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Abstract: Non-invasive positron emission tomography (PET) imaging of immune cells is a powerful
approach for monitoring the dynamics of immune cells in response to immunotherapy. Despite the
clinical success of many immunotherapeutic agents, their clinical efficacy is limited to a subgroup of
patients. Conventional imaging, as well as analysis of tissue biopsies and blood samples do not reflect
the complex interaction between tumour and immune cells. Consequently, PET probes are being
developed to capture the dynamics of such interactions, which may improve patient stratification
and treatment evaluation. The clinical efficacy of cancer immunotherapy relies on both the infiltration
and function of cytotoxic immune cells at the tumour site. Thus, various immune biomarkers have
been investigated as potential targets for PET imaging of immune response. Herein, we provide
an overview of the most recent developments in PET imaging of immune response, including the
radiosynthesis approaches employed in their development.

Keywords: immunotherapies; immune responses; PET imaging; molecular imaging; PD-1/PD-L1
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1. Introduction

Over the years, various immunotherapy approaches have emerged as powerful treat-
ment options for cancer. These approaches aim to induce an anti-tumour immune response
by redirecting or stimulating the patient’s immune system to attack cancer cells. The
most common type of cancer immunotherapy is passive immunotherapy, which involves
administration effector molecules, including monoclonal antibodies, or the adoptive trans-
fer of lymphocyte-activated killer cells or cytotoxic T lymphocytes that acts to enhance
existing anti-tumour immune responses. Another type of cancer immunotherapy is active
immunotherapy, which involves administration of agents, such as interferons, interleukins
(e.g., IL-2, IL15, and IL-12), vaccines, and genetically engineered T cells, to direct the
immune system into taking an active role in attacking the cancer cells.

The clinical success of immune checkpoint monoclonal antibodies led to the approval
of several therapeutic agents by the Food and Drug Administration (FDA) and European
Medicines Agency (EMA) [1,2]. Cellular therapies, such as chimeric antigen receptor
(CAR) T cells, have demonstrated promising clinical responses which have accelerated their
approval for B cell lymphoma and B cell acute lymphoblastic leukaemia [3–6]. Despite the
promising outcomes of these immunotherapeutic approaches, their clinical efficacy remains
limited to a subgroup of patients, and many patients experience side effects. This can be
attributed to complex interactions in the tumour microenvironment (TME), physical barriers
that prevent infiltration of immune cells, upregulation of inhibitory pathways, and tumour
heterogeneity and adaptability. Therefore, visualizing and monitoring immune responses
may improve patient stratification and enable the identification of non-responders during
the course of therapy.
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Assessment of immune responses by measuring circulating levels of cytokines, lym-
phocytes, and immunoglobulins in blood samples or biopsies of tumour tissues is invasive
and provides insufficient data on the status of infiltrating immune cells [7]. In compari-
son, molecular imaging approaches enable non-invasive visualisation and monitoring of
immune responses. Methods, such as direct cell labelling of T cells by fluorescent agents,
magnetic resonance imaging (MRI) contrast agents, bioluminescent, or radiolabelled probes,
are associated with some biological alterations, which may limit their clinical translation.
These limitations include the dilution of imaging agents upon cell death, potential toxicity
to therapeutic cells, and restricted longitudinal imaging [8–12]. In contrast, T cell-targeted
probes prepared by radiolabelling small molecules hold great clinical translation potential.

Positron emission tomography (PET) imaging is a powerful imaging technique that
possess high sensitivity, quantitative capability, and limitless depth of tissue penetration.
Thus, PET imaging is suitable for tracking T cells in clinical settings. Using T cell-specific
probes, PET imaging can visualize the homing and accumulation of T cells at the tumour
site. To date, few PET radiotracers have been developed for imaging cytotoxic T cells. In
this review, we discuss the recent developments in cancer immunotherapy, and the use of
PET imaging in predicting and evaluating immune response to cancer immunotherapy.
We also discuss radioisotopes and synthesis methods employed in the development of
immuno-PET imaging probes.

2. Immuno-Oncology

Cancer immunotherapy is an attractive strategy that aims to trigger an immune re-
sponse against cancer cells, inhibiting their growth. The immune system plays two critical
roles; it can suppress and/or promote tumour growth, a process known as immunoediting.
During early stages of tumour development, the innate and adaptive immune system
eliminates transformed cells that have escaped programmed cell death or repair mech-
anisms. However, rare subclones of tumour cells may survive this phase and progress
into the equilibrium phase, where tumour growth is limited. Persistent activation of the
immune system, along with the genetic instability of tumour cells, leads to the selection
of tumour subclones with reduced immunogenicity that are capable of evading immune
recognition and elimination. These tumour subclones exhibit modifications, such as loss of
antigen presentation or increased expression of inhibitory immune checkpoint molecules.
Various immunotherapies have been developed to relieve the immunosuppressive tumour
microenvironment and subsequently trigger an anti-tumour immune response.

Cancer immunotherapy is divided into the following two categories: active and
passive immunotherapy. Active immunotherapy aims at the induction of an endogenous,
long-lasting tumour antigen-specific immune response. In addition, the anti-tumour
response can be further enhanced via non-specific stimulation of the immune system
using cytokines. Another strategy to induce in vivo stimulation is through vaccination with
tumour antigens [13,14]. Passive cancer immunotherapy provides a tumour antigen-specific
immune response by supplying high amounts of effector molecules, such as tumour-
specific antibodies. However, passive cancer immunotherapy is short-lived and, thus,
requires repeat applications. Over the years, the field of cancer immunotherapy has
witnessed notable breakthroughs that have improved patients’ overall survival. Monoclonal
antibodies, cytokines, immune checkpoint inhibitors (ICIs), and adoptive cellular therapy
(ACT), such as chimeric antigen receptor (CAR) T cell therapy, are promising methods for
treating cancer.

