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Background: Heart failure (HF) is a leading cause of morbidity and mortality worldwide.

Metabolomics may help refine risk assessment and potentially guide HF management,

but dedicated studies are few. This study aims at stratifying the long-term risk of death

in a cohort of patients affected by HF due to dilated cardiomyopathy (DCM) using serum

metabolomics via nuclear magnetic resonance (NMR) spectroscopy.

Methods: A cohort of 106 patients with HF due to DCM, diagnosed and monitored

between 1982 and 2011, were consecutively enrolled between 2010 and 2012, and a

serum sample was collected from each participant. Each patient underwent half-yearly

clinical assessments, and survival status at the last follow-up visit in 2019 was recorded.

The NMR serum metabolomic profiles were retrospectively analyzed to evaluate the

patient’s risk of death. Overall, 26 patients died during the 8-years of the study.

Results: The metabolomic fingerprint at enrollment was powerful in discriminating

patients who died (HR 5.71, p = 0.00002), even when adjusted for potential covariates.

The outcome prediction of metabolomics surpassed that of N-terminal pro b-type

natriuretic peptide (NT-proBNP) (HR 2.97, p = 0.005). Metabolomic fingerprinting was

able to sub-stratify the risk of death in patients with both preserved/mid-range and

reduced ejection fraction [hazard ratio (HR) 3.46, p = 0.03; HR 6.01, p = 0.004,

respectively]. Metabolomics and left ventricular ejection fraction (LVEF), combined in a

score, proved to be synergistic in predicting survival (HR 8.09, p = 0.0000004).

Conclusions: Metabolomic analysis via NMR enables fast and reproducible

characterization of the serum metabolic fingerprint associated with poor prognosis in

the HF setting. Our data suggest the importance of integrating several risk parameters

to early identify HF patients at high-risk of poor outcomes.
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INTRODUCTION

Dilated cardiomyopathy (DCM), one of the leading causes of
heart failure (HF) worldwide (1), is generally considered as
a “final phenotype,” resulting from miscellaneous genomic or
phenomic insults via activation of diverse DCM disease-causing
cascades (2). The DCM may remain asymptomatic for years (3),
eventually leading to progressive ventricular dilatation and both
systolic and diastolic dysfunctions, arrhythmias, sudden death,
and HF. The prevalence of DCM in observational studies of
HF patients varied between 8 and 47%, while in trials of Heart
Failure with Reduced Ejection Fraction (HFrEF), DCM etiology
accounted for 12–35% of individuals (4).

Heart failure is a complex clinical syndrome in which heart
function is inadequate to meet physiological demands and
it constitutes a massive health problem, with a considerable
residual disease burden due, at least in part, to a broad range
of disease courses and responses to therapy (5). Several studies
have aimed at defining the underlying pathophysiology of HF
using recent advances in system biology approach as well as at
discovering possible biomarkers to achieve a better prognostic
stratification of cardiac failure (6, 7), beyond left ventricular
ejection fraction (LVEF) evaluation. With this regard, several
survival prediction models have been created using clinical
risk scores and biomarkers, such as natriuretic peptides (8),
but important knowledge gaps remain regarding the complex
biological pathways determining individual variability. This
limitation hinders the identification of specific patient subsets
with different needs and fates.

In the era of precision medicine, Omics sciences could be
the instrument to meet this need. Metabolomics is one of the
latest omic technologies, broadly defined as the comprehensive

measurement of the complete ensemble of endogenous and
exogenous metabolites present in a biological specimen, which
is the so-called metabolome (9). Metabolites represent, at the

same time, the downstream output of the omics cascade,
and the upstream input from various external factors, such
as environment, lifestyle, diet, and drug administration (10).
Thus, metabolites have been described as the most proximal

reporters of any disease status or phenotype because their
concentrations in biospecimens are directly related to the
underlying pathophysiological landscape (11). Metabolomics

applications in biomedical research are manifold (12–17), and
this technology has already demonstrated its potentiality in the
setting of cardiovascular diseases (18–23).

Metabolic impairment has long been identified as an
intrinsic feature of HF pathophysiology and a detrimental self-
perpetuating cycle involving heart failure and altered metabolism
that promotes HF progression was postulated (24, 25). Energetic
and structural metabolic failure is not limited to themyocardium,
but it is reflected at a systemic level, and considerably contributes
to major HF symptoms and disease progression (26, 27).
Metabolomics has contributed to elucidating several systemic
metabolic impairments that occur in patients with HF: insulin
resistance, shift toward hyper-catabolism with blunting of
anabolic pathways, impaired glucose oxidation and a switch
toward glycolysis, impaired fatty acid β-oxidation, and urea

cycle dysfunction (27–30). In our previous paper on the same
cohort of patients, we showed that patients with HF were
characterized by higher serum concentrations of phenylalanine,
tyrosine, isoleucine, creatine, and low serum levels of lactate,
citrate, lysine, and L-dopa (28). Moreover, metabolomics has
been demonstrated to be a promising approach for the clinical
prognosis of patients with HF (31–33).

Here, we propose a strategy for the prognostic evaluation
of HF due to DCM based on the combination of serum
nuclear magnetic resonance (NMR)-based metabolomics
with traditional prognostic factors, such as N-terminal pro
b-type natriuretic peptide (NT-proBNP) and LVEF. For
this purpose, we retrospectively analyzed a well-defined,
homogeneous, single-center cohort of patients with DCM with
stable chronic HF diagnosed and monitored between 1982 and
2011 (median follow up time from DCM diagnosis: 15 years),
and consecutively enrolled for this study between 2010 and 2012
(Supplementary Figure S1).

METHODS

Patient Recruitment
In this retrospective study, a cohort of 106 adult patients (74
men, 32 women, median age 49, 95% CI 49–53 years) with
chronic heart failure (i.e., at least one previous heart failure
event, comprising hospitalization for HF and/or an urgent visit
resulting in intravenous therapy for HF due to DCM) was
examined. The present cohort is a sub-group of the population
analyzed in our previous publication (28). The HF has been
defined as a clinical syndrome characterized by fundamental
symptoms (e.g., breathlessness, ankle swelling, and fatigue)
and/or signs (e.g., elevated jugular venous pressure, pulmonary
crackles, and peripheral edema) related to a structural and/or
functional abnormality of the heart that results in elevated
intracardiac pressures and/or inadequate cardiac output at rest
and/or during exercise (34). A period of clinical stability of at
least 6 months in optimal medical therapy (OMT) was required
for enrollment. Patients were diagnosed between 1982 and 2011
(t0). In the period 2010–2012 (t1), patients were re-examined
or examined for the first time (only for patients diagnosed
between 2010 and 2012), blood serum samples were collected and
analyzed viaNMR. Then, survival status was evaluated at the last
follow-up in 2019 (t2). In patients who died or were transplanted,
the end of follow-up was considered either the time of death or
heart transplantation. In the minority of patients lost to follow-
up (i.e., not traceable by June 2019), the last clinical evaluation
or the last telephone contact was considered. The experimental
design is graphically illustrated in Figure 1.

