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Abstract: Breastfeeding and introduction of solid food are the two major components of infant
feeding practices that influence gut microbiota composition in early infancy. However, it is unclear
whether additional factors influence the microbiota of infants either exclusively breastfed or not
breastfed. We obtained 194 fecal samples from infants at 3–9 months of age, extracted DNA, and
sequenced the V4 region of the 16S rRNA gene. Feeding practices and clinical information were
collected by questionnaire and abstraction of birth certificates. The gut microbiota of infants who
were exclusively breastfed displayed significantly lower Shannon diversity (p-adjust < 0.001) and
different gut microbiota composition compared to infants who were not breastfed (p-value = 0.001).
Among the exclusively breastfed infants, recipients of vitamin D supplements displayed significantly
lower Shannon diversity (p-adjust = 0.007), and different gut microbiota composition structure than
non-supplemented, breastfed infants (p-value = 0.02). MaAslin analysis identified microbial taxa that
associated with breastfeeding and vitamin D supplementation. Breastfeeding and infant vitamin D
supplement intake play an important role in shaping infant gut microbiota.

Keywords: infant gut microbiota; feeding practices; diet; breastfeeding; vitamin D supplementa-
tion; cohort

1. Introduction

The gut microbiota has been considered an “invisible organ” of the human body,
playing important roles in modulating host functions, including metabolism, digestion, and
gut mucosal immune responses and integrity [1,2]. Dysbiosis of the gut microbiota may be
associated with various adverse health outcomes in infants such as asthma, Crohn’s disease,
inflammatory bowel disease, and type 1 diabetes (T1D) [3–7]. The colonization of gut
bacteria begins at birth and remains remarkably dynamic until about 2–3 years of age when
more stable microbial profiles begin to emerge [8,9]. In addition to the mode of delivery
and antibiotic exposure, infant feeding practices are key factors in shaping early microbiota
composition [10,11]. Recent studies have shown that gut microbial profiles in breastfed
infants are significantly different from those in formula-fed infants and change rapidly after
the transition from breastfeeding to formula or solid food [12–15]. The differences in gut
microbiota composition observed between formula-fed and breastfed infants have, at least
partially, been attributed to the absence of human milk oligosaccharides (HMOs) in infant
formula [16]. Human milk is enriched with HMOs, which have been linked to beneficial
bacteria in the gut microbiota [17,18]. The introduction of solid food represents another
key factor influencing the composition of infant gut microbiota, producing an adult-type
complex microbiome dominated by the phyla Bacteroidetes and Firmicutes [8,19].

Nutrients 2022, 14, 202. https://doi.org/10.3390/nu14010202 https://www.mdpi.com/journal/nutrients

https://doi.org/10.3390/nu14010202
https://doi.org/10.3390/nu14010202
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com
https://doi.org/10.3390/nu14010202
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com/article/10.3390/nu14010202?type=check_update&version=1


Nutrients 2022, 14, 202 2 of 13

Most gut microbiota research on infant nutrition to date has focused on breastfeeding
and the introduction of solid food. Little is known about the effect of other dietary features
within the two different feeding practices. It is recommended that infants who are breastfed
exclusively should take vitamin D supplements every day due to the variability of vitamin
D content in human breastmilk [20]. As all infant formula in the United States is fortified
with vitamin D, infants who are fed exclusively with formula usually do not need vitamin
D supplementation. Vitamin D not only prevents rickets, but also plays an important
role in immune responses and metabolic processes that maintain the integrity of the gut
epithelium [21–23].

Human milk can also be provided by bottle, from banking of milk by the mother or
from human milk banks. This indirect form of breastfeeding can lead to enrichment by
environmental bacteria, such as Stenotrophomonas and Pseudomonadacea [16]. The water used
to reconstitute powdered infant formulas may also be an important exposure for infant
health outcomes. Reconstituting formula with tap water can lead to excessive fluoride and
lead intake [24,25]. Different water types (e.g., city water, well water, filtration systems) can
be a source of varied bacterial composition.

