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ABSTRACT

Combined anti-retroviral therapeutic drugs effectively
increase the lifespan of HIV-1-infected individuals who
then have a higher prevalence of HAND (HIV-1 associated
neurocognitive disorder). Soluble factors including HIV-1
proteins released from HIV-1-infected cells have been
implicated in the pathogenesis of HAND, and particular
attention has been paid to the HIV-1 Tat (transactivator of
transcription) protein because of its ability to directly excite
neurons and cause neuronal cell death. Since HIV-1 Tat
enters cells by receptor-mediated endocytosis and since
endolysosomes play an important role in neuronal cell life
and death, we tested here the hypothesis that HIV-1 Tat
neurotoxicity is associated with changes in the endolyso-
some structure and function and also autophagy. Following
the treatment of primary cultured rat hippocampal neurons
with HIV-1 Tat or as controls mutant-Tat or PBS, neuronal
viability was determined using a triple staining method.
Preceding observations of HIV-1 Tat-induced neuronal cell
death, we observed statistically significant changes in the
structure and membrane integrity of endolysosomes,
endolysosome pH and autophagy. As early as 24 h after
HIV-1 Tat was applied to neurons, HIV-1 Tat accumulated
in endolysosomes, endolysosome morphology was affected
and their size increased, endolysosome membrane integrity
was disrupted, endolysosome pH increased, specific
activities of endolysosome enzymes decreased and auto-
phagy was inhibited, as indicated by the significant
changes in three markers for autophagy. In contrast,
statistically significant levels of HIV-1 Tat-induced neur-
onal cell death were observed only after 48 h of HIV-1 Tat
treatment. Our findings suggest that endolysosomes are
involved in HIV-1 Tat-induced neurotoxicity and may
represent a target for therapeutic intervention against
HAND.
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INTRODUCTION

More than 40 million people worldwide are infected with

HIV-1, and combined anti-retroviral therapeutic drugs have

effectively increased the lifespan of people living with HIV.

Increased as well is the prevalence of HAND (HIV-1-associated

neurocognitive disorder) with recent epidemiological studies

indicating that the prevalence of HAND in the U.S.A. is greater

than 50% of HIV-1-infected people (Ellis et al., 2010; Heaton

et al., 2010). Clinically, HAND represents a set of conditions

ranging from subtle neuropsychological impairments to

profoundly disabling HIV-associated dementia. Although the

underlying mechanisms for HAND pathogenesis are not fully

understood, soluble factors including HIV-1 viral products and

pro-inflammatory mediators released from the infected glia

and monocytes have been implicated (Ghafouri et al., 2006;

King et al., 2006; Wallace 2006; Ances and Ellis, 2007). Among

the viral products, HIV-1 Tat (transactivator of transcription)

protein has been shown to be neuroexcitatory and neurotoxic,

and it continues to be implicated as a causative agent in HAND

(Sabatier et al., 1991; Weeks et al., 1995; Haughey et al., 1999;

Nath et al., 2000; Perez et al., 2001; King et al., 2006; Buscemi

et al., 2007b; Agrawal et al., 2012).

HIV-1 Tat is a non-structural transcriptional regulator

essential for the replication of HIV-1. The first exon of HIV-1

Tat encodes the first 72 amino acids and the second exon

encodes another 14–32 amino acids. Tat1–72 is sufficient for

transactivation, which requires the arginine-rich domain of Tat

between amino acid residues 49 and 57. Nanomolar concentra-

tions of HIV-1 Tat have been reported in sera of HIV-1-infected

patients, but these levels are almost certainly underestimated,
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given how avidly HIV-1 Tat binds to proteins and cells

(Westendorp et al., 1995; Xiao et al., 2000). HIV-1 Tat can be

transported across the blood–brain barrier from the systemic

circulation (Kim et al., 2003; Banks et al., 2005), can be secreted

by infected macrophages and microglia, and has been detected

in brain of patients with HIV-1-associated dementia

(Westendorp et al., 1995; Ellis et al., 2000; Nath, 2002).