The enrolled patients were classified as idiopathic DCM,
defined by the presence of left ventricular (LV) or biventricular
dilatation and systolic dysfunction in the absence of abnormal
loading conditions (hypertension, valve disease) or coronary
artery disease sufficient to cause global systolic impairment
(1, 35). The patients with HF, judged to be secondary to
ischemic heart disease, systemic hypertension, chemotherapy,
alcoholic abuse, diabetes mellitus, cor pulmonalis, valve disease,
or other cardiac or systemic diseases, were excluded, as well
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FIGURE 1 | Graphical overview of the study design to investigate differences between survived and deceased patients with HF. Patients were diagnosed at time t0,

where t0 for each patient was in the range 1982–2011. Between 2010 and 2012 (t1), the patients were re-examined or examined for the first time, blood serum

samples collected and analyzed via nuclear magnetic resonance (NMR). Survival status was evaluated in 2019 (t2). Patients were, then, retrospectively split in two

groups according to the survival status (alive vs. deceased), and statistical analysis on NMR data was performed.

as patients for whom a coronary angiogram was not available.
The patients were consecutively enrolled in the years 2010–
2012 at the Careggi University Hospital Florence, Italy. They
underwent half-yearly clinical assessments (median follow-up
from enrollment 8 years). All study patients were evaluated and
followed up by clinical history, physical examination, 12-lead
ECG, standard chest radiograph, routine laboratory tests, M-
mode, 2D, and Doppler echocardiography. For the entire study
period, the patients were seen by the same cardiologists who
assumed primary responsibility for their management.

Ethical Issues
This study was approved by the local Ethics Committee (Azienda
Ospedaliero—Universitaria Careggi, Florence, Italy). Written
informed consent was obtained from each participant at the time
of blood sample collection. The study adheres to the principles of
the Helsinki Declaration and its later amendments.

Collection of Samples
Each blood sample was collected through peripheral venous
access in a 10-mL tube (BD P100, BD Diagnostics, Franklin
Lakes, NJ). Subsequently, blood samples were centrifuged for
10min at 4,000 rpm at the temperature of 4◦C, then, the
supernatant serum was aliquoted in sterile cryovials and stored
at−80◦C pending NMR analysis.

NMR Analysis
Serum samples were prepared for NMR experiments as described
in our previous publications (28, 36). One-dimensional 1HNMR
spectra of each sample were acquired using a Bruker 600 MHz

spectrometer (Bruker BioSpin) operating at 600.13 MHz proton
Larmor frequency and equipped with a 5mmCPTCI 1H-13C-31P
and 2H-decoupling cryoprobe, including a z-axis gradient coil, an
automatic tuning-matching, and an automatic sample changer.
A BTO 2000 thermocouple served for temperature stabilization
at the level of ∼0.1 K at the sample. Before measurement,
samples were kept for at least 3min inside the NMR probe-
head, for temperature equilibration at 310K. For each serum
sample, a standard nuclear Overhauser effect spectroscopy
pulse sequence NOESY 1Dpresat (noesygppr1d.comp; Bruker
BioSpin)(37), using 64 scans, 98,304 data points, a spectral
width of 18,028Hz, an acquisition time of 2.7 s, a relaxation
delay of 4 s and a mixing time of 0.01 s (total duration of the
NMR experiment 7min), was applied to obtain a spectrum in
which both signals of low molecular weight metabolites and
high molecular weight macromolecules (i.e., proteins, lipids, and
lipoproteins) are detected.

Free induction decays were multiplied by an exponential
function equivalent to 1.0Hz line-broadening factor before
applying Fourier transform. The transformed spectra were
automatically corrected for phase and baseline distortions and
calibrated to the anomeric glucose doublet at δ 5.24 ppm using
TopSpin3.6.2 (Bruker Biospinsrl).

Each 1D spectrum was segmented into 0.02 ppm chemical
shift bins in the range 0.2–10 ppm, and the corresponding
spectral areas were integrated using the AssureNMR software
(Bruker BioSpin). The regions of residual water signal
(4.37–5.13 ppm) and the signals of ethanol (1.12–1.23 ppm
and 3.53–3.73 ppm) were removed, and the dimension of the
system was reduced to 438 bins. The probabilistic quotient
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normalization (38) was applied on the remaining bins prior to
statistical analysis.

Statistical Analysis
Data analyses were performed using the open-source software
R. Multivariate analysis was performed on binned spectra (thus,
on the whole spectra, considering both assigned and unassigned
metabolites). Principal component analysis (PCA) was used as
the first unsupervised analysis to visualize data. Metabolomics
analysis was performed using a fingerprinting approach: the
metabolomic fingerprint is a global, rapid evaluation of an NMR
spectrum as a whole that considers all (assigned or unassigned)
detectable metabolites present in that biological sample (39).
Standard partial least square discriminant analysis (40) (PLS-
DA) was applied to discriminate the metabolomic fingerprints of
survivors and deceased patients using the first 7 PLS components,
and the PLS-DA model was validated using a Leave-One-Out
cross-validation scheme (LOOCV, R script developed in-house).
Since the group size is unbalanced (survived 75.5%, deceased
24.5%), samples from 25 survivors and 25 deceased patients
were randomly chosen from the full dataset and subjected to
PLS-DA modeling. The resampling procedure was performed
100 times to account for variability in the sampling procedure,
and each model was cross-validated each time. Samples were
assigned to one of the two classes using the majority vote
algorithm (R library “mclust”) on the results obtained by the 100
iterations. Sensitivity, specificity, and accuracy were calculated
according to the standard definitions. Variable importance in
projections (VIP) was calculated using an R script developed in-
house, variables with a VIP score higher than 1 were considered
important in the PLS-DA model.