2.1. Immune Checkpoint Inhibitors

Immune checkpoint molecules play a critical role in regulating immune cell activation.
Following antigen recognition by a T cell receptor (TCR), a secondary co-stimulatory signal
is necessary to trigger T cell activation. This is mediated via the ligation of co-stimulatory
molecules, such as CD28, expressed on T cells. Upon T cell activation, co-inhibitory
molecules, such as CTLA-4 and PD-1, are recruited to the immunologic synapse to halt T
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cell activation and maintain physiologic immune responses (Figure 1). To avoid immune
destruction, cancer cells may express more inhibitory antigens. ICIs can, therefore, block
the inhibitory checkpoints, which in the presence of a co-stimulatory signal, results in the
stimulation of effector cells. ICIs do not result in the direct killing of cancer cells, but they
support the host’s immune system in re-enhancing anti-tumour immune response. The
first ICI to be approved by the FDA was ipilimumab (anti-CTLA-4 antibody) for treating
melanoma patients. Subsequently, three PD-1 and PD-L1 inhibitors were approved; a large
number have since been approved [2,15–19].
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Despite the clinical success of ICI therapy, a large number of cancer patients show
no response or resistance to ICI therapy [20–22]. This has led to continuous efforts in
identifying and evaluating other potential immune checkpoint targets. Beyond CTLA-4
and PD-L1/PD1, one target that is actively being studied is the lymphocyte activation
gene-3 (LAG-3), which has been associated with the exhaustion of tumour-infiltrating T
cells, as a mechanism of resistance to certain immunotherapies. A number of reports have
expounded that the combinatorial blockade of LAG-3 and PD-1 pathways synergistically
enhance anti-tumour immunity in some solid tumours [23,24]. This led to the recent FDA
approval of Opdualag, a combination treatment of relatlimab (anti-LAG3 antibody) and
nivolumab (anti-CTLA-4 antibody), for patients with inoperable or metastatic melanoma.
Opdualag was found to prolong progression-free survival (10.1 months) compared to
those receiving nivolumab monotherapy (4.6 months) [25]. Although nivolumab and
ipilimumab combination therapy has yielded similar clinical results, Opdualag was found
to be associated with fewer side effects. The effect of Opdualag is currently being evaluated
in clinical trials of other cancers, such as lung, liver, and colorectal cancer [26–28].

The T cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based
inhibitory motif domains (TIGIT) is an immune receptor that is mostly expressed on T cells
and natural killer (NK) cells. Varying levels of TIGIT are detected on different subsets of
T cells. Furthermore, TIGIT is an inhibitory immune checkpoint molecule that plays role
in modulating tumour-targeted T cell response and, thus, serves as potential target for
immune checkpoint inhibition. The main ligand for TIGIT is CD155, which is upregulated
on cancer cells and is also expressed on tumour-infiltrating myeloid cells. In pre-clinical
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studies, anti-TIGIT mAb monotherapy was found to inhibit tumour growth and prevent
metastasis. In myeloma mouse models, blocking of TIGIT was found to reduce tumour
burden and prolong overall survival [29]. Furthermore, a dual blockade of TIGIT and PD-
1/PD-L1 pathways was shown to result in tumour rejection even in tumour models resistant
to anti-PD-1 therapy. Blockade of TIGIT not only enhances the response of effector T cells
but also NK cell responses, and it reduces the suppressive capacity of regulatory T cells
(Tregs). At present, multiple clinical studies are investigating the safety and therapeutic
value of TIGIT blockade in combination with other ICIs [30–32].

2.2. CAR-T Cell Therapy

Another promising approach in the field of cancer immunotherapy is CAR-T cell
therapy, whereby T cells are genetically modified to express synthetic receptors that allow
them to recognise tumour-associated antigens (TAAs) presented by human leukocyte
antigen (HLA; the major histocompatibility complex [MHC] in humans) molecules. CAR-T
cells consist of an extracellular antigen-binding domain that is linked to an intracellular
signalling domain CD3ζ (first generation CARs). In second- and third-generation CARs,
CAR-T cell activity is augmented by the addition of one or more co-stimulatory domains.
Fourth-generation CARs possess a constitutive or inducible expression of soluble cytokines
or co-receptors [33,34]. To date, six CAR-T cell therapies have been approved by the FDA
for treating lymphomas, multiple myeloma, and some types of leukaemia [3,35–39].

Although CAR-T cell therapy has exhibited promising efficacy, not all patients achieve
complete responses. In fact, durable remission is not guaranteed, and 30–60% of patients
are reported to relapse following treatment with CD19 CAR-T cells, which may be due to
antigen escape [40]. Additionally, continuous antigen exposure results in T cell exhaus-
tion, which is associated with poor responses in patients receiving CAR-T cell therapy.
Furthermore, CAR-T cell therapy is less effective in solid tumours due to poor trafficking
and infiltration into tumour tissue. The immunosuppressive microenvironment, charac-
terised by the presence of immune suppressor cells and immunosuppressive cytokines,
presents another hurdle for treating solid tumours. One proposed strategy to improve the
therapeutic efficacy of CAR-T cells is combination therapy.

The ZUMA-6 trial (phase 1) demonstrated that combining anti-CD19 CAR-T cell
therapy with PD-L1 therapy is safe and promising in treating patients with refractory
aggressive non-Hodgkin lymphoma [41]. In a small study of four children with refractory
acute lymphoblastic leukaemia, treatment with PD-1 antibodies was found to restore CAR-
T cell function [42]. An alternative strategy that has been evaluated in pre-clinical studies
involves the use of CAR-T cells engineered to release an immune checkpoint blockade
single-chain variable fragment (scFv), which was found to enhance the survival of PD-L1
positive tumour-bearing mice [43]. In addition, this approach of localised delivery of ICIs
may decrease the adverse effects associated with systemic ICIs. Nevertheless, the clinical
efficacy and safety of this approach are yet to be determined.