We sought to determine the association between maternal and infant characteristics
and infant feeding practices and the gut microbiota profiles in 3- to 9-month-old infants. In
addition, we analyzed the exclusively breastfed and non-breastfed infants separately to
assess the impact of unique feeding practices features on the microbiotas of the infants in
each group.

2. Materials and Methods
2.1. Study Participants

The study population was drawn from the Michigan Archive for Research on Child
Health (MARCH) cohort [26], an ongoing population-based pregnancy and birth cohort
set in Michigan’s lower peninsula. The purpose of the MARCH study is to store biological
specimens and other health information in pregnancy and early life that can be used
to better understand the causes of problems in pregnancy and optimize the health of
children. This cohort is a component of a nation-wide study of child health called the
Environmental influences on Child Health Outcomes (ECHO) [27]. Our analysis included
mothers who provided informed consent for providing infant stool samples. During the
MARCH 3 month phone interview mothers confirmed their interest in participating in
this sample collection. The fecal Collection kits were assembled at the lab and sent to the
participants via mail. The collection kits included instructions for taking a fecal sample,
an OMNIgene-GUT tube for sample collection, a box with postage to return the sample,
and diapers for the infant sample. Samples were returned to the lab by mail, and fecal
aliquots were stored at −80 ◦C upon reaching the lab. 194 fecal samples have so far been
collected from singleton infants aged from 3 to 9 months old. The infants in this analysis
were 3–9 months of age between 2018 and 2021.

2.2. Data Collection

Several questionnaires were administered to mothers from the first prenatal visit
through 9 months postpartum. The questionnaire at the first prenatal visit included demo-
graphic information about the mothers, their breastfeeding plans and many health-related
practices and conditions as well as their estimated due date. Infant dietary feeding patterns,
including breast milk and/or formula, detailed feeding practices, and complementary
food intake, were collected at the same time as the fecal samples. Detailed information,
including the infant’s sex, birth weight, complications of pregnancy, mode of delivery
(vaginal vs. C-section), pre-pregnancy BMI and gestational age, was abstracted from the
birth certificate.
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2.3. Fecal Microbiota Analysis

Once received in the lab, the fecal samples were aliquoted into sterile tubes and stored
at −80 ◦C. DNA was extracted following a modified version of the Human Microbiome
Project’s protocol as described previously [28]. Barcoded primers were used to amplify
the V4 region of the 16S rRNA gene following the mothur wet lab documentation. PCR
amplification also followed the wet lab protocol outlined in the mothur documentation. The
resulting 16S rRNA libraries were sequenced using 250 base pair Illumina MiSeq with V2
chemistry at the Michigan State University genomics core. After trimming, clean sequences
were analyzed using the QIIME2 (2021. 2 version) pipeline [29]. Demultiplexed sequences
were further quality filtered and clustered using QIIME2’s DADA2 plugin to generate the
ASV table [30]. A phylogenetic tree was constructed from the sequences using the QIIME2
FastTree plugin with default parameters [31]. Unique amplicon sequence variants (ASVs)
were assigned a taxonomy by the QIIME2 feature-classifier plugin, using the Silva 132
database at the similarity threshold of 99% (for 16S data) [32,33]. Samples were rarefied to
6000 sequencing reads per sample, leaving 191 stool samples with 6905 unique ASVs, and
findings were summarized at the genus taxonomic level.

2.4. Statistical Analysis

We used multivariate ordinal logistic regression models to estimate the association
between pre-pregnancy BMI and breastfeeding practices, with adjustment for demographic
variables and delivery mode.