The predictive performance of the metabolomic PLS-DA
classification was compared with that of LVEF and NT-proBNP.
The LVEF classification followed the European Society of
Cardiology guidelines (34), identifying three classes: reduced
LVEF (<40%, high-risk: HiR), mid-range LVEF (40–49%,
intermediate risk: IR), and preserved LVEF (≥50%, low risk:
LR). Patients with a baseline level of NT-proBNP higher than
400 pg/ml were considered at high-risk of death. Moreover,
the ability of the combination of metabolomics and LVEF in
predicting poor prognosis was also tested. Metabolomics was
used as the first screening method and then was adjusted
using ejection fraction: patients predicted as survivors by the
PLS-DA metabolomic model but with LVEF of <35% were
reclassified as high-risk of death, while patients predicted as
deceased but with LVEF of >50% were reclassified as low risk
of death. All the above-mentioned analyses were performed
using Kaplan–Meier (KM) curves, with the additional calculation
of the hazard ratio (HR) and p-value assessed by the Log-
Rank test (R library “survminer”). The performances and the
independence of metabolomics were evaluated by calculating
Cox proportional hazards regression models (41) (R library
“Survival”) and each model significance was assessed through
a likelihood-ratio test. These analyses were performed in a
univariate and multivariate fashion.

The untargeted quantification of 22 metabolites and 114
lipoprotein-related parameters was performed using the Bruker

IVDr analysis platform (42). The non-parametric Wilcoxon
Rank-Sum test was used to infer differences between the
groups of interest. The P-values were adjusted for multiple
testing using the false discovery rate (FDR) procedure with
Benjamini and Hochberg (43) correction at α = 0.05. Each
metabolite/lipoprotein feature was divided into three tertiles and
Cox regressionmodels were calculated to estimate the association
between metabolites/lipoproteins and prognosis. Additional
models were calculated to adjust for additional covariates: sex,
age at DCM diagnosis, time from DCM diagnosis and last follow
up, NT-proBNP, LVEF, New York Heart Association (NYHA)
class at enrollment, systolic blood pressure (SBP), end-diastolic
diameter index (EDDi) at enrollment, and left atrial volume index
(LAVi) at enrollment.

Robust correlations were calculated among metabolomic
variables and clinical data following the 10% winsorized
correlation approach (44) using the function “wincor” of the R
package “WRC2.” The P-values were adjusted for multiple testing
using the FDR procedure.

RESULTS

Study Population
Baseline characteristics of the cohort are shown in Table 1.
The median age at enrollment was 58.5 ± 14.1 years, with
a median age at DCM diagnosis of 49 ± 11.9 years. The
patients were predominantly men (69.8%). The median time
from DCM diagnosis at last evaluation was 15 ± 5.9 years.
The patients were mostly pauci-symptomatic at enrollment
(85.8% NYHA class I-II). Median systolic blood pressure (SPB)
was 120 ± 14.8 mmHg, while echocardiographic parameters
showed a considerable LV (left ventricular) and LA (left
atrial) enlargement in most patients, with median indexed
LVEDDi and LAVi of 31.6 ± 4.9 and 41.9 ± 18 mm/m2,
respectively. Median LVEF at enrollment was 44.5 ± 8.15%
with an NT-proBNP median value of 219.1 ± 237.8 pg/ml.
All patients were on ACE-inhibitors or angiotensin receptor
blockers inhibitors (ARBs) at enrollment, while 92.4% were
receiving beta-blockers (BB). The introduction of Angiotensin
Receptor Neprilysin Inhibitors (ARNIs) into clinical practice
has become significant only in the last 2 years of the study
follow-up, therefore, this agent has not been taken into
consideration. Diuretic treatment was administered in 71% of
patients at baseline.

At the last evaluation, 80 patients were alive, while 26
had died for HF-related causes (7 patients for sudden cardiac
death and 19 patients for refractory heart failure). Demographic
and clinical characteristics of the 106 patients with DCM
depending on survival status at t2 are shown in Table 1: age,
SBP, EDDi, LVEF, NT-proBNP, and diuretic administration at
enrollment were significantly different between survivors and
deceased patients.

NMR Metabolomics Prediction of HF
Prognosis
Before any supervised approach, PCA was used as an exploratory
analysis to visualize data. No outlier or relevant clustering
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TABLE 1 | Baseline characteristics of enrolled patients.

Overall at t1 Alive at t2 Deceased at t2 p-value#

(106 pts) (80 pts) (26 pts)

Age at enrollment (yrs), median (mad) 58.5 (14.1) 56.0 (11.9) 67.5 (12.6) 0.004

Gender (M), n (%) 74 (69.8) 55 (68.8) 19 (73.1) 0.9

Age at DCM diagnosis (yrs), median (mad) 49 (11.9) 48.5 (11.1) 55.5 (17.0) 0.1

Time from DCM diagnosis and last follow up

(yrs), median (mad)

15 (5.9) 15 (5.9) 15 (7.4) 0.9

NYHA class at enrollment 0.07

I, n (%) 38 (35.8) 31 (38.8) 7 (26.9)

II, n (%) 53 (50.0) 41 (51.2) 12 (46.2)

III, n (%) 13 (12.2) 8 (10.0) 5 (19.2)

IV, n (%) 2 (2.0) 0 (0.0) 2 (7.7)

SBP (mmHg) at enrollment,

median (mad)

120 (14.8) 120 (14.8) 110 (14.8) 0.02

EDDi (mm/mq) at enrollment,

median (mad)

31.6 (4.9) 30.8 (3.8) 36.9 (5.7) 0.004

LAVi (mL/mq) at enrollment,

median (mad)

41.9 (18.0) 41.3 (16.3) 47.8 (26.9) 0.09

LVEF (%) at enrollment,

median (mad)

44.5 (8.15) 46.0 (7.4) 37.5 (9.6) 0.001

NT-proBNP (pg/ml) at enrollment, median (mad) 219.1 (237.8) 180.6 (176.0) 613.3 (741.9) 0.005

BB* at enrollment, n (%) 98 (92.4) 73 (91.2) 25 (96.1) 0.8

ACE-I§ at enrollment, n (%) 106 (100) 80 (100) 26 (100) 1

Diuretic at enrollment, n (%) 75 (70.7) 51 (63.8) 24 (92.3) 0.02

DCM, dilated cardiomyopathy; NYHA, New York Heart Association Classification; SBP, systolic blood pressure; EDDi, indexed end diastolic diameter; LAVi, indexed left atrial volume;