HIV-1 Tat enters neurons via receptor-mediated endocytosis

involving CD26 (Gutheil et al., 1994), CXCR4 (CXC chemokine

receptor type 4) (Xiao et al., 2000), heparin sulphate proteoglycans

(Tyagi et al., 2001) and LDL (low-density lipoprotein) receptor-

related proteins (Liu et al., 2000; Vendeville et al., 2004; King et al.,

2006; Deshmane et al., 2011). Endocytosis is a very rapid and early

event, which results in the accumulation of HIV-1 Tat in

endolysosomes from which it can be released into the cytoplasm

and uptaken into the nucleus (Vives et al., 1997; Liu et al., 2000;

Caron et al., 2004), most probably through the mechanisms

involving the high H+ gradient maintained by vacuolar H+-ATPase

(Vendeville et al., 2004). The endolysosome system is very dynamic,

and lysosomes and other acidic sub-cellular compartments are

involved in endocytosis and autophagy (Jeyakumar et al., 2005;

Nixon and Cataldo, 2006). Endosomes and lysosomes process

proteins and other materials that are endocytosed, whereas

autophagy predominantly process cytosolic proteins.

Neurons are highly polarized long-lived post-mitotic cells,

which possess an elaborate endolysosome system critical for

the maintenance of neuronal function (Nixon and Cataldo,

1995, 2006). Increasingly, endolysosome dysfunction has

been implicated in neuronal damage and in the pathogenesis

of a variety of neurological disorders including AD

(Alzheimer’s disease), Parkinson’s disease and HAND

(Gelman et al., 2005; Spector and Zhou, 2008; Zhou and

Spector, 2008). Here, we tested the hypothesis that HIV-1 Tat

induces neuronal damage by affecting the structure and

function of endolysosomes. We report that HIV-1 Tat

enlarged endolysosomes, disrupted endolysosome membrane

integrity, elevated endolysosome pH, decreased specific

activities of endolysosome enzymes and inhibited autophagy.

Our findings suggest that the disturbed structure and

function of endolysosomes play an early and important role

in HIV-1 Tat-induced neuronal damage.

MATERIALS AND METHODS

Hippocampal neuron primary cultures
Primary cultures of hippocampal neurons were prepared

from embryonic day 18 Sprague–Dawley rats as described

previously (Buscemi et al., 2007) using a protocol approved

by the University of North Dakota Animal Care and Use Com-

mittee adherent with the Guide for the Care and Use

of Laboratory Animals (NIH publication number 80–23).

Pregnant dams (embryonic day 18) were killed by

asphyxiation with CO2. The fetuses were removed, decapitated,

and meninges-free hippocampi were isolated, trypsinized and

plated on to 35-mm poly-D-lysine-coated glass-bottom tissue

culture dishes. Neurons were grown in the NeurobasalTM

medium with L-glutamine, antibiotic/antimycotic and B27

supplement, and were maintained at 37 C̊ and 5% CO2 for

10–14 days at which time they were used for the experimenta-

tion. Typically, the purity of the neuronal cultures was greater

than 95% as determined by neuronal staining with mouse anti-

NeuN or goat anti-MAP2 (microtubule-associated protein 2)

antibodies (Millipore); astrocytes were identified using a mouse

anti-GFAP (glial fibrillary acidic protein) antibody (Sigma).

Neurons were treated either with HIV-1 Tat1–72 (100 nM, a gift

from Dr Avindra Nath, Johns Hopkins University School of

Medicine, Baltimore, MD, U.S.A.), mutant Tat (TatD31–61, 100 nM)

or PBS as vehicle.

Neuronal cell viability assay
Neuronal cell viability was determined using a triple staining

method as described previously (Buscemi et al., 2007).

Neurons were stained with Hoechst 33342 (10 mg/ml),

ethidium homodimer-1 (4 mM) and calcein (1 mg/ml).

Hoechst 33342, which labels DNA, was used as a marker for

identifying condensed nuclei characteristic of apoptotic cell

death. Cells dead or dying as a result of loss of membrane

integrity were unable to exclude ethidium homodimer-1 dye.