Gut microbiota is analyzed by alpha diversity (Chao1 index and Shannon index) and
beta diversity (Bray–Curtis dissimilarity and Weighted UniFrac) using the “vegan” package
in R [34]. The difference of alpha diversity and relative abundance of taxa between feeding
practices groups were tested by Wilcoxon rank test and Kruskal–Wallis test with false
discovery rate (FDR) correction for multiple comparisons. We assessed the influence of
factors significantly associated with gut bacterial community structure by multivariate
models using a Permutational Multivariate Analysis of Variance (PERMANOVA) with
999 permutations based on Bray–Curtis dissimilarities (adonis, R vegan package) [34,35].
PERMANOVA is non-parametric multivariate statistical test, with p-values obtained using
appropriate distribution-free permutation techniques. We used the multivariate association
with linear models (MaAsLin) to identify associated microbiological taxa with the feeding
practices and other related factors [36,37]. MaAsLin is a multivariate statistical framework
that identifies associations between clinical metadata and microbial community abundance
and provides both nominal p-values and FDR adjusted p-values (q-values) by Benjamini–
Hochberg procedure [38]. Associations are considered significant when the q-value is
below the threshold of 0.1.

3. Results
3.1. Participants and Feeding Practices

We analyzed gut microbiome samples from 191 infants. In Table 1, maternal and
infant characteristics are compared by breastfeeding status (exclusive breastfeeding, partial
breastfeeding, and not breastfeeding). During the week immediately preceding stool
sample collection, 88 (46.1%) infants were fed exclusively with breast milk, 43 (22.5%) were
fed partially with breast milk, and 60 (31.4%) were not fed with breast milk. The median age
at the time of specimen collection was 3.8 months (range: 3.0 months–9.3 months). Partially
breastfed infants were more likely to be fed with complementary foods than those who
were not breastfed (44.2% vs. 35.0%, p > 0.4). Infants who were exclusively breastfed were
more likely to be given vitamin D supplementation than partially breastfed or not-breastfed
infants (39.8% vs. 18.6% vs. 1.7%, p < 0.01). A higher proportion of mothers who practiced
exclusive breastfeeding were of normal BMI (18.5–25.0) prior to pregnancy comparing to
those who practiced partial breastfeeding or who were not breastfeeding (50.0% vs. 39.5%
vs. 26.7%, p < 0.01). Mothers who practiced exclusive breastfeeding were more likely to
have a college degree than women who partially breastfed or did not breastfeed (72.4% vs.
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61.9% vs. 32.2%, p < 0.01). In a multivariate model adjusted for maternal age, maternal
educational level, pre-pregnancy BMI (continuous), delivery mode, and infant age, mothers
with higher pre-pregnancy BMI were less likely to practice breastfeeding (OR = 0.95, CI:
0.91–0.99, p-value = 0.01, Table 2), and mothers with higher educational level were more
likely to practice breastfeeding (OR = 2.66, CI: 1.72–4.21, p-value < 0.001, Table 2).

Table 1. Characteristics of the mothers and infants by breastfeeding status 1.

Characteristic
Exclusive

Breastfeeding
(N = 88)

Partial Breastfeeding
(N = 43)

No Breastfeeding
(N = 60) p-Value

Infant age at sample collection (day),
mean (SD) 115.5 (17.3) 135.9 (39.8) 126.3 (31.9) < 0.01

Infant had any antibiotics since birth,
n (%) 14 (15.9) 5 (11.6) 8 (13.3) 0.40

Consumption of complementary food
during past 24 h, n (%) 0 (0.0) 19 (44.2) 21 (35.0) < 0.013

Infant probiotic supplement 2 during
past 24 h, n (%)

4 (4.5) 1 (2.4) 3 (3.3) 0.90

Infant Vitamin D supplement during
past 24 h, n (%) 35 (39.8) 8 (18.6) 1 (1.7) < 0.01

Delivery mode, n (%)
Vaginal delivery 66 (75) 30 (69.8) 36 (60)