LVEF, left ventricular ejection fraction; NT-proBNP, N-terminal pro b-type natriuretic peptide; BB, beta blockers; ACE-I, Angiotensin-converting-enzyme inhibitors. *bisoprolol-equivalent;
§ramipril-equivalent; #FDR adjusted with the Benjamini-Hochberg procedure. Data are reported for the overall population at enrollment (t1) and for alive and deceased patients at

follow-up separated (t2).

emerged from the score plot (Supplementary Figure S2).
Then, the differences in serum metabolomics 1H NMR
fingerprints of survivors and deceased patients were analyzed
using standard PLS-DA (Figure 2A). To ensure that the
calculated PLS-DA model was statistically robust, an internal
validation using a LOOCV was performed: the two groups

show a good clustering, yielding 70.8% accuracy, 76.9%
sensitivity, and 68.8% specificity (deceased patients wrongly

classified as survivors present, on average, a longer survival

time between enrollment and death: 5.7 vs. 4.3 years, see
Supplementary Figure S1). Based on the VIP score analysis
(Figure 2B) variables that mainly contributed to the PLS-DA

model, and, thus, to the risk of stratification, were related to
spectral regions of creatine, creatinine, lactate, trimethylamine-

N-oxide, and lipoproteins.
Analyzing the metabolomic classification with KM

curves (Figure 2C), clear discrimination resulted between
patients who died and those who survived: p-value of

0.00002 and HR of 5.71 (95% CI 2.57–12.67). The use
of the majority vote algorithm for patient classification
produced a gray region in which patients were assigned

to a class or another with a small margin (50 ± 10%). To
verify the robustness of our model, we repeated the KM
analyses after removing the 11 ambiguous patients that
were classified with a margin <10%. Removing borderline

patients did not significantly affect the overall model accuracy
(Supplementary Figure S3).

Comparison of Metabolomics With Known
Prognostic Factors: NT-ProBNP and
Ejection Fraction
The prognostic significance of NT-proBNP natriuretic peptide,
examined at enrollment, was analyzed. The results of the KM
analyses are shown in Supplementary Figure S4. Compared to
metabolomics results, NT-proBNP showed higher specificity
(71.2%) in discriminating deceased and survivor patients,
although with lower sensitivity (58.3%) and accuracy (68%). The
combination of NT-proBNP and metabolomics provided only a
slight improvement in the outcome prediction: 75% sensitivity,
68.5% specificity, and 70.1% accuracy.

The predictive performance of the metabolomic model was
also compared with that of left ventricular ejection fraction, and
the results are reported in Figure 3. Patients with reduced LVEF
showed a significantly higher risk of death (HRs of 7.47 and
4.26 and p-values of 0.0001 and 0.0002 concerning LR and IR,
respectively), whereas patients with mid-range and preserved
LVEF were both associated with a lower risk (HR 1.79, p-
value 0.38).

The potential of metabolomics in sub-stratifying LVEF classes
was then tested: mid-range and preserved LVEF were considered

Frontiers in Cardiovascular Medicine | www.frontiersin.org 5 April 2022 | Volume 9 | Article 851905

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Vignoli et al. Metabolomics for Heart Failure Prognosis

FIGURE 2 | (A) score plot of the first two components of the partial least square discriminant analysis (PLS-DA) model discriminating survivor (80 green dots) and

deceased (26 purple dots) patients. (B) The variable importance in projections (VIP) score plot indicating the most discriminating bins in descending order of

importance; only the bins that showed a VIP score>1 are reported in the plot. For each bin the starting ppm is reported. Green dots represent bins with intensity

higher in survivor patients, conversely purple dots represent bins with intensity higher in deceased patients. (C) Overall patients with HF, plotting actual survival over

time (in years) according to estimated metabolomic risk [Kaplan-Meier (KM) curves]. Low metabolomic risk (green) and high metabolomic risk (purple) patients are

significantly clustered with a p-value of 1.67·10−5 (calculated with the Log-Rank test) and an HR of 5.71. Censored events represent either the time of last recorded

clinical follow-up, or the time of death. Number at risk: number of patients stratified according to the metabolomics classification at each time point. Cumulative

number of events: total number of deceased patients at each time point for each metabolomics risk group. PLS_PRED = S, predicted by PLS as survivor; PLS_PRED

= D, predicted by PLS as deceased.

as a single low-risk class, whereas reduced LVEF was considered
as a high-risk class. Althoughmetabolomics showed to effectively
sub-stratify low- and high-risk patients in both classes (HRs 3.46
and 6.01, p-values 0.03 and 0.004, respectively), it showed the best
performance in the high-risk class (Figure 4).

Finally, the outcome prediction of the combination of
metabolomics and LVEF was tested. The resulting combined
score relies on LVEF for <35 or >50% values (i.e., when LVEF
appears highly prognostic), whilst it is based on metabolomics
for intermediate LVEF values, for which LVEF shows the
least predictive capacity. This combined approach led to an

improved prediction, with 75.5% accuracy, 73.8% sensitivity,
80.8% specificity, HR 8.09, and p-value 0.0000004 as shown by
KM analysis (Figure 5).

Analysis of Clinical Covariates
Possible covariates, such as advanced age at diagnosis (>60
years), sex, the time elapsed since the first diagnosis, NYHA
functional class, SBP and echocardiographic parameters (EDDi
and LAVi), were compared with the three main prognostic
parameters (metabolomics, NT-proBNP, and LVEF) via
univariate and multivariate Cox regression analyses (results
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FIGURE 3 | Overall patients with HF, plotting actual survival over time (measured in years) according to risk estimated based on ejection fraction (Kaplan-Meier

curves). High-risk (red) group is significantly clustered with respect to both intermediate (yellow) and low (blue) risk groups with HR of 4.26 and 7.47, respectively.

(Continued)
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FIGURE 3 | Censored events represent either the time of last recorded clinical follow up, or time of death. Number at risk: number of patients stratified according to

the left ventricular ejection fraction (LVEF) at each time point. Cumulative number of events: total number of deceased patients at each timepoint for each risk group

based on the LVEF. The P-values are calculated with the Log-Rank test. EF_PRED = LR: predicted by EF at low risk of death; EF_PRED = IR: predicted by EF at

intermediate risk; EF_PRED = HR: predicted by EF at high-risk.