Cells were considered viable when cytoplasm was stained

with green fluorescence after the cleavage of the non-

fluorescent calcein AM (acetoxymethyl ester) to calcein.

Fields were chosen randomly and at least five images from

five separate fields of culture dishes for every experimental

condition were taken with our Axiovert 200 M fluorescence

microscope (Zeiss) and filter-based imaging system. The

number of dead or dying neurons (ethidium-labelled red

nuclei and blue-condensed nuclei without green cytoplasmic

staining) and total neuron numbers were counted manually.

More than 900 neurons were counted per experimental

condition. Neuronal viability was reported as a percentage of

total neurons.

Measurement of endolysosome pH
Endolysosome pH was measured using a ratio-metric

lysosome pH indicator dye (LysoSensor Yellow/Blue DND-

160 from Invitrogen); a dual excitation dye that permits pH

measurements in acidic organelles independently of dye

concentration. Neurons were loaded with 2 mM LysoSensor

for 5 min at 37 C̊. Light emitted at 520 nm in response to lex

at 340 and 380 nm was measured for 20 ms every 30 s using

a filter-based imaging system (Zeiss). The ratios of light

excited at 340/380 nm and emitted at 520 nm were con-

verted to pH using a calibration curve established using

10 mM of the H+/Na+ ionophore monensin, and 20 mM of the

H+/K+ ionophore nigericin dissolved in 20 mM Mes, 110 mM

KCl, and 20 mM NaCl adjusted to pH 3.0–7.0 with HCl/NaOH.
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Living cell imaging
The morphology of endolysosomes in living neurons was

determined using a LysoTracker dye. After treatments,

neurons were loaded with LysoTracker Red DND-99 (50 nM,

Invitrogen) and calcein AM (1 mg/ml, Invitrogen) for 30 min

at 37 C̊. Fields were chosen at random and at least five

images from every experimental condition were acquired by

confocal microscopy (Olympus). The sizes of endolysosomes

(LysoTracker) were analysed with the particle-analysing

program in Image J software. For measurement of Tat

endocytosis, neurons were incubated with FITC–Tat (100 nM,

AnaSpec) for 1 day at 37 C̊, followed by loading of

LysoTracker Red DND-99 (50 nM) and Hoechst 33342

(10 mg/ml) for an additional 30 min. Images were taken with

an Axiovert 200 M fluorescence microscope (Zeiss).

Immunocytochemistry
Neurons were fixed with cold methanol (220 C̊) for 10 min,

washed with PBS, blocked with 5% goat serum, and

incubated overnight at 4 C̊ with primary antibodies targeting

EEA1 (early endosome antigen 1; 1:500, rabbit polyclonal,

Santa Cruz) or LAMP1 (lysosome-associated membrane

protein-1; 1:500, rabbit polyclonal, Sigma). After washing

with PBS, neurons were incubated with Alexa FluorH 546-

conjugated goat anti-rabbit antibodies (Invitrogen). Neurons

were examined by confocal microscopy (Olympus). Controls

for specificity included staining neurons with primary

antibodies without fluorescence-conjugated secondary anti-

bodies (background controls) and staining neurons with only

secondary antibodies.

Endolysosome membrane permeability
Endolysosome membrane permeability was determined by mea-

suring the leakage of endolysosome fluorescent dye Lucifer

Yellow CH (Invitrogen). Neurons were incubated with

Lucifer Yellow (100 mg/ml) for 16 h, followed by incubation

with Tat at 37 C̊ for 1 and 2 days. Levels of dye inside of neurons

were detected by confocal microscopy (Olympus).