2.3. γδ T Cell Therapy

Another adoptive cell therapy that has gained considerable attention as an attractive
candidate for cancer immunotherapy is the use of γδ T cells, which are a minor population
of peripheral lymphocytes [44]. Indeed, γδ T cells have been demonstrated to exhibit potent
anti-tumour effects, and possess unique characteristics, such as the ability to recognise anti-
gens independently of the HLA class I molecules [45]. Unlike conventional αβ T cells, γδ T
cells are activated by phosphoantigens (PAgs), such as isopentenyl pyrophosphate (IPP),
which is an intermediate product in the mevalonate pathway [46]. It is now recognised
that IPP binds to the intracellular domain of BTN3A1, expressed in target cells, inducing
a conformational change in its extracellular domain that is recognised by γδ TCR [47,48].
Recently, another member of BTN family, BTN2A1, has also been reported to be as essential
for the activation γδ T cells; BTN2A1 is proposed to interact with the germline-encoded
regions of the Vγ9 chain of the TCR, acting together with BTN3A1 to trigger γδ T cell
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response to PAgs [49,50]. Furthermore, γδ T cells co-express receptors of the innate immune
cells, such as by activating NK receptors and certain Toll-like receptors. They also share
many functions with the conventional αβ T cells, such as their ability to produce cytokines
and interleukins. Pre-clinical studies demonstrated γδ T cell-based therapy to possess
a potent anti-tumour effect [51–53]. Nevertheless, their clinical efficacy was found to be
inconsistent in multiple phase 1 clinical trials despite their safety; this can be attributed to
multiple factors, such as resistance of tumour cells to γδ T cell-cytotoxicity, and/or the poor
activation and infiltration of γδ T cells [54–57]. Currently, multiple phase 1/2 clinical trials
are evaluating the safety and efficacy of ex vivo expanded allogenic γδ T cells. Additionally,
to improve the efficacy of γδ T cells, Oberge et al. demonstrated the use of bispecific
antibodies in triggering γδ T cells cytotoxicity against HER2-expressing cancer cells in vitro
and in vivo [58]. Another strategy proposed to overcome the therapeutic limitations of γδ
T cells is the development of CAR-γδ T cells [59,60].

2.4. Cytokines

Cytokines, which are small proteins secreted by different immune cells, play a sig-
nificant role in cancer immune cycle. This includes antigen presentation on cancer cells,
priming and activation of T cells, infiltration of effector cells into tumour tissue, and cancer
cell death [61]. Furthermore, cytokines are involved in mediating immune cell differentia-
tion, which determines the effect of anti-cancer immunity. The most studied cytokines in
cancer therapy are granulocyte-macrophage colony-stimulating factor (GM-CSF), vascular
endothelial growth factor (VEGF), interluekin-2 (IL-2), granulocyte colony-stimulating
factor (G-CSF), and interferon gamma (IFN-γ). Currently, Aldesleukin (recombinant hu-
man IL-2) is approved by the FDA for treating patients with metastatic melanoma and
metastatic renal cell carcinoma [62]. Both CSF and IL-2 promote the proliferation and
differentiation of immune cells, and consequently can be used to enhance anti-cancer
immunity. Furthermore, IFN-γ can be used to directly inhibit the proliferation of cancer
cells and enhance anti-tumour immunity [62]. Based on the outcomes of multiple clinical
trials, the efficacy of many cytokines as anti-cancer therapeutic agents is limited, which
may be associated with their short circulation time [61,63]. Thus, frequent administration
is required to achieve long-lasting therapeutic effect; however, this is very likely to result
in adverse events [64]. To overcome these limitations, many studies investigated the use
of nanomaterials as potential cytokine carriers due to their preferential accumulation at
the tumour site, aqueous solubility, and prolonged circulation time. Polyethylene glycol
(PEG) molecules were also demonstrated to be effective carriers for cytokine delivery. One
example is Bempegaldesleukin (NKTR-214), which is an engineered IL-2 receptor (IL-2R)
agonist with an average of six releasable PEG molecules [65]. In patients with metastatic
melanoma and renal cell cancer, Bempegaldesleukin monotherapy was found to expand
peripheral and intra-tumoural infiltration of cytotoxic T cells without affecting the popula-
tion of Tregs and without causing serious toxicity [66]. However, phase 3 clinical trial with
Bempegaldesleukin in combination with nivolumab reported no additional clinical benefit
and, as a result, patient enrolment was discontinued [67]. Another engineered IL-2 that
showed promising preclinical data is THOR-707, which has a PEG molecule attached to
block its binding to the CD25 subunit of the IL-2R. The safety and therapeutic activity of
THOR-707 is currently being studied in a phase 1/2 clinical trial in patients with advanced
or metastatic solid tumours [68].

2.4.1. Challenges Associated with Cancer Immunotherapy

The promising clinical benefits observed in some patients treated with cancer im-
munotherapy indicate its feasibility in restoring effective anti-tumour immune surveillance.
Cancer vaccines, another type of immunotherapy, have a preventive and therapeutic poten-
tial and, thus, may provide long-term immunity against cancer recurrence. To date, three
vaccines are approved for treating metastatic melanoma, early-stage bladder cancer, and
metastatic castration-resistant prostate cancer [69–71]. Currently, multiple phase 2 clinical
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trials are evaluating the efficacy of these vaccines for other types of cancers. Nevertheless,
the clinical effect of cancer vaccines and other immunotherapies is only observed in small
group of patients. This may be due to tumour heterogeneity, treatment history, the underly-
ing immunosuppressive biology of cancer, and variability in cancer type and stage [21,72].
Identification of predictive or prognostic biomarkers may enable the selection of patients
that will most likely benefit from cancer immunotherapy.

To date, there are three FDA-approved positive predictive biomarkers, namely PD-L1
expression, tumour mutational burden (TMB), and microsatellite instability (MSI) [72]. The
first, PD-L1, is one of the biomarkers that is robustly investigated in predicting response
to ICIs. Data suggest that tumours with high PD-L1 expression are associated with better
response and survival rates with PD-1/PD-L1 ICIs therapy. However, two clinical trials
studying nivolumab in metastatic melanoma patients showed that 20–30% of PD-L1 nega-
tive patients responded to therapy [73,74]. Thus, the discovery of other biomarkers may
improve treatment prognosis.