0.10C-section 22 (25) 13 (30.2) 24 (40)
Infant weight at delivery (gram),

mean (SD) 3461 (551) 3336 (529) 3269 (598) 0.10

Infant sex, n (%)
Male 43 (48.9) 22 (51.2) 30 (50)

0.98Female 45 (51.1) 21 (48.8) 30 (50)
Maternal pre-pregnancy BMI, n (%)

< 18.5 1 (1.1) 0 (0.0) 3 (5.0)

< 0.01
18.5–25 44 (50) 17 (39.5) 16 (26.7)
> 25–30 24 (27.3) 11 (25.6) 12 (20.0)

> 30 19 (21.6) 15 (34.9) 29 (48.3)
Maternal education level, n (%)

Did not finish high school 0 (0.0) 0 (0.0) 6 (10.2)

< 0.01
High school graduate or GED 4 (4.6) 4 (9.5) 21 (35.6)

Some college 20 (23.0) 12 (28.6) 13 (22.0)
College graduate or more 63 (72.4) 26 (61.9) 19 (32.2)

1 Breastfeeding status information was collected at the time of fecal sample collection. Values are mean (SD) for
continuous variables or n (%) for categorical variables. Difference by breastfeeding status was calculated using
an ANOVA or chi-squared test. 2 Including probiotic supplement, kefir and kimchi. 3 Post hoc analysis with
Bonferroni adjustment showed significant difference in consumption of complementary food between partial
breastfeeding and no breastfeeding groups.

Table 2. Association between breastfeeding (exclusive, partial, and no breastfeeding) and perinatal
characteristics 1.

Maternal Characteristics Proportional Odds
Ratio 95% CI p-Value

Maternal age(year) 1.02 0.96–1.09 0.48
Maternal educational level 2.66 1.72–4.21 < 0.001

Pre-pregnancy BMI (continuous) 0.95 0.91–0.99 0.01
Delivery mode (vaginal vs.

C-section) 0.56 0.29–1.05 0.07

Infant age (day) 0.99 0.98–1.0 0.07
1 A multivariate ordinal logistic regression analysis was performed to assess the association. Variables in the
model include maternal age, maternal education level, pre-pregnancy BMI, delivery mode, and infant age.
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3.2. Gut Microbiota Analysis

Fecal samples from infants who were exclusively breastfed displayed lower Shannon
diversity than samples from those who were not breastfed (FDR adjusted p-value < 0.01,
Figure 1A). Samples from infants who were partially breastfed displayed Shannon diversity
intermediate between the other two groups, but not significantly different from either (FDR
adjusted p-value = 0.9). Chao1 index was not significantly different across the three groups
(FDR adjusted p-value = 1.0, Figure 1B). Among the exclusively breastfed, infants who had
been given a vitamin D supplement during the previous 24 h displayed lower Shannon
index (FDR adjusted p-value < 0.01, Figure 1C) and lower Chao1 index (FDR adjusted
p-value = 0.6, Figure 1D) than those infants who were not given a vitamin D supplement.
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Figure 1. Infant alpha and beta diversity by infant breastfeeding and Vitamin D supplement. FDR
adjusted p-value for alpha diversity was displayed in upper-left. (A) The Shannon index was used for
alpha diversity. All the participants were included in the analysis (N = 191). Group differences were
tested by Kruskal-Wallis test. We then performed post hoc test for multiple comparisons. After FDR
adjustment, no breastfeeding group has significant difference with exclusive breastfeeding (adjusted
p-value < 0.01). Partial breastfeeding group has no significant difference with exclusive breastfeeding
group (p-value = 0.4, adjusted p-value = 0.9) and no breastfeeding group (p-value = 0.03, adjusted
p-value = 0.09). (B) The Chao1 index was used for alpha diversity. All the participants were included
in the analysis (N = 191). Post hoc test did not find any significant difference between groups. (C) The
Shannon index was used for alpha diversity. Only breastfeeding participants were included in this
subgroup (N = 92). Group differences were tested by Wilcoxon rank test. (D) The Chao1 index was
used for alpha diversity. Only breastfeeding participants were included in this subgroup analysis
(N = 92). (E) Principal component analysis (PCoA) ordinations of variation based on the Bray–Curtis
distance matrix for all infants. R2 and p-value were calculated by univariate PERMANOVA test with
999 permutations.
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Whether breast milk was fed directly or was pumped and fed to the infant using
a bottle, the Shannon and Chao1 indices of the infant gut microbiota alpha diversity
were similar (FDR adjusted p-value =1.0 and 0.88, respectively, Figure S1). Among the
non-breastfed infants, neither the water type used to reconstitute the formula nor the
consumption of complementary food during past 24 h was associated with gut microbiota
alpha diversity as measured by the Shannon or Chao1 indices (Figure S1).