FIGURE 4 | Patients with HF divided according to LVEF subclasses (A) LVEF ≥ 40% (low risk), (B) LVEF < 40% (high-risk), plotting actual survival over time

(measured in years) according to estimated risk based on metabolomics (KM curves). Low-risk patients are colored in green and high-risk in purple. The P-values are

calculated using the Log-Rank test. Censored events represent either the time of last recorded clinical follow-up, or time of death. Number at risk: number of patients

stratified according to metabolomics. Cumulative number of events: total number of deceased patients at each time point for each metabolomic group. (A) KM

analysis on metabolomic classification of patients with LVEF ≥ 40%; (B) KM analysis on metabolomic classification of patients with LVEF < 40%. PLS_PRED = S,

predicted by PLS as survivor; PLS_PRED = D, predicted by PLS as deceased.

displayed in Table 2). After univariate analysis, metabolomics,
age at diagnosis, advanced NYHA classes (III-IV) at enrollment,
NT-proBNP, and reduced LVEF resulted to be statistically
associated with the outcome; however, after multivariate Cox
regression model, only metabolomics (HR 6.72, p 0.0007),
advanced age at diagnosis (HR 3.26, p 0.008), and reduced LVEF
(HR 2.6, p 0.001) maintained their correlation with prognosis,
regardless of other variables.

Correlations among metabolomics (metabolites and
lipoprotein main parameters) and clinical variables are
shown in Supplementary Figure S5. Several statistically
significant correlations emerged from this analysis. In
particular, succinic acid, acetone, and trimethylamine-N-
oxide show a strong correlation pattern with NT-proBNP
and with several echocardiographic (ECO) parameters

(ECO left the atrial end-diastolic area, ECO left atrial end-
diastolic diameter, ECO left atrial end-diastolic, and systolic
volume). Also, glucose, lactic acid, and citric acid present
correlations with the abovementioned echocardiographic
parameters. Glycated hemoglobin (Hb1AC) significantly
correlates with 12 metabolites. The LVEF anticorrelates
with trimethylamine-N-oxide and correlates with creatine,
Apo-A1, and Apo-2. Trimethylamine-N-oxide and creatine
show the same trend of correlation with systolic blood
pressure. Estimated glomerular filtration rate anticorrelates
with creatinine and correlates with high-density lipo-protein
(HDL) cholesterol, body mass index (BMI) correlates with
phenylalanine and tyrosine, and electrocardiogram QT
interval shows positive correlations with valine, pyruvic and
citric acids.
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FIGURE 5 | Overall patients with HF, plotting actual survival over time (measured in years) according to risk estimated using a combination of metabolomics and

ejection fraction (KM curves). Low metabolomic risk (green) and high metabolomic risk (purple) patients are significantly clustered with a p-value of 3.64·10−7

(Continued)
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FIGURE 5 | (calculated with the Log-Rank test) and an HR of 8.09. Censored events represent either the time of last recorded clinical follow-up, or the time of death.

Number at risk: number of patients stratified according to the combined score at each time point. Cumulative number of events: total number of deceased patients at

each time point for each risk group based on the combined score. MET_EF = S, predicted by the combined score of metabolomics and EF as survivor; MET_EF = D,

predicted by the combined score of metabolomics and EF as deceased.

TABLE 2 | Association with the outcome: unadjusted and adjusted hazard ratios

(HR).

Hazard ratio p-value Hazard ratio p-value

(univariate) (multivariate)

Metabolomics

High-risk 5.92 (2.37–14.76) <0.001 7.00 (2.28–21.51) <0.001

Sex

Male 1.18 (0.49–2.80) 0.72 0.64 (0.24–1.73) 0.38

Age at DCM diagnosis

>60 yrs 2.22 (1.01–4.90) 0.048 4.40 (1.64–11.79) <0.01

Time from DCM diagnosis and last follow up

>15 yrs 1.02 (0.47–2.20) 0.96 0.91 (0.36–2.31) 0.84

NT-proBNP

>400 pg/mL 3.03 (1.34–6.82) <0.01 1.30 (0.43–3.94) 0.64

LVEF

40 ≤ EF ≤ 49 (IR) 1.80 (0.48–6.78) 0.39 1.80 (0.41–7.94) 0.44

<40 (HiR) 8.09 (2.34–27.99) <0.001 9.35 (1.81–48.26) <0.01

NYHA class at enrollment

II 1.24 (0.49–3.14) 0.65 0.48(0.12–2.02) 0.32

III–IV 3.52 (1.23–10.06) 0.019 0.66(0.12–3.61) 0.63

SBP

>130 mmHg 0.80 (0.28–2.33) 0.68 0.85 (0.26–2.72) 0.78

EDDi at enrollment

>30 mm/mq 1.72 (0.69–4.28) 0.24 0.89 (0.28–2.84) 0.85

LAVi at enrollment

>40 mL/mq 1.76 (0.77–4.06) 0.18 0.60 (0.18–1.98) 0.40

Correlation with the outcome for prognostic features and metabolomics score using

univariate and multivariate Cox regression analysis. In the multivariate hazard ratios of

all the variables were included together in the analysis.

DCM, dilated cardiomyopathy; NYHA, New York Heart Association Classification; SBP,

systolic blood pressure; EDDi, indexed end diastolic diameter; LAVi, indexed left

atrial volume; LVEF, left ventricular ejection fraction; NT-proBNP, N-terminal pro b-type

natriuretic peptide.

Several statistically significant correlations also emerged
among quantified metabolites and many lipoprotein-related
parameters. In particular, amino acids, as well as lipoproteins, are
shown to be highly intercorrelated. All results are presented in
Supplementary Figure S6.

Association Between Metabolic Features
and Prognosis
Univariate analysis of the quantified metabolomic features
(Supplementary Table S1), using the Wilcoxon test, unraveled
that deceased patients as compared with survivors were
characterized at enrollment by lower levels of creatine,
apolipoprotein (apo-)A2 HDL, apo-A2, phospholipids HDL-3,
apo-A1 HDL-3, apo-A1 HDL-4, apo-A2 HDL-4, phospholipids
VLDL, phospholipids HDL-4, apo-A2 HDL-3, free cholesterol

VLDL-3, triglycerides HDL-4, cholesterol HDL-3, and by higher
levels of trimethylamine-N-oxide, creatinine, lactate, LDL and
HDL Cholesterol ratio, triglycerides LDL-3, and triglycerides
LDL-2 (p-value <0.05 for all before FDR correction).