Another biomarker, MSI, develops as a result of defects in the DNA mismatch repair
pathway that leads to the accumulation of many mutations within microsatellite regions.
Tumours with high MSI exhibit increased mutational burden, resulting in the infiltration of
T cells in the TME. Furthermore, TMB and the presence of inflamed gene signatures have
been reported to positively correlate with response to PD-1/PD-L1 blockade. Patients with
high TMB were found to have better overall survival when treated with PD-1/PD-L1 ICIs.
In addition, higher TMB associates with a greater probability of displaying neoantigens on
HLA molecules on the surface of cancer cells, triggering cytotoxic T cell-dependent immune
response [75]. Therefore, analysis of TMB, and the presence of TILs along with expression of
PD-1/PD-L1, may enable the identification and selection of responders to ICI therapy [76].
In addition, cancer immunotherapies are very expensive to develop and administer, which
limits their use in specific patient populations. Thus, more cost-effective techniques need
to be developed and applied to enable the accessibility of cancer immunotherapies to a
broader range of patients. Consequently, the identification of novel clinical and molecular
predictive biomarkers may enable the selection of patients that are likely to benefit from
expensive immunotherapy treatment.

The efficacy of cancer therapies is assessed by measuring the tumour volume, analysis
of tissue biopsies, and performing peripheral blood assays. However, changes in tumour
volume may prove misleading, since the influx of effector immune cells into TME often con-
tributes to increased volume, which is a phenomenon known as pseudoprogression [77,78].
In addition, tissue biopsies taken post-treatment is an invasive method that is dependent
on the accessibility of the tumour and often fails to account for tumour heterogeneity.
Furthermore, tissue biopsies may not reflect the complex interactions between tumour and
immune cells. Immunohistochemistry (IHC) is a technique that is routinely performed to
stain for immunoregulatory proteins in clinical tissue biopsies. However, IHC limits accu-
rate classification of both cell type and function, since staining for more than two markers
requires a careful selection of primary antibodies or the use of consecutive tissue sections,
which is sometimes difficult to obtain due to low tissue availability in some samples.
Newer technologies are emerging to address some of these challenges, such as multiplex
IHC (mIHC) [79,80]. Nevertheless, clinically accessible mIHC only enables staining for
a limited number of markers. Other techniques, such as peripheral blood assays, which
are commonly used to reveal the diversity of immune infiltrates in TME, do not reflect
the dynamics and spatial information that are required to monitor immune responses to
treatment. Therefore, there is a demand for developing diagnostic and predictive methods
to detect and monitor anti-tumour immunity.

Non-invasive molecular imaging approaches that enable monitoring of systemic and
intra-tumoural alterations in immune cell localisation may increase our understanding of
the dynamics of various immunotherapeutic strategies. There are multiple techniques for
non-invasive cell tracking, such as ex vivo cell labelling and radiolabelled metabolic probes.
However, these strategies are associated with potential toxicity to the therapeutic cells,
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dilution of imaging agents upon cell death, and restricted longitudinal imaging that may
limit their clinical translation. In contrast, T cell specific probes made by labelling antibodies
or small molecules possess great translation potential. The imaging technologies employed
include magnetic resonance imaging (MRI), computer tomography (CT), positron emission
tomography (PET), and single photon emission computed tomography (SPECT). Unlike
optical cell-tracking methods, PET imaging has high sensitivity and spatial resolution and,
thus, may provide insight into immune activity in TME, and subsequently present a tool
for evaluating treatment strategies.

2.4.2. PET Imaging of Immune Cells

PET imaging method is a widely used non-invasive clinical diagnostic technique. It
tracks the spatial distribution of the PET radiotracer by detecting the 511 keV gamma rays
from the positron/electron annihilation events following positron decay of the radionuclide.
Owing to the highly distinctive signal, very low levels of radioactivity can be detected. This
makes PET imaging a highly sensitive imaging technique [81]. Moreover, the distribution
of the PET tracer is related to a specific biological process [82]. Therefore, it does not
only provide the spatial information of the tracer, but it can also quantitatively represent
the relevant biological function. Using this technique, a whole-body visualization of the
immune response could be generated with detailed functional and dynamic information
without invasive biopsies.

While the PET imaging scanner technology has made huge leaps during the last few
years [83], there is a critical role for developing the optimal PET radiotracer, and radiola-
belling plays a crucial part in the development of a PET tracer. Depending on the physical
properties, such as half-life, decay characteristics, and labelling chemistry, different methods
are employed to enable radiolabelling [84]. Commonly used PET radionuclides are sum-
marized in Table 1. Most of the compounds used in PET imaging of immune response are
radiolabelled with 18F, 68Ga, 89Zr, and 64Cu. Some PET radionuclides have a short half-life
(such as 11C t1/2 = 20.4 min) and, therefore, are the reserve of specialist imaging facilities with
on-site cyclotrons. Additionally, many other PET radionuclides cannot be easily sourced
commercially, such as 44Sc and 124I (Table 1). In general, the radionuclides can be grouped
into two major categories, namely non-metal and metal PET radionuclides.

Table 1. Common radionuclides and their physical properties.

Radionuclide Half-Life Decay Mode
(β+ Mode %)

Position Energy
(MeV) Production Method

11C 20.4 min 99 0.97 14N(p, α)11C
18F 109.7 min 97 0.65 18O(p, n)18F

68Ga 67.7 min 89 1.9 68Ge/68Ga(generator)
44Sc 3.97 h 94 1.47

44Ca(p, n)44Sc or
44Ti/44Sc (generator)

64Cu 12.7 h 18 0.65 64Ni(p, n)64Cu
89Zr 78.4 h 23 0.91 89Y(p, n)89Zr
124I 100.2 h 23 1.54 124Te(p, n)124I