When classified by breastfeeding status, the gut microbiota communities of the infants
were well separated in principal coordinate analysis (PCoA) based on the Bray–Curtis dis-
tance matrix and the observation was statistically significant as assessed by PERMANOVA
(R2 = 4.1%, p-value <0.01, Figure 1E). In addition to the feeding practices, gestational age
(R2 =4.0%, p-value = 0.001) and delivery mode (R2 = 2.0%, p-value = 0.003) were significantly
associated with overall gut microbiome composition (Table 3; multivariate PERMANOVA
model on Bray–Curtis distances). The PERMANOVA results were consistent with results
from the Weighted UniFrac distance metric (Table S1). We then repeated the PERMANOVA
analysis on Bray–Curtis distances within exclusively breastfed and not breastfed infants
separately. These subgroup analyses also included additional variables. Accordingly, deliv-
ery mode (R2 = 3.5%, p = 0.01) and infant vitamin D supplement in the past 24 h (R2 = 3.4%,
P = 0.02) were significantly associated with gut microbiota composition in exclusively
breastfed infants (Table S2). Among the not breastfed infants, only maternal education level
(R2 = 4.1%, p-value = 0.02) was significantly associated with gut microbiota composition
(Table S3). The PERMANOVA results of these two subgroup analyses were consistent with
results from the Weighted UniFrac distance metrics (results not shown).

Table 3. Results of Permutational Multivariate Analysis of Variance (PERMANOVA) 1 with 999
permutations for all infants.

Variable F Value R2 p-Value

Breastfeeding during past week 4.0 4.10% 0.001 *
Gestational age 2.3 1.20% 0.03 *

Infant sex 1.1 0.50% 0.36
Delivery mode (vaginal vs. C-section) 3.6 1.80% 0.004 *

infant weight at delivery 0.7 0.30% 0.72
Infant probiotic supplement during past 24 h 1.0 0.50% 0.38

Infant had any antibiotics since birth 0.9 1.00% 0.47
Maternal educational level 2.7 1.30% 0.02 *

Maternal pre-pregnancy BMI (continuous) 0.37 0.20% 0.96
1 Bray–Curtis distance was used for the PERMANOVA. * indicates the p-value < 0.05.

We further assessed the association between breastfeeding status and 8 most abundant
genera by univariate analysis (Figure S2). These 8 most abundant genera were Bacteroides,
Bifidobacterium, Veillonella, Escherichia-Shigella, Ruminococcus gnavus, Clostridium sensu stricto
1, Prevotella, and Lachnoclostridium. Exclusive breastfeeding was significantly associated
with a higher relative abundance of Bifidobacterium (FDR adjusted p-value = 5 × 10−5) and
a lower relative abundance of Lachnoclostridium (FDR adjusted p-value = 5.6 × 10−7).