Immunoblotting
Neurons were lysed with RIPA buffer (Pierce) containing

protease inhibitor cocktail (Sigma). After centrifugation

(14000 g for 10 min at 4 C̊), supernatants were collected,

and protein concentrations were determined with a DC

protein assay (Bio-Rad). Equal amounts of proteins (10 mg)

were separated by SDS/12% PAGE, and, following transfer,

PVDF membranes (Millipore) were incubated overnight at

4 C̊ with anti-EEA1 (1:1000, Santa Cruz Biotechnology),

anti-LAMP1 (1:1000, Sigma), anti-acid phosphatase (1:1000,

mouse monoclonal, Abcam), anti-cathepsin B (1:500, mouse

monoclonal, Sigma), anti-cathepsin D (1:1000, mouse mono-

clonal, Sigma), anti-LC3 (light chain 3) b (1:1000, rabbit

polyclonal, Abcam), anti-Atg5 (autophagy-related gene-5;

1:2000, mouse monoclonal, Millipore) or anti-p62 (1:1000,

rabbit polyclonal, Sigma) antibodies; anti-b-actin (1:10000,

mouse monoclonal, Abcam) antibody was used as a gel-

loading control. The blots were developed with enhanced

chemiluminescence, and bands were visualized and analysed

by LabWorks 4.5 software on a BioSpectrumH imaging System

(UVP). Quantification was performed by densitometry and the

results were analysed as total integrated densitometric

volume values (arbitrary units).

Measurement of activities of endolysosome
enzymes
Enzyme activities of acid phosphatase were determined using an

acid phosphatase assay kit (Sigma); a luminescence-based assay

that uses 4-nitrophenyl phosphate as substrate (Chen et al.,

2010). Enzyme activities of cathepsins D and B were determined

using assay kits (BioVision); fluorescence-based assays that used

cathepsin D or cathepsin B preferred substrates labelled with

MCA (Chen et al., 2010). Enzyme activities were expressed as

absorbance per 10 mg of protein. Specific activities of each

enzyme were expressed as a ratio of enzyme activity to protein

levels as determined by immunoblotting.

Statistical analysis
All data were expressed as means¡S.E.M. Statistical signifi-

cance for multiple comparisons was determined by one-way

ANOVA plus a Tukey post hoc test. P,0.05 was considered to

be statistically significant.

RESULTS

In order to compare the effects of HIV-1 Tat on neuronal

damage and the structure and function of endolysosomes, we

needed to first determine the time course and extent to

which HIV-1 Tat decreased neuronal viability. HIV-1 Tat1–72

induced significant amounts of neuronal cell death starting

from 48 h of treatment (n55, P,0.05) with a maximum of

50% neuronal cell death (n55, P,0.001) after the treatment

for 96 h (Figure 1). These data were consistent with previous

studies that have shown similar neurotoxic effects of HIV-1

Tat (Kruman et al., 1998; Haughey et al., 1999; Bonavia et al.,

2001; Aksenov et al., 2003; Buscemi et al., 2007; Eugenin

et al., 2007). No statistically significant increases in neuronal

cell death were observed with either mutant TatD31–61 or PBS,

consistent with previous reports that this deletion mutant of

Tat is not directly toxic to neurons (Buscemi et al., 2007).

In neurons and other cells, HIV-1 Tat uses receptor-

mediated endocytotic mechanisms (Liu et al., 2000; Vendeville

et al., 2004; King et al., 2006) to enter cells where HIV-1 Tat

accumulates first in endolysosomes. Since the basic region of
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amino acids 49–57 of HIV-1 Tat is required for binding to

membrane receptor proteins (Sabatier et al., 1991) and

exerting its neurotoxic effects (Weeks et al., 1995), we used

a FITC-labelled Tat47–57 to determine first the extent to which

HIV-1 Tat accumulated in endolysosomes in neurons. After

incubating neurons with the FITC-labelled HIV-1 Tat47–57 (FITC-

Tat), we observed significant intracellular accumulation of

FITC-Tat, which was mainly compartmentalized in endolyso-

somes as identified with LysoTracker dye (red, Figure 2A).