A non-metal radionuclide, namely 18F, is the most widely used PET radionuclide. Its
main clinical application is to detect cancer through labelling of glucose-mimicking [18F]
fluorodeoxyglucose ([18F]FDG) by exploiting the high metabolic rate of cancer [85]. However,
for imaging immune response, many biomolecules, such as peptides, antibody fragments, and
full-length antibodies are used as the targeting motif. The high temperature and high organic
solvent environment are not suitable for these delicate structures. Thus, many 18F radiolabelled
compounds depend on the ‘prosthetic’ group approach, involving small prosthetic molecules
that are labelled with 18F prior to conjugation to biomolecules under mild conditions. The
trade-off for the ‘prosthetic group approach’ is a lower yield and more complicated synthesis
due to the requirement of extra synthesis time and additional purification.
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Radiometals, such as 64Cu (t1/2 = 12.7 h), have long been used for PET imaging [86].
Many radiometals provide longer decay half-life compared to their non-metal counterparts,
which is desirable for labelling larger biomolecules with a longer biological half-life. In
addition, the recent commercial availability and improvement of the 68Ge/68Ga generators
has allowed 68Ga (t1/2 = 68 min) to be used more widely for smaller molecules, such as pep-
tides [87]. During the last decade, 89Zr has gained a lot of attention for PET imaging owing
to its 78.4 h half-live, which matches the biological half-life of full-length IgG antibodies.
In contrast to non-metal radiolabelling, radiometal labelling is easier to implement and
often requires much milder condition. To achieve labelling, a chelator is usually first conju-
gated to the antibody/fragment/peptide. Then, at the time of radiolabelling, a solution
of a radiometal is added to the chelator conjugated antibody in a suitable buffer system.
Depending on the type of radionuclide and chelator, the radiolabelling is achieved either at
room temperature or at an elevated temperature (Table 2).

Table 2. Radionuclides and their corresponding chelators.

Chelator Complex Labelling Conditions
68Ga

NOTA
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As aforementioned, there are a variety of suitable targeting motifs, ranging from small 
molecules, peptides, nanobodies, antibody fragments, and full-length antibodies. Each of 
these have their own advantages and disadvantages (Table 3). Peptides and small molecules 
are often derived from the nature-identical substrate or ligand of a desired target. Thus, the 
discovery could be accelerated if a known structure exists. These molecules often have fast 
pharmacokinetics (tens of minutes) and can tolerate relatively harsh radiolabelling condi-
tions. Radionuclides with a short half-life could pair with these molecules for fast and con-
venient same-day PET imaging. In contrast, considerations are different when using a pro-
tein as the targeting motif. For example, full-length antibodies are naturally occurring pro-
teins that bind antigens with high affinity and selectivity. Over the last few decades, a ma-
tured industry has been established for the generation, selection, manufacturing, and modi-
fication of monoclonal antibodies (mAbs). This makes it a desirable scaffold for developing 
PET tracers from these highly versatile proteins. As a PET tracer, mAbs can potentially 
achieve high tumour uptake. However, the relatively slow pharmacokinetics (days to weeks) 
of the antibody means radionuclides with a longer half-life must be used. To minimise radia-
tion risk and simplify the diagnostic procedure, engineered antibody fragments with faster 
pharmacokinetics, such as diabody and minibody fragments, have been developed to allow 
for faster imaging and a lower radiation (effective) dose. Nanobodies are another class of 
domain antibody, derived from camel and llama, that produce an antibody with only the 
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As aforementioned, there are a variety of suitable targeting motifs, ranging from small
molecules, peptides, nanobodies, antibody fragments, and full-length antibodies. Each of
these have their own advantages and disadvantages (Table 3). Peptides and small molecules
are often derived from the nature-identical substrate or ligand of a desired target. Thus,
the discovery could be accelerated if a known structure exists. These molecules often have
fast pharmacokinetics (tens of minutes) and can tolerate relatively harsh radiolabelling
conditions. Radionuclides with a short half-life could pair with these molecules for fast and
convenient same-day PET imaging. In contrast, considerations are different when using a
protein as the targeting motif. For example, full-length antibodies are naturally occurring
proteins that bind antigens with high affinity and selectivity. Over the last few decades,
a matured industry has been established for the generation, selection, manufacturing,
and modification of monoclonal antibodies (mAbs). This makes it a desirable scaffold for
developing PET tracers from these highly versatile proteins. As a PET tracer, mAbs can
potentially achieve high tumour uptake. However, the relatively slow pharmacokinetics
(days to weeks) of the antibody means radionuclides with a longer half-life must be used.
To minimise radiation risk and simplify the diagnostic procedure, engineered antibody
fragments with faster pharmacokinetics, such as diabody and minibody fragments, have
been developed to allow for faster imaging and a lower radiation (effective) dose. Nanobod-
ies are another class of domain antibody, derived from camel and llama, that produce an
antibody with only the heavy chain binding domain. The advantages of nanobodies have a
lot to do with their highly compact structure. With a typical molecular weight of 15 kDa,
nanobodies retain the high affinity and specificity of an antibody while having much faster
pharmacokinetics (a few hours). In addition, nanobodies can tolerate more challenging
conditions, such as higher temperatures. Merging the advantages of small molecules and
antibodies, nanobodies have become an emerging scaffold for PET tracers after its main
patent expired in the late 2010s [88]. Other potential vectors include affibodies, DARPins,
and affimers [89–91].

Table 3. Examples of PET tracers for cytotoxic T-cell and their highlights.

Targeting Motif Probes Highlights

Small molecule
(MW < 1000 Da) [18F]F-AraG • Very fast pharmacokinetics

• Tolerate very harsh radiosynthesis condition

Peptide
(MW 1000~3000 Da)

[68Ga]Ga-mNOTA-GZP
[18F]AlF-mNOTA-GZP
[68Ga]Ga-NOTA-GP12
[64Cu]Cu-DOTA-GRIP B

• Very fast pharmacokinetics
• Ease of chemical synthesis
• Tolerate harsh radiosynthesis condition

Nanobody
(MW ~15 kDa)

[68Ga]Ga-NOTA-(hPD-L1)
[68Ga]Ga-NOTA-Nb109
[68Ga]Ga-NODAGA-SNA006a

• Fast pharmacokinetics
• Increasingly easy for manufacture/obtain
• Moderately tolerate to harsh radiosynthesis

conditions
• High binding affinity

Diabody
(MW~55 kDa) [89Zr]Zr-DFO-NCS-anti-IFN-γ HL-11 • Intermediate pharmacokinetics

• High binding affinity

Minibody
(MW~80 kDa) [89Zr]Zr-Df-IAB22M2C

• Intermediate pharmacokinetics
• Higher tumour uptake compared to

fragments
• High binding affinity
• Prefer liver as metabolic organ
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Table 3. Cont.