Concentrations of each metabolite/lipoprotein were used
to build Cox regression models for the evaluation of their net
effect on survived and deceased patients (Table 3). Multivariate
models adjusted for sex, age at DCM diagnosis, time from
DCM diagnosis and last follow up, NT-proBNP, LVEF,
NYHA class at enrollment, SBP, EDDi at enrollment, and
LAVi at enrollment were also calculated. In the univariate
model, higher levels of trimethylamine-N-oxide (3rd tertile),
creatinine (3rd tertile), acetic acid (2nd tertile), succinic acid
(3rd tertile), triglycerides low-density lipoprotein (LDL) (2nd
tertile), and triglycerides LDL-3 (3rd tertile) are associated
with a higher risk of poor outcome, whereas higher levels
of triglycerides very-low-density lipoprotein (VLDL) (3rd
tertile), Apo-A2 HDL (2nd and 3rd tertiles), triglycerides,
VLDL-3 (3rd tertile), phospholipids (VLDL-1 (3rd tertile),
phospholipids VLDL-3 (3rd tertile), and triglycerides HDL-4
(3rd tertile) are associated with a good prognosis. Among
them, only the associations related to trimethylamine-N-oxide
(3rd tertile), triglycerides LDL (2nd tertile), phospholipids
VLDL-3 (3rd tertile), triglycerides LDL-3 (3rd tertile), and
triglycerides HDL-4 (3rd tertile) remain statistically significant
in the multivariate model adjusted for clinical covariates.
However, in addition to these variables, additional ones
(that were not significant in the univariate model) related to
various LDL subfractions 1, cholesterol HDL-2, and Apo-B100
Apo-A1 ratio resulted to be significant in the multivariate
model (Table 3).

DISCUSSION

Heart failure is a complex syndrome and constitutes the ultimate
result of several cardiovascular injuries. The DCM is one of
the most frequent causes of HF and heart transplantation, and
in turn, constitutes the final phenotype derived from multiple
pathophysiological mechanisms that mainly involve the structure
and the energetic metabolism of cardiomyocytes. Prognostic
evaluation of patients with DCM, particularly when complicated
by HF, is a crucial point in the clinical process. Among traditional
risk factors, LVEF still represents the cornerstone of prognostic
stratification and has an essential role in phenotyping and
guiding the therapy of patients with chronic HF (45), albeit
with limitations related to the operator-dependent variability and
scarce precocity. As regards to natriuretic peptides, there is a
considerable experience both in DCM and in HF (46): BNP or
NT-proBNP levels increase the accuracy of diagnosis of HF in the
emergency department (47), as well as the prognosis at the time
of hospital discharge (48).
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TABLE 3 | Association between metabolites/lipoproteins and the outcome: results of univariate and multivariate (adjusted for sex, age at DCM diagnosis, time from DCM

diagnosis and last follow up, NT-proBNP, LVEF, NYHA class at enrollment, SBP, EDDi at enrollment, LAVi at enrollment) Cox regression analyses are reported.

Hazard ratio p-value Hazard ratio p-value

(univariate) (multivariate)

Trimethylamine-N-oxide (2nd tertile) 3.33 0.0678 7.34 0.0148

Trimethylamine-N-oxide (3rd tertile) 5.94 0.0054 4.69 0.0323

Creatinine (2nd tertile) 1.28 0.6565 0.87 0.8352

Creatinine (3rd tertile) 2.69 0.0453 1.11 0.8673

Acetic acid (2nd tertile) 3.25 0.0414 2.39 0.1646

Acetic acid (3rd tertile) 2.90 0.0718 3.68 0.0534

Succinic acid (2nd tertile) 1.17 0.7895 0.67 0.5605

Succinic acid (3rd tertile) 4.24 0.0008 2.32 0.2101

Pyruvic acid (2nd tertile) 0.38 0.1000 0.09 0.0012

Pyruvic acid (3rd tertile) 1.24 0.6193 0.92 0.8852

Calculated Figures, Apo-B100/Apo-A1 (2nd tertile) 1.70 0.3048 3.26 0.0415

Calculated Figures, Apo-B100/Apo-A1 (3rd tertile) 1.97 0.1880 2.27 0.1732

Calculated Figures, LDL-1 Particle Number (2nd tertile) 1.21 0.7176 3.59 0.0494

Calculated Figures, LDL-1 Particle Number (3rd tertile) 1.78 0.2336 4.10 0.0192

Lipoprotein Main Fractions, Triglycerides, VLDL (2nd tertile) 0.98 0.9544 0.86 0.7625

Lipoprotein Main Fractions, Triglycerides, VLDL (3rd tertile) 0.32 0.0457 0.47 0.2199

Lipoprotein Main Fractions, Triglycerides, LDL (2nd tertile) 4.23 0.0110 4.02 0.0262

Lipoprotein Main Fractions, Triglycerides, LDL (3rd tertile) 2.30 0.1728 2.57 0.1579

Lipoprotein Main Fractions, Phospholipids, IDL (2nd tertile) 0.44 0.0967 0.42 0.1058

Lipoprotein Main Fractions, Phospholipids, IDL (3rd tertile) 0.53 0.1804 0.80 0.6833

Lipoprotein Main Fractions, Phospholipids, LDL (2nd tertile) 1.82 0.2466 3.22 0.0399

Lipoprotein Main Fractions, Phospholipids, LDL (3rd tertile) 1.77 0.2703 1.99 0.2403