Since alterations in the structure and function of

endolysosomes have been implicated in the neuropathogen-

esis of a number of neurological disorders, we next

determined the extent to which HIV-1 Tat-affected endoly-

sosome morphology. In living neurons, we identified endolyso-

somes with LysoTracker, and we found that treatment

with HIV-1 Tat for 1 and 2 days increased significantly

(n515, P,0.05) the size of endolysosomes (Figures 2B and 2C).

Treatment with mutant Tat did not affect endolysosome

morphology (L. Hiu, X. Chen and J.D. Geiger, unpublished data).

Using immunocytochemistry methods, we found that endo-

somes labelled with EEA1 antibody and lysosomes labelled with

LAMP1 antibody were relatively small and evenly distributed in

neurons treated with PBS or mutant Tat, but were markedly

enlarged and clumped together in HIV-1 Tat-treated neurons

(Figure 2B, middle and bottom panels).

Figure 2 HIV-1 Tat-altered the structure of neuronal endolysosomes
(A) HIV-1 Tat is accumulated in endolysosomes of primary cultured neurons. FITC-labelled Tat47-57 peptide (100 nM, green) was co-
localized with endolysosomes (red, LysoTracker) and DAPI (49,6-diamidino-2-phenylindole; blue) was used for staining nuclei.
Bar550 mm. (B) Live cell imaging showed that HIV-1 Tat (100 nM) treatment increased the sizes of neuronal endolysosomes.
LysoTracker (red) was used to identify endolysosomes, and calcein AM (green) was used to stain living cells (top panel), and the sizes
of endolysosomes were quantified with Image J software. HIV-1 Tat-enlarged endosomes as identified with EEA1 staining (middle
panel). HIV-1 Tat-enlarged lysosomes as identified with LAMP1 staining (bottom panel). (C) Quantification of the top panel of
(B) showed that HIV-1 Tat (100 nM) treatment for 1 and 2 days increased significantly the size of neuronal endolysosomes (n515).

Figure 1 HIV-1 Tat-induced neuronal cell death in a time-dependent
manner
Significant amounts of neuronal cell death were observed after 2-day
incubation with HIV-1 Tat (100 nM) and reached a maximal level of 50% cell
death by the fourth day. No significant neuronal cell death was observed in
neurons treated with either mutant Tat or PBS (n55, *P,0.05 and
***P,0.001).
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The observation that HIV-1 Tat alters endolysosome

morphology led us to determine next the extent to which

HIV-1 Tat-affected endolysosome function. Since pH is critical

for endolysosome function, we determined the extent to which

HIV-1 Tat-affected endolysosome pH using LysoSensor dye,

which permits ratio-metric assessment of pH changes in acidic

organelles. We found that HIV-1 Tat, but not mutant Tat

treatment for 1 or 2 days elevated significantly (n520,

P,0.001) endolysosome pH in cultured hippocampal neurons

(Figure 3). As endolysosome pH affects endolysosome enzyme

activity, we next determined the protein levels and activity of

endolysosome enzymes as evaluations of endolysosome

function. Treatment of neurons with HIV-1 Tat for 1 or 2 days

increased significantly protein levels of the endolysosome

enzymes acid phosphatase (Figure 4A, n54, P,0.01 at 1 day

and n54, P,0.05 at 2 days), cathepsin B (Figure 4C, n54,

P,0.05) and cathepsin D (Figure 4E, n54, P,0.01 at 1 day

and P,0.05 at 2 days). However, the specific activity levels of

Figure 3 HIV-1 Tat-elevated endolysosome pH in primary cultured neurons
Endolysosome pH was measured ratio-metrically using LysoSensor dye. HIV-1
Tat (100 nM) treatment for 1 and 2 days elevated significantly endolysosome
pH (n520).

Figure 4 HIV-1 Tat-altered the expression and activity of endolysosome enzymes
(A, C, E) HIV-1 Tat (100 nM) increased protein levels of acid phosphatase (ACP), cathepsin B (Cat B), and cathepsin D (Cat D).
Representative Western blots and quantitative data from each of the enzymes are shown (n54). Actin was used as a loading control.
(B, D, F) HIV-1 Tat (100 nM) decreased significantly specific enzyme activity of ACP, Cat B and Cat D (n54).
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acid phosphatase (Figure 4B), cathepsin B (Figure 4D) and

cathepsin D (Figure 4F) were decreased significantly (n54,

P,0.001) in HIV-1 Tat-treated cultures.