Targeting Motif Probes Highlights

mAb
(MW~150 kDa)

[89Zr]Zr-DFO-nivolumab
[89Zr]Zr-DFO-pembrolizumab
[89Zr]Zr-DFO-durvalumab
[89Zr]Zr-DFO-REGN3504
[89Zr]Zr-DFO-avelumab
[89Zr]Zr-DFO-6E11
[89Zr]Zr-DFO-ipilimumab
[89Zr]Zr-DFO-REGN3767
[64Cu]Cu-DOTA-AbOX40
[89Zr]Zr-DFO-OX40
[89Zr]Zr-DFO-anti-IFN-γ

• Slow pharmacokinetics, long circulation
half-life

• Relatively easy for manufacture/obtain
• High tumour uptake
• High binding affinity
• Prefer liver as metabolic organ

2.5. Fluorine-18 Labelled Fluorodeoxyglucose ([18F]FDG)

The [18F]FDG radiotracer is a glucose analogue that accumulates in cells with enhanced
metabolic activity (Figure 2). It is routinely used in the clinic to determine tumour stage
and treatment efficacy, including response to ICIs. However, [18F]FDG does not only target
cancer cells, but it can also be taken up by immune cells, making it difficult to distinguish
between tumour-related uptake from those induced by immunotherapy [92–94]. This led
to the proposal of imaging interpretation criteria, which includes revision of the Lugano
criteria and the Lymphoma Response to Immunomodulatory therapy Criteria (LYRIC) to
avoid misdiagnosis [95]. Studies focusing on validating [18F]FDG PET/CT in early phases
of immunotherapy reported high [18F]FDG uptake by the tumour with or without increase
in tumour volume following administration of ICIs. This is likely to indicate activation
of the immune system, since immunotherapy results in pseudoprogression. In addition,
the enhanced infiltration of immune cells via ICI agents influences the tumour microenvi-
ronment and may promote the glycolysis of cancer cells, resulting in an increased uptake
of [18F]FDG [96,97]. Thus, PET imaging with [18F]FDG, along with CT scans, may help to
distinguish pseudoprogression from other responses. For instance, in a cohort of melanoma
patients receiving ICI therapy, residual metabolic activity on [18F]FDG PET was found to
be associated with residual tumour masses [98]. Dercle et al. demonstrated that a reduction
in the avidity of 18F-FDG in the spleen and tumour of patients with relapsed or refractory
Hodgkin lymphoma after 3 months of initiating ICI therapy correlated with improved
prognosis [99]. Nevertheless, the low specificity of [18F]FDG for immune cells makes it
difficult to differentiate between subsets of infiltrating immune cells and tumour cells.

Pharmaceutics 2022, 14, 2040 10 of 28 
 

 

(MW~150 kDa) [89Zr]Zr-DFO-pembrolizumab 
[89Zr]Zr-DFO-durvalumab 
[89Zr]Zr-DFO-REGN3504 
[89Zr]Zr-DFO-avelumab 
[89Zr]Zr-DFO-6E11 
[89Zr]Zr-DFO-ipilimumab  
[89Zr]Zr-DFO-REGN3767 
[64Cu]Cu-DOTA-AbOX40 
[89Zr]Zr-DFO-OX40 
[89Zr]Zr-DFO-anti-IFN-γ 

• Relatively easy for manufacture/obtain 
• High tumour uptake 
• High binding affinity 
• Prefer liver as metabolic organ 

2.5. Fluorine-18 Labelled Fluorodeoxyglucose ([18F]FDG) 
The [18F]FDG radiotracer is a glucose analogue that accumulates in cells with en-

hanced metabolic activity (Figure 2). It is routinely used in the clinic to determine tu-
mour stage and treatment efficacy, including response to ICIs. However, [18F]FDG does 
not only target cancer cells, but it can also be taken up by immune cells, making it diffi-
cult to distinguish between tumour-related uptake from those induced by immunother-
apy [92–94]. This led to the proposal of imaging interpretation criteria, which includes 
revision of the Lugano criteria and the Lymphoma Response to Immunomodulatory 
therapy Criteria (LYRIC) to avoid misdiagnosis [95]. Studies focusing on validating 
[18F]FDG PET/CT in early phases of immunotherapy reported high [18F]FDG uptake by 
the tumour with or without increase in tumour volume following administration of ICIs. 
This is likely to indicate activation of the immune system, since immunotherapy results 
in pseudoprogression. In addition, the enhanced infiltration of immune cells via ICI 
agents influences the tumour microenvironment and may promote the glycolysis of can-
cer cells, resulting in an increased uptake of [18F]FDG [96,97]. Thus, PET imaging with 
[18F]FDG, along with CT scans, may help to distinguish pseudoprogression from other 
responses. For instance, in a cohort of melanoma patients receiving ICI therapy, residual 
metabolic activity on [18F]FDG PET was found to be associated with residual tumour 
masses [98]. Dercle et al. demonstrated that a reduction in the avidity of 18F-FDG in the 
spleen and tumour of patients with relapsed or refractory Hodgkin lymphoma after 3 
months of initiating ICI therapy correlated with improved prognosis [99]. Nevertheless, 
the low specificity of [18F]FDG for immune cells makes it difficult to differentiate be-
tween subsets of infiltrating immune cells and tumour cells. 

 
Figure 2. Synthesis of [18F]FDG with nucleophilic fluorination followed by strong base deprotection. 

Targeting of cell-surface markers by PET tracers provides increased specificity for 
subsets of tumour-infiltrating cells and may allow early determination of treatment effi-
cacy. Consequently, many T cell specific PET probes targeting many different surface 
markers, such as CTLA-4, PD-1, CD3, and CD8, have been developed and are intensive-
ly studied (Figure 3 and Table 4). 