MaAsLin results revealed that exclusive breastfeeding was significantly associated
with the relative abundance of a set of genera, including Intestinibacter, Flavonifractor,
Lachnoclostridium, Clostridium innocuum group, Lactobacillus, Bifidobacterium, etc. (Table 4).
Infant age at sample collection and maternal pre-pregnancy BMI were associated with
higher relative abundance of Lachnospira and Alistipes, respectively (Table 4). Among
exclusively breastfed infants, infants who had taken a vitamin D supplement in the previous
24 h had a lower relative abundance of Haemophilus (Table 5). Among the not breastfed
infants, having taken a probiotic supplement in the past 24 h was associated with higher
relative abundance of uncultured Lachnospiraceae and Faecalitalea (Table 5). Maternal pre-
pregnancy BMI was associated with a higher relative abundance of Alistipes (Table 5).
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Table 4. MaAsLin Analysis Results: Associations of infant feeding practices and gut microbiome taxa
at genus level adjusted by covariates in all infants (N = 191) 1.

Taxonomy at Genus Level Meta Data Value Coefficient N/N Not 0 p-Value q-Value 2

Intestinibacter Exclusive breastfeeding −0.567 191/64 3.6× 10−10 3.0× 10−7

Flavonifractor Exclusive breastfeeding −0.896 191/145 4.0× 10−8 1.7× 10−5

Lachnoclostridium Exclusive breastfeeding −0.998 191/146 1.9× 10−7 5.2× 10−5

Clostridium innocuum group Exclusive breastfeeding −0.393 191/44 4.9 × 10−6 6.8× 10−4

Lactobacillus Exclusive breastfeeding 0.680 191/115 4.3× 10−6 6.8× 10−4

Lactococcus Exclusive breastfeeding −0.287 191/29 1.7× 10−5 1.7× 10−3

Bifidobacterium Exclusive breastfeeding 0.535 191/186 2.4× 10−4 0.018
Eisenbergiella Exclusive breastfeeding −0.322 191/24 2.4× 10−4 0.018

Colidextribacter Exclusive breastfeeding −0.398 191/40 3.2 × 10−4 0.022
Akkermansia Exclusive breastfeeding −0.550 191/124 1.3× 10−3 0.066

Uncultured Lachnospiraceae Exclusive breastfeeding −0.188 191/20 1.4× 10−3 0.069
Haemophilus Exclusive breastfeeding 0.463 191/141 1.7× 10−3 0.073

Staphylococcus Exclusive breastfeeding 0.293 191/56 1.8 × 10−3 0.073
Incertae_Sedis Exclusive breastfeeding −0.358 191/99 1.6× 10−3 0.073
Flavonifractor Partial breastfeeding −0.909 191/145 7.2× 10−7 1.5 × 10−4

Haemophilus Partial breastfeeding 0.740 191/141 1.3 × 10−5 0.001
Lachnoclostridium Partial breastfeeding −0.860 191/146 5.8 × 10−5 0.005

Lactococcus Partial breastfeeding −0.258 191/29 5.6 × 10−4 0.031
Alistipes Pre-pregnancy BMI 0.206 191/99 4.0× 10−4 0.025

Lachnospira Age at sample collection 0.171 191/84 5.7× 10−4 0.032
1 Model was adjusted for infant antibiotic use, sex, infant birth weight, delivery mode, age at fecal sample collection,
infant probiotic supplement and pre-pregnancy BMI. Not breastfeeding is the reference for the breastfeeding
status in the regression model. 2 q-value is the FDR (Benjamini–Hochberg) adjusted p-value. q-value < 0.1 for
multiple comparisons was considered statistically significant and included in the table.

Table 5. MaAsLin Analysis Results: Associations of infant feeding practices and gut microbiome taxa
at genus level. adjusted by covariates within exclusively breastfed and no breastfed infants 1.