Endolysosome dysfunction has been implicated in initiating

stress pathways that lead to cellular dysfunction and death

(Roberg and Ollinger, 1998; Turk et al., 2002; Guicciardi et al.,

2004; Kroemer and Jaattela, 2005; Kurz et al., 2008). Here, we

determined the extent to which HIV-1 Tat-affected endoly-

sosome membrane integrity using Lucifer Yellow dye (Yang

et al., 1998). We found that while control neurons displayed a

discrete punctate pattern of perinuclear fluorescent staining

(Figure 5), HIV-1 Tat-treated neurons displayed increased

endolysosome membrane leakage as evidenced by diffuse

fluorescent staining (Figure 5) in the cytoplasm.

Endolysosomes also function to control autophagy, a

process important for normal physiological functions of

neurons. Dysfunctions in autophagy have been implicated in

the pathogenesis of a variety of neurodegenerative disorders

(Wong and Cuervo, 2010) including HAND (Alirezaei et al.,

2008b; Alirezaei et al., 2008a; Spector and Zhou, 2008; Zhou

and Spector, 2008; Zhu et al., 2009; Zhou et al., 2011). Based

on the findings that HIV-1 Tat disrupts autophagy in immune

cells (Van Grol et al., 2010), we determined the extent to

which HIV-1 Tat-affected autophagy in primary cultured

hippocampal neurons. Three markers were used to evaluate

the status of autophagy; MAP1 LC3 which regulates the ini-

tiation process of autophagy, Atg5 which regulates the

elongation process of autophagy, and p62 which inhibits

autophagy. We found that HIV-1 Tat treatment decreased

significantly protein levels of LC3 (Figure 6A, n54, P,0.05 at

2 day treatment) and Atg5 (Figure 6B, n54, P,0.05 at 1 day

and P,0.01 at 2 days treatment), but increased significantly

protein levels of p62 (Figure 6C, n54, P,0.05 at 1 and 2 days

treatment).

DISCUSSION

Combined highly active anti-retroviral therapeutic drugs

have increased dramatically the lifespan of people now living

with AIDS. However, this increased lifespan is accompanied by

increased prevalence of HAND, which affects up to 50% of

people with HIV-1 infection (Ellis et al., 2010; Heaton et al.,

Figure 5 HIV-1 Tat-disrupted endolysosome membrane integrity
Endolysosome membrane integrity was evaluated by measuring the leakage
of Lucifer Yellow dye. Control neurons displayed a discrete punctate
fluorescent staining pattern in perinuclear regions with no fluorescence in
cytoplasm (left panel), whereas neurons treated with HIV-1 Tat for 1 day
displayed endolysosome membrane leakage as indicated by diffusion of
fluorescence into cytoplasm (right panel, bar 510 mm).

Figure 6 HIV-1 Tat-inhibited autophagy
Autophagy was estimated by measuring protein levels of LC3, Atg5 and p62.
(A) HIV-1 Tat (100 nM) decreased significantly protein levels of LC3. (B) HIV-
1 Tat (100 nM) reduced significantly protein levels of Atg5. (C) HIV-1 Tat
(100 nM) increased significantly protein levels of p62. Representative
Western blots and quantitative data from each of proteins are shown, and
actin was used as a loading control (n54).
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2010). The underlying mechanisms for HAND pathogenesis

are not fully understood, but one mechanism that appears to

be important yet relatively understudied is the involvement

of endolysosomes. Disturbed endolysosomes have been noted

in brain of HIV-1-infected individuals (Gelman et al., 2005;

Spector and Zhou, 2008; Zhou and Spector, 2008), but the

mechanisms for these pathological observations are not

known. Since neurons are long-lived post-mitotic cells with

extreme polarity, they possess an elaborate endolysosome

system that contains hydrolases that degrade macromole-

cules, high concentrations of readily releasable calcium

(Christensen et al., 2002; Moreno and Docampo, 2009; Patel

and Docampo, 2010), and high concentrations of potentially

redox-active iron (Brun and Brunk, 1970; Kidane et al., 2006).

