giving the second dose, say [tmin, tmax], are enforced by requiring the total
number of second doses applied up to day t to be smaller than or equal to
the total number of first doses administered up to the day t− tmin. This con-
straint ensures that no second doses are given before possible. On the other
hand, we also limit the total number of second doses given until t to be at

least the total number of first doses administered up to t− tmax, ensuring
that the second doses are applied within the desired time window. In our
implementation, tmin = 28 and tmax = 84.

The objective function to minimize is the sum of differences
∑K

i=1 r0− ri
t ,

where r0 = 2.5 is the basal reproduction number of the virus used in the
simulation (21, 22). The rationale is to allow the population to circu-
late freely. To discourage bang-bang controls, we add to the objective a
total quadratic variation term for the number of doses applied at each
population each day. This term results in vaccination profiles that are
easier to visualize and understand. After this first optimization step, we
perform a second optimization that tries to minimize ICU usage with-
out deteriorating the computed r∗t profile. To achieve this, we add the
constraint

K∑
i=1

ri
t ≥

K∑
i=1

(r∗t )i ,

and we switch the objective to minimize the estimated ICU usage.
These problems are large-scale nonconvex quadratic optimization prob-

lems. They are formulated using the JuMP (23) modeling language and
solved using the nonlinear optimization solver Ipopt (24). The typical solu-
tion time is around 5 min on a desktop computer with a Ryzen 1700X
processor.

Data Availability. Input files or sets of input parameters as well as the source
code have been deposited in GitHub (https://github.com/pjssilva/Robot-
vaccine).
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