O

OAc

OAc

OAc
OAc

OTf
O

OAc

OAc

OAc OAc

18F

Kryptofix[K+]18F−
MeCN

O

OH

OH

OH OH

18F

NaOH

[18F]FD G

Figure 2. Synthesis of [18F]FDG with nucleophilic fluorination followed by strong base deprotection.

Targeting of cell-surface markers by PET tracers provides increased specificity for
subsets of tumour-infiltrating cells and may allow early determination of treatment efficacy.
Consequently, many T cell specific PET probes targeting many different surface markers,
such as CTLA-4, PD-1, CD3, and CD8, have been developed and are intensively studied
(Figure 3 and Table 4).
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3. PET Imaging of Immune Checkpoints

Different studies have evaluated the potential clinical value of PET imaging of im-
mune checkpoint targets in the assessment of T cell dynamics, cancer diagnosis, and patient
stratification prior to initiating immunotherapy. Intact monoclonal antibodies targeting
immune checkpoints have been used for PET imaging studies. One example is the radio-
labelling of nivolumab with zirconium-89 (89Zr), which showed the feasibility of such an
approach in mapping PD-1 expression in humanized murine models of lung cancer [100].
Initial clinical evaluation of [89Zr]Zr-DFO-nivolumab demonstrated its safety and ability to
quantify PD-1 expression in patients with non-small cell lung carcinoma (NSCLC) [101].
Nevertheless, larger clinical studies are required to further validate the clinical potential of
using [89Zr]Zr-DFO-nivolumab in predicting responses to anti-PD-1 immunotherapy.

Zirconium-89 (89Zr) is the most widely used radiometal for PET imaging of immune
response when mAb is the targeting motif. The long half-life of 78.4 h and the ease of
89Zr-DFO chemistry makes it very attractive for labelling antibodies and smaller antibody
fragments, such as minibodies [102]. Desferrioxamine B (DFO), as the name indicates, is
originally an iron chelator derived from bacteria. Zirconium coordination preference is
very similar to iron, thus, making DFO a suitable chelator for 89Zr. As an acyclic chelator,
DFO allows chelation to be achieved at room temperature (Figure 4). In contrast, elevated
temperature is required by many macrocyclic chelators to affect complexation [103]. To
achieve labelling, different variants of DFO were reported to be conjugated on antibodies.
The first and most commonly used method is to conjugate p-NCS-Bz-DFO via thiocyanate–
lysine conjugation under slightly basic condition (pH 9.0) [104]. This type of reaction
results in a stable thiourea bond linkage between the DFO and lysine side chain of the
antibody. However, due to availability of multiple lysines per antibody for conjugation,
the resulting DFO-antibody conjugates are mixtures of the distribution of the drug to
antibody ratio (DAR). Recently, Jung et al. have reported site-specific conjugated DFO via
the interchain disulphate bond of an anti-PDL-1 antibody. The resulting DFO conjugate
could achieve a DAR of 2, most likely due to conjugation to a pair of interchain disulphate

BioRender.com
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bridges. In addition, Christensen et al. have reported a glycan conjugated DFO antibody,
DFO-6E11, with an estimated DAR of 2 [105]. Post-conjugation, the DFO conjugated
antibody is incubated with 89Zr solution in HEPES buffer (pH 6.8–7.5) for 60 min to effect
radiolabelling [106], and the radiolabelled [89Zr]Zr-DFO-antibody is isolated using size
exclusion column chromatography at the end of reaction.
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Another biomarker, PD-L1, has also been extensively studied for immune response.
Indeed, PET imaging studies of PD-L1 with [89Zr]Zr-DFO-atezolizumab (FDA approved
anti-PD-L1 antibody) demonstrated a strong correlation between PD-L1 expression and
clinical outcome in NSCLC patients [107]. Another monoclonal anti-PD-L1 antibody,
[89Zr]Zr-DFO-durvalumab, demonstrated higher tumour uptake in patients with advanced
NSCLC who responded to durvalumab. However, uptake of [89Zr]Zr-DFO-durvalumab
did not correlate to tumour PD-L1 expression as determined by IHC [108]. This indicates
that PET imaging may provide a more comprehensive evaluation of biomarker expression
compared to IHC-assessment of biopsy samples. Nevertheless, IHC may be used in
combination with molecular imaging to detect PD-L1 expression in tumour cells and
various subsets of immune cells, which is a limitation of anti-PD-L1 PET tracers. Other PET
tracers that have been recently evaluated in clinical studies are [89Zr]Zr-DFO-REGN3504
and [89Zr]Zr-DFO-avelumab; however, clinical data are yet to be published [109,110].

It is worth noting that anti-PD-1 and PD-L1 PET tracers are based on full-length
monoclonal antibodies (mAb), which are associated with lower tumour penetration, lower
tumour-to-background ratios, and slow peripheral clearance kinetics, as opposed to small
molecule compounds. Consequently, nanobodies that bind to PD-L1 have been widely stud-
ied. Due to their fast peripheral clearance, PET imaging can take place as early as one hour
post-injection. In addition, nanobodies can be radiolabelled with short-lived radioisotopes,
thus, lowering the amount of radiation in patients. Bridoux et al. demonstrated the stability
and specificity of the [68Ga]Ga-NOTA-(hPD-L1) nanobody for PD-L1 imaging in vivo [111].
Another study demonstrated the potential of radiolabelling non-blocking PD-L1 nanobody,
[68Ga]Ga-NOTA-Nb109, in mapping PD-L1 expression in xenograft tumours [112,113].
Currently, [68Ga]Ga-THP-APN09 PET is under clinical evaluation in patients with lung
cancer, melanoma, and other solid tumour undergoing anti-PD-L1 therapy [114].
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The 68Ga radionuclide has a short 68 min half-life, and it is used for labelling of nanobod-
ies. Traditionally, 68Ga is complexed with 2,2′,2′ ′,2′ ′ ′-(1,4,7,10-Tetraazacyclododecane-1,4,7,10-
tetrayl)tetraacetic acid (DOTA) chelator. It has been used clinically with DOTA-TOC and
DOTA-TATE for imaging of SSTR2 overexpressing gastroenteropancreatic neuroendocrine
tumours (GEP-NETs) [115]. However, radiolabelling 68Ga with DOTA requires elevated
temperature of close to 100 ◦C, which would risk proteins being denatured [116]. In re-
cent years, the commercial availability of more suitable chelators, such as NOTA and
(Tris(hydroxypyridinone) (THP), allow 68Ga labelling to be performed under milder con-
ditions (37–60 ◦C). Typically, 68Ga labelling for immune response are almost exclusively
paired with these two chelators [113,117–119].