Lipoprotein Main Fractions, Apo-A2, HDL (2nd tertile) 0.33 0.0222 0.41 0.1127

Lipoprotein Main Fractions, Apo-A2, HDL (3rd tertile) 0.28 0.0140 0.45 0.1562

VLDL Subfractions, Triglycerides, VLDL-3 (2nd tertile) 0.96 0.9173 0.93 0.8845

VLDL Subfractions, Triglycerides, VLDL-3 (3rd tertile) 0.24 0.0290 0.22 0.0573

VLDL Subfractions, Phospholipids, VLDL-1 (2nd tertile) 0.94 0.8898 0.48 0.1503

VLDL Subfractions, Phospholipids, VLDL-1 (3rd tertile) 0.32 0.0462 0.41 0.1622

VLDL Subfractions, Phospholipids, VLDL-3 (2nd tertile) 0.71 0.4346 0.84 0.7121

VLDL Subfractions, Phospholipids, VLDL-3 (3rd tertile) 0.30 0.0353 0.24 0.0358

LDL Subfractions, Triglycerides, LDL-1 (2nd tertile) 2.23 0.1435 3.44 0.0620

LDL Subfractions, Triglycerides, LDL-1 (3rd tertile) 2.65 0.0713 4.25 0.0243

LDL Subfractions, Triglycerides, LDL-3 (2nd tertile) 1.04 0.9447 0.55 0.3732

LDL Subfractions, Triglycerides, LDL-3 (3rd tertile) 2.88 0.0302 3.77 0.0418

LDL Subfractions, Triglycerides, LDL-6 (2nd tertile) 0.67 0.3796 0.32 0.0389

LDL Subfractions, Triglycerides, LDL-6 (3rd tertile) 0.49 0.1568 0.36 0.0859

LDL Subfractions, Cholesterol, LDL-1 (2nd tertile) 1.39 0.5176 2.95 0.0739

LDL Subfractions, Cholesterol, LDL-1 (3rd tertile) 1.55 0.3720 4.58 0.0161

LDL Subfractions, Cholesterol, LDL-2 (2nd tertile) 1.98 0.2112 2.15 0.2501

LDL Subfractions, Cholesterol, LDL-2 (3rd tertile) 2.23 0.1379 4.21 0.0287

LDL Subfractions, Free Cholesterol, LDL-1 (2nd tertile) 1.39 0.5176 2.84 0.1002

LDL Subfractions, Free Cholesterol, LDL-1 (3rd tertile) 1.55 0.3720 4.29 0.0251

LDL Subfractions, Free Cholesterol, LDL-2 (2nd tertile) 1.80 0.2938 3.55 0.0854

LDL Subfractions, Free Cholesterol, LDL-2 (3rd tertile) 2.43 0.0951 5.13 0.0211

LDL Subfractions, Phospholipids, LDL-1 (2nd tertile) 1.41 0.4965 3.47 0.0401

LDL Subfractions, Phospholipids, LDL-1 (3rd tertile) 1.60 0.3427 3.66 0.0460

LDL Subfractions, Phospholipids, LDL-2 (2nd tertile) 2.02 0.1998 2.05 0.2744

LDL Subfractions, Phospholipids, LDL-2 (3rd tertile) 2.25 0.1336 3.96 0.0374

LDL Subfractions, Apo-B, LDL-1 (2nd tertile) 1.21 0.7176 3.59 0.0494

(Continued)
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TABLE 3 | Continued

Hazard ratio p-value Hazard ratio p-value

(univariate) (multivariate)

LDL Subfractions, Apo-B, LDL-1 (3rd tertile) 1.78 0.2336 4.10 0.0192

HDL Subfractions, Triglycerides, HDL-4 (2nd tertile) 0.64 0.2996 0.45 0.1045

HDL Subfractions, Triglycerides, HDL-4 (3rd tertile) 0.28 0.0276 0.25 0.0433

HDL Subfractions, Cholesterol, HDL-2 (2nd tertile) 0.42 0.0830 0.26 0.0391

HDL Subfractions, Cholesterol, HDL-2 (3rd tertile) 0.62 0.2910 0.46 0.1834

For each variable the reference is the first tertile group.

Depending on LVEF, HF is currently classified into three
subgroups: reduced (HFrEF), mildly-reduced (HFmrEF), and
preserved ejection fraction (HFpEF) (34). The prognosis of HF
subtypes appears to be similar, although patients with HFmrEF
have higher readmission rates than patients with HFpEF, they
share comparable mortality rates with patients with HFrEF and
patients with HFpEF (49), even though ambulatory patients with
HFmrEF show lower mortality than those with HFrEF, more
akin to those with HFpEF. Moreover, patients with HFmrEF
may include patients whose LVEF is increased from ≤40% or
declined from ≥50% (50). Nonetheless, HF spans the entire
range of LVEF (as an abnormally distributed variable), and
measurement by echocardiography is subject to substantial
variability, making the complexity of the phenotypes as well as
their prognosis and management even more tricky. The level
of neurohumoral activity and the response to medical therapies
change among HF subtypes, suggesting differences in their
underlying pathophysiology (51), which could be captured by
the multiformity of the metabolomic fingerprints. Indeed, the
metabolome represents what is happening in the body, providing
the analysis of patients and their biological idiosyncrasies within
the dynamic context of a disease process like HF.

Given these premises, our study aimed to evaluate the
prognostic power of NMR metabolomic fingerprinting in
predicting survival in a well-defined cohort of oligosymptomatic
patients with HF with DCM over a median follow-up of 8
years. In our cohort, the overall mortality was 25%. Patients
who deceased at baseline were older and showed larger LV,
with lower LVEF and SBP values. Even if not reaching
statistical significance, they tended to be more symptomatic
and with larger LAVI. The NT-proBNP levels were significantly
higher in patients who died. There were no differences in
HF treatment among deceased patients concerning survivors.
The NMR fingerprinting well-discriminated the survived and
deceased patients with 70.8% accuracy (HR 5.71, p < 0.0001),
and the metabolomic parameters that mainly contributed
to the discrimination were trimethylamine-N-oxide, creatine,
creatinine, lactate, and several lipoprotein-related parameters
(Table 3; Supplementary Table S2).

Energetic metabolism plays a pivotal role in the onset and
evolution of HF (52). Creatine is a key player in sustaining
energy metabolism and functions of tissues with high energy
demand, such as the myocardium (53). Indeed, the primary
myocardial energy reserve pathway for generating ATP is the
creatine kinase reaction (54). Several studies report a significant
depletion of creatine, phosphocreatine, creatine kinase levels, and

creatine transporter activities in heart tissues (55, 56), and this
evidence has led to the hypothesis that the failing heart could be
energy-starved (57). Our data show a reduction of the creatine
levels in the sera of deceased patients with HF as compared
with survivors. We can hypothesize that long-survival of patients
with HF better compensates the heart’s energetic demand by
enhancing creatine synthesis and transport, whereas deceased
patients could no longer cope with the myocardium energetic
needs, and, thus, the decrease of creatine levels may indicate a
state of energy depletion.