When dysfunctional, endolysosomes can contribute to altered

calcium homoeostasis (Korkotian et al., 1999; Pelled et al.,

2005; Lloyd-Evans et al., 2008) and increased oxidative stress

(Pivtoraiko et al., 2009). Disruptions in endolysosome

functions perturb numerous cellular functions and can

ultimately result in the initiation of cell death pathways

(Kroemer and Jaattela, 2005; Kurz et al., 2008). Therefore it is

of potential significance to further understand the patho-

genesis of HAND that we found that HIV-1 Tat-enlarged

endolysosomes, elevated endolysosome pH, decreased specific

activities of endolysosome enzymes, disrupted endolysosome

membrane integrity and inhibited autophagy, all of which

occurred prior to significant increases in HIV-1 Tat-induced

neuronal cell death. Thus, the altered structure and function

of endolysosomes could underlie, at least in part, the

pathogenesis of HAND.

HIV-1 Tat protein continues to be implicated in the

pathogenesis of HAND, in part, because there is significant

neuronal dysfunction even though neurons are not infected

by HIV-1 virus (Nuovo et al., 1994; Merino et al., 2011). HIV-

Tat has been shown to, for example, activate NMDA (N-

methyl-D-aspartate) receptors (Nath et al., 2000; Haughey

et al., 2001; Eugenin et al., 2003), alter calcium homoeostasis

(Kruman et al., 1998; Haughey et al., 1999; Bonavia et al.,

2001), and increase oxidative stress (Kruman et al., 1998;

Aksenov et al., 2001; Perry et al., 2005). HIV-1 Tat is actively

secreted by infected glial cells and, following binding to

neuronal cell surface receptors, it enters the endolysosome

system following receptor-mediated endocytosis (Mann and

Frankel, 1991; Liu et al., 2000). Although we did not

determine the extent to which previously identified receptors

mediate the endocytosis of HIV-1 Tat in neurons, including

CD26 (Gutheil et al., 1994), CXCR4 (Xiao et al., 2000), heparin

sulphate proteoglycans (Tyagi et al., 2001), and the LDL

receptor-related protein (Liu et al., 2000; Deshmane et al.,

2011), we did observe the presence of HIV-1 Tat in neuronal

endolysosomes.

Neurons are long-lived post-mitotic cells that possess an

elaborate endolysosome system to exercise quality control.

Substrates for degradation are delivered to lysosomes by two

general routes: endocytosis and autophagy. Endocytosis is not

only responsible for taking up extracellular nutrients, but also

is responsible for maintaining the integrity of axons and

synapses because neurons are extremely polar cells with

especially large volumes of cytoplasm. In contrast, autophagy

is responsible for removing unwanted cytosolic proteins and

‘worn out’ organelles (Nixon and Cataldo, 1995, 2006).

Alterations in the structure and function of neuronal

endolysosomes have been noted in HAND (Gelman et al.,

2005; Spector and Zhou, 2008; Zhou and Spector, 2008) and

because HIV-1 Tat can accumulate in neuronal endolyso-

somes, we determined the extent to which HIV-1 Tat

disturbed neuronal endolysosome structure and function.

We demonstrated that HIV-1 Tat disturbed endolysosomes

and inhibited autophagy as indicated by changes to marker

proteins. There exist three types of autophagy in cells: macro-

autophagy, microautophagy and chaperone-mediated autop-

hagy. As the best-studied type of autophagy, macroauto-

phagy includes three stages such as autophagosome

membrane origination, autophagosome formation and auto-

lysosome formation. Accordingly, we focused our studies of

the effects of HIV-1 Tat on macroautophagy using three

markers: LC3 which mediates the initiation process of

(Winslow and Rubinsztein, 2008), Atg5 which drives the

elongation process of (Mizushima, 2007), and p62 which

inhibits autophagy (Ichimura and Komatsu, 2010; Bjorkoy

et al., 2005; Pankiv et al., 2007). Our findings suggest that

HIV-1 Tat directly affects the morphology and function of

endolysosomes and autophagy.