Breastfeeding Status Taxonomy at
Genus Level Meta Data Value Coefficient N/N Not 0 p-Value q-Value 2

Exclusively (N = 88) Haemophilus Vitamin D
supplement (Yes) −0.683 88/74 6.7 × 10−5 0.058

Faecalitalea Probiotic
supplement (Yes) 1.718 60/9 2.9 × 10−9 2.4 × 10−6

Not breastfeeding (N = 60) Uncultured
Lachnospiraceae

Probiotic
supplement (Yes) 1.269 60/10 5.1 × 10−5 0.021

Alistipes Pre-pregnancy BMI 0.431 60/27 2.6 × 10−4 0.072
1 Both Models were adjusted for infant antibiotic use, sex, infant birth weight, delivery mode, age at fecal sample
collection, infant probiotic supplement and pre-pregnancy BMI. 2 q-value is the FDR (Benjamini–Hochberg)
adjusted p-value. q-value < 0.1 for multiple comparisons was considered statistically significant and results were
included in the table.

4. Discussion

Our study was conducted in a population with somewhat higher than average rates
of exclusive breastfeeding, with nearly half (46.1%) of the infants exclusively breastfed
at the median age of 3.8 months. This percentage is higher than in the Infant Feeding
Practices Study II in the US (34% at 3 months) in 2007 [39], while it is close to the percentage
in CDC National Immunization Survey in 2018 (46.3% at 3 month) [40]. Although the
American Academy of Pediatrics recommends vitamin D supplementation for all breast-
fed infants [41], only 39.8% of the mothers in our study followed this recommendation, a
lower frequency than that has been found in Canadian and European cohorts in 2009 and
2014, respectively [42,43].
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We found that higher maternal education level and lower pre-pregnancy BMI were in-
dependently and significantly associated with an increased odds of being exclusively breast-
fed, consistent with previous studies in developed and developing countries [39,44,45].
Breastfeeding initiation and duration are also negatively correlated with high pre-pregnancy
BMI [46,47]. These associations may be attributed to the physiological factors such as de-
layed onset of lactogenesis II and imbalances of hormones [48]. Previous studies have
showed that maternal obesity can cause the delayed onset of lactogenesis II (DOL) that
is associated with mother’s confidence that her milk is sufficient for her child [49,50]. As
a result, it can lead to lower rates of breastfeeding initiation and early termination of
exclusive breastfeeding. The associations between maternal BMI and lactation success have
been recently reviewed [51,52].

Our study showed the importance of both breastfeeding and infant vitamin D sup-
plements in shaping infant gut microbiota composition. Breastfeeding is significantly
associated with both alpha and beta diversity of infant gut microbiota. We observed that
the Shannon diversity of partially breastfed infants was between that of exclusively breast-
fed infants and not breastfed infants, though somewhat closer to the exclusively breast
fed, suggesting a dose–response relationship between breastfeeding and Shannon diversity
of infant gut microbiota. These results agree with a previous study, which reported that
the composition of gut microbiota from partially breastfed infants are similar to that from
exclusively breastfed infants [13]. Among the subgroup analysis of exclusively breastfed
infants, the alpha and beta diversity results demonstrated that vitamin D supplementation
is associated with infant gut microbiota composition. These results are in good agreement
with the study of Lei et al. who investigated the role of vitamin D supplement on gut
microbiome from 31 exclusively breastfed infants at 4-months-old [53]. Lei et al. showed
that vitamin D supplementation is associated with both alpha diversity and beta diversity
of infant gut microbiome [53]. Animal studies demonstrate that vitamin D plays a critical
role in maintaining the integrity of the intestinal mucosal barrier by preserving the integrity
of junctions that control mucosal permeability and reduction of pro-inflammatory cytokines
such as IL-8 [23,54,55]. In addition, studies also found that VDR-mediated signaling inhibits
inflammation-induced apoptosis of intestinal epithelial cells [54,56]. As a result of these
effects on the intestinal mucosa, vitamin D acts as an important factor influencing the
gut microbiota.