Creatine is non-enzymatically converted in creatinine by
muscle at an almost constant rate depending on muscle mass,
and, then, creatinine is excreted by the kidneys into the urine
(53). Elevated levels of serum creatinine are associated with
impaired kidney function and renal failure; thus, in clinical
practice, it is routinely used as a marker of renal function. In our
cohort, we observed higher serum creatinine levels in patients
with HF with poor prognosis, despite, at the time of blood sample
collection, only 4 (15.4%) out of the 26 deceased patients with
HF presented overt chronic renal failure (whereas none of the
survived patients with HF showed this comorbidity). The general
increment of creatinine in deceased patients, although within
the normal range for most of them, could be interpreted as a
very early prodromal sign of future renal damage, and it can be
associated with poor prognosis. This result is in line with the
evidence that a loss of glomerular filtration rate independently
predicts mortality and accelerates the overall progression of
cardiovascular disease and HF (58). Indeed, the heart and
kidneys interact in a complex, bidirectional, and interdependent
manner in both acute and chronic settings, by sharing several
inflammatory, metabolic, and hormonal pathways (59).

Interestingly, deceased patients with HF showed increased
levels of trimethylamine-N-oxide (TMAO), a metabolite
generated by gut microbiota from dietary precursors rich
in choline, phosphatidylcholine, and l-carnitine. The altered
intestinal function has long been associated withHF pathogenesis
(60), and a positive correlation between blood levels of TMAO
and 5-year risk of death in patients with HF was reported (61).
Furthermore, within the cardiovascular setting, the TMAO
accumulation has been linked with platelet hyperactivation,
atherogenesis, and future adverse cardiac events (i.e., myocardial
infarction, stroke, and cardiovascular death) (60).

The ability of the metabolomic fingerprint to distinguish
deceased and survived patients with HF is also significantly
affected by the levels of several HDL subfractions of apo-A1,
apo-A2, cholesterol, and triglycerides. In particular, the patients
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with HF with poor prognoses were associated with reduced levels
of various HDL cholesterol subfractions and VLDL triglyceride
subfractions. These data are in agreement with the evidence that
low HDL-cholesterol, apo-A1, and triglycerides levels correlate
with adverse prognosis in patients with heart failure independent
of the etiology (62–64), probably because apo-A1 may exert an
anti-inflammatory action in HF (65).

Although none of the just discussed metabolites has sufficient
diagnostic power by itself, each of them contributes to the
metabolic fingerprint of the patients with HF, and this is the
most innovative point of the approach described here. The
metabolic fingerprint can be thought of as a sort of holistic
super-biomarker with a discriminative power higher than the
simple sum of the few quantified metabolites because it takes into
account all the detectable signals of endogenous and exogenous
metabolites/lipoproteins present in the NMR spectra (66). The
metabolomic fingerprint, as a whole, represents, therefore, a
useful and innovative instrument that is able to accurately
identify the patients with HF with good and poor prognosis, even
when compared with more classical stratification approaches.
After univariate analysis, metabolomic fingerprint, advanced
(>60 years) age at DCM diagnosis, longer (>15 years) history
of DCM, NT-proBNP values, and LVEF were significantly
related to CV outcomes. With regards to the prognostic power
of known risk factors compared with metabolomics results,
our data showed higher specificity (71.2%) of NT-proBNP in
discriminating deceased from survivor patients, despite lower
sensitivity (58.3%) and accuracy (68%). Furthermore, only age,
metabolomics, and LVEF have maintained their prognostic
significance after multivariate analysis. As previously reported
in the literature, younger age is a known protective factor
in patients with HF (67, 68) and this finding is confirmed
by our results. The importance of LVEF in the prognostic
stratification of patients with HF is corroborated as well. In
particular, LVEF remains one of the most powerful prognostic
factors; indeed, patients with reduced LVEF were at higher
risk of death (HRs 7.47 and 4.26, p-values 0.0001 and 0.0002
as compared with LR and IR, respectively), whereas patients
with mid-range and preserved LVEF shared a lower risk (HR
1.79, p-value 0.38). When testing the potential of metabolomics
in sub-stratifying LVEF classes, we considered mid-range and
preserved LVEF as a unique low-risk class, whereas reduced
LVEF was considered as a high-risk class; though metabolomics
showed to effectively sub-stratify low and high-risk patients
in both classes (HRs 3.46 and 6.01, p-values 0.03 and 0.004,
respectively), it showed the best performance in the high-risk
class. Furthermore, the outcome prediction of the combination
of metabolomics and LVEF led to an excellent prognostic power
with 75.5% accuracy, 73.8% sensitivity, and 80.8% specificity,
(HR 8.09 and p-value 0.0000004), highlighting that metabolomic
fingerprinting and LVEF provide complementary prognostic
information, and, therefore, their combined use can improve
poor outcome prediction beyond the use of LVEF only.

In conclusion, the results of this retrospective and proof-
of-concept study demonstrate how metabolomic analysis via
NMR enables a fast and reproducible characterization of the
serum metabolic fingerprint associated with poor prognosis in

a population of oligosymptomatic patients with HF, improving
the cardiovascular risk assessment, and most likely identifying
patients with HF who need to undergo more aggressive
treatments. Thus, metabolomic fingerprinting could represent
a valid addition to the established prognostic instruments, like
LVEF. Furthermore, our results suggest that it would be advisable
to integrate more risk parameters to identify earlier the patients
with HF at high-risk of poor outcomes.

This study provides important insights into the HF setting
by analyzing a well-defined, homogeneous, single-center, cohort
of patients with DCM with stable chronic HF. As compared
to other studies aimed at using metabolomics as a prognostic
factor of mortality in patients with HF (31–33), in our study,
the patients were monitored for follow up time significantly
longer than the average follow ups time of clinical trials (median
follow up from enrollment 8 years, median follow up from
DCM diagnosis 15 years), most patients were pauci-symptomatic
at enrollment (85.8% NYHA class I-II) and 68.8% of patients
showed mid-range or preserved LVEF; this sub-group of patients
with HF is probably the one that could gain more benefits from
specific targeted therapies. However, some relevant limitations
of our study should also be mentioned: the population sample
was limited in size, the number of death events was low,
and the study lacks an independent external validation cohort.
These limitations prevent any definitive conclusion. However,
the results obtained in this pilot study provide a rational basis
for a future larger multi-center study, and further efforts in this
direction are guaranteed.
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