Low pH is critical for the degradation of internalized

materials, the trafficking and fusion of endolysosomes and

the formation of autophagy (Marshansky and Futai, 2008;

Ravikumar et al., 2010; Williamson et al., 2010). Thus, central to

the observed changes might be the ability of HIV-1 Tat

to elevate endolysosome pH. Our observations of elevated

endolysosome pH could help to explain alterations in the

digestive capability of endolysosomes as evidenced by

decreased specific activities of three different endolysosome

enzymes, which results in increased accumulation of inter-

nalized material thus altering the structure and size of

endolysosomes. In addition, elevation of endolysosome pH

could result in alterations in the trafficking and fusion of

endolysosomes (Hart and Young, 1991; Saftig and Klumperman,

2009). Furthermore, elevation of endolysosome pH could result

in alterations in the fusion of autophagosomes with lysosomes

(Kawai et al., 2007) thus inhibiting autophagy. Together,

elevation of endolysosome pH could exaggerate neuronal injury

and degeneration (Wong and Cuervo, 2010), and contribute

directly to HIV-1 Tat-induced neurotoxicity.

Although the underlying mechanisms whereby HIV-1 Tat

elevates endolysosome pH are unknown, the arginine-rich

domain of HIV-1 Tat between amino acid residues 49 and 57

could be responsible for HIV-1 Tat-induced elevation of

endolysosome pH because a series of other arginine-rich

peptides including penetratin, an amino acid domain from

the Antennapedia protein (sequences 43–58) of Drosophila,

a flock house virus coat peptide (sequences 35–49) and oligo-

arginines (R9) all have the ability to elevate endolysosome
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pH (L. Hui, X. Chen and J. D. Geiger, unpublished data). It has

been shown that most of these arginine-rich peptides have

the ability to escape endolysosomes using the high proton

gradient (Drin et al., 2003; Potocky et al., 2003; Fischer et al.,

2004; Magzoub et al., 2005; Henriques et al., 2006), and here

we postulate that a proton-dependent peptide transporter

might be present on endolysosome membranes. Such a

peptide transporter could transport HIV-1 Tat out of

endolysosomes, and during the transporting process protons

leak out and endolysosome pH is elevated. Another way that

HIV-1 Tat could increase pH is by directly disrupting the

membrane integrity of endolysosomes and this is consistent

with our observations of increased leakage of Lucifer Yellow

dye into cytosol. Consistent with these findings are previous

reports that low pH induces the exposure of a highly

conserved tryptophan residue and allows the insertion of HIV-

1 Tat into endolysosome membranes (Yezid et al., 2009).

Furthermore, disrupted endolysosome membrane integrity per

se could lead to neuronal dysfunction and ultimately cell death

because the increased endolysosome membrane permeability

occurs in several models of apoptosis (Roberg and Ollinger,

1998; Turk et al., 2002; Guicciardi et al., 2004; Kroemer and

Jaattela, 2005; Kurz et al., 2008) and is an early event in the

apoptotic cascade that precedes destabilization of mitochon-

dria and caspase activation (Kroemer and Jaattela, 2005; Kurz

et al., 2008). These potential mechanisms warrant further

investigation.

Our finding that HIV-1 Tat disturbed the structure and

function of endolysosomes in primary cultured neurons prior

to any significant increase in HIV-1 Tat-induced neurotoxicity

suggests that the effects of HIV-1 Tat on endolysosomes may

cause considerable neuronal dysfunction. Further elucidation

of the involvement of endolysosomes in HAND might lead

to the design of novel therapeutic strategies, including

blocking the entry of HIV-1 Tat into endolysosomes and block-

ing HIV-1 Tat-induced elevation of endolysosome pH.
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