Besides the infant feeding practices, the results herein confirm that gestational age,
delivery mode and maternal educational level are also significantly associated with gut mi-
crobiome composition. These results are consistent with many previous studies [10,13,16].
However, delivery mode is only associated with gut microbiota composition among the
exclusively breastfed infants, while no significant association was found in the not breastfed
infants. This might be attributed to the fact that C-section delivery can delay lactation initi-
ation [57] and shape the bacterial composition of breast milk [58,59]. Maternal educational
level is the only factor that significantly associated with infant gut microbiota composition
among the not breastfed infants, whereas it was not significant among the exclusively
breastfed infants. This finding suggests that not breastfed infants are more susceptible to
socio-economic factors, such as educational level, which is normally connected to offspring
diet and nutritional status [60]. Hence, this association among the not breastfed infants
might be mediated by the types of solid foods introduced and brands of formula purchased.
However, our data set did not allow us to test these associations.

Our study confirmed that Bifidobacterium was enriched in breastfed infants when
compared with non-breastfed infants. Lower abundance of Bifidobacterium in infants due to
early cessation of breastfeeding could potentially inhibit the interaction of bifidobacterial-
mediated metabolites with the immune system, leading to higher levels of inflamma-
tion [61,62]. In contrast, the genus Lachnoclostridium (Lachnospiraceae family) was found to
be enriched in the non-breastfed infants when compared with exclusively breastfed or par-
tially breastfed infants. In addition, the genera Eisenbergiella and Lachnospiraceae_uncultured,
which also belong to Lachnospiraceae family were found to be enriched in the non-breastfed
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infants by MaAslin. These observations agree with previous studies that lower abundance
of Lachnospiraceae is associated with breastfeeding at 3 months of age [63]. The evidence
from many studies showed that Lachnospiraceae family or specific genera of Lachnospiraceae
may be associated with several inflammatory conditions, such as metabolic syndrome,
obesity, diabetes, and liver diseases [64–67]. Thus, our results suggest several possible
mechanisms that might explain the beneficial effects of breastfeeding on health outcomes.

Notably, the genus Haemophilus was enriched in the breastfed infants. However,
exclusively breastfed infants who had taken a vitamin D supplement in the past 24 h
had a lower relative abundance of Haemophilus compared to those exclusively breastfed
infants who were not supplemented. Consistent with our study, Fehr et al. showed that
breastmilk may specifically provide Haemophilus to the infant gut [13]. Luthold et al.
also demonstrated that Haemophilus was less abundant in the group of highest vitamin
D intake [68], supporting the hypothesis that a reduced immune response in vitamin D
deficiency could augment the competitive advantage of Haemophilus and influence the
composition of the infant gut microbiome [69].

Our study did not detect any effect of feeding with expressed milk, infant antibiotic
intake, and water type for formula on gut microbiome. However, sample sizes were small
for many of these comparisons. Therefore, pooling data from multiple cohort studies or
analysis in larger cohorts with similar data are necessary to confirm this lack of associ-
ation. For instance, previous studies demonstrated that infants who had been exposed
to antibiotics had decreased abundance of Bifidobacteria and Bacteroides in the infant gut
microbiome [70]. In our study, we asked the mothers if the infant had taken any antibiotics
since birth, whereas the timing of antibiotics administration was unknown. Hence, it’s
possible that infant gut microbiome had recovered from the dysbiosis states caused by
antibiotics at the time of stool sample collection. The inconsistent results may also be
attributed to variations in the antibiotic type, dosage, duration [71].

An important limitation of this study is that only a single stool sample was available
for analysis. Although the infant feeding practice information was collected at the same
time as the stool sample collection and can demonstrate the impact of short-term exposures
on the infant gut microbiota composition, we are unable to determine how these factors
contribute to the temporal development of the infant gut microbiome. Another limitation
is that we did not collect more detailed information, such as dose of vitamin D, maternal
vitamin D status, and timing of antibiotic administration. Future studies would benefit
from a longitudinal stool sample collection during infancy and a more detailed infant
feeding practices questionnaire that not only collects proximal but also long-term data
about infant nutritional exposures.
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