Additionally, [89Zr]Zr-DFO-ipilimumab is another mAb-based PET tracer that was
developed to image CTLA-4 expression. Preliminary data from an ongoing clinical study
in patients with metastatic melanoma receiving ipilimumab monotherapy reported the
feasibility of [89Zr]Zr-DFO-ipilimumab for visualizing and quantifying ipilimumab uptake
in tumours [120]. Pre-clinical studies demonstrated the potential of using [64Cu]Cu-DOTA-
ipilimumab in visualising CTLA-4 in NSCLC xenografts [121,122].

The 12.7 half-life of 64Cu makes it another attractive radionuclide for PET imaging.
The radiolabelling of 64Cu is commonly paired with a DOTA chelator and can be achieved
at 37 ◦C, and pH 5.5, for 60 min with antibodies [123,124]. There are reports that the
[64Cu]Cu–DOTA complex could lead to high liver, kidney, and spleen uptake. Replacing
DOTA with a NOTA-like chelator can lead to a more stable complex with 64Cu and can
circumvent this issue [125,126]. However, such chelators have still not been widely used in
the field of immune response monitoring. After chelation, scavengers, such as EDTA, can
be used to remove the excess 64Cu and the resultant [64Cu]Cu–DOTA-antibody could be
isolated via size exclusion chromatography.

To date, [89Zr]Zr-DFO-ipilimumab is the only PET tracer that is undergoing clinical
evaluation for imaging CTLA-4. However, LAG-3 has also been studied as a potential target
for PET imaging of immune checkpoints. Furthermore, [89Zr]Zr-DFO-REGN3767, a fully
human anti-LAG-3 mAb, was shown to detect LAG-3 expression in mouse tumours [127].
At present, the safety and diagnostic potential of [89Zr]Zr-DFO-REGN3767 is under eval-
uation in a clinical study in patients with diffuse large B cell lymphoma (DLBCL) [128].
Another inhibitory immune checkpoint molecule, TIGIT, is also an interesting target for
PET imaging. Additionally, [68Ga]Ga-NOTA-GP12, a peptide antagonist for TIGIT, was
demonstrated to be safe and able to image TIGIT expression in murine models and two
patients with advanced NSCLC [117]. Nevertheless, further clinical evaluation is necessary
to determine its potential value in predicting and monitoring response to ICIs.

4. PET Imaging of CD8+ and CD3+ T Cells

The suppressive immune TME of many tumours is characterised by exhausted T
cells or the absence of infiltrating lymphocytes. Therefore, the success of immunotherapy
depends not only on the expression of appropriate immunotherapy targets in a tumour,
but also on the cellular composition and a range of bio-active constituents present within
the TME. Due to the development of many CD8+ and CD3+ PET tracers, it is becoming
increasingly feasible to image effector T cells. Larimer et al. developed [89Zr]Zr-DFO-IgG
for imaging CD3+ T cells. Evaluation of this PET tracer in murine models demonstrated
high uptake by tumours in response to anti-CTLA-4 treatment, which correlated with
a subsequent reduction in tumour size [129]. In another study, [89Zr]Zr-DFO-anti-CD3,
imaged the distribution of homeostatic T cells, particularly TILs, in syngeneic mice bearing
bladder cancer [130]. Although CD3+ imaging may enable the assessment of all subsets
of T cells, PET imaging of CD8+ allows imaging of cytotoxic T cells, which play a key role
in the anti-tumour immune response. Various CD8+ PET tracers have been developed
and studied in vivo. Furthermore, [68Ga]Ga-NOTA-SNA006a, a nanobody-based tracer
targeting CD8, exhibited rapid and persistent uptake in tumour lesions, as well as in
CD8-rich tissues in humanised mouse xenografts [118]. The combination of a nanobody
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with a short-lived positron emitter 68Ga (t1/2 = 68 min) may minimize organ radiation
exposure and consequential side effects experienced by the patient. Nevertheless, there are
no data available on the potential effect of anti-CD8 nanobody binding on the activation
and function of effector T cells, which is important for clinical translation.

Additionally, [89Zr]Zr-DFO-IAB22M2C, a humanised minibody that is biologically
inert, is reported to detect CD8+ T cells without affecting T cell proliferation, activation, or
function in mouse models [131,132]. Furthermore, in a phase 1 clinical trial, [89Zr]Zr-DFO-
IAB22M2C was found to accumulate in lymphoid organs and tumour lesions, correlating
with infiltration of CD8+ T cells (Figures 5 and 6) [133]. However, the reported whole-body
clearance of [89Zr]Zr-DFO-IAB22M2C was similar to a full-size antibody. Consequently,
patient radiation exposure (per MBq injected activity) is expected to be significantly higher
than those of small molecules. This, in turn, may potentially limit the clinical application
of this imaging probe. Currently, the diagnostic and prognostic potential of [89Zr]Zr-
DFO-IAB22M2C in imaging CD8+ T cells in patients treated with immunotherapy is
being evaluated in multiple clinical trials; the probe remains one of the most important
commercial imaging tools in immuno-oncology [134].
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Figure 6. A whole-body image (maximum-intensity projection) in one patient at 24 h post injection of 
0.2 mg of [89Zr]Zr-DFO-IAB22M2C demonstrating intense signals in lymph nodes (A). Fusion image 
demonstrates the uptake of [89Zr]Zr-DFO-IAB22M2C in lesions in the deltoid (B) that also showed 
[18F]FDG uptake (C). (D) Haematoxylin- and eosin-stained section demonstrates melanoma tumour 
nodules on right within skeletal muscle. (E) Immunohistochemistry staining shows the presence of 
CD8+ T cells at the periphery and infiltrating tumour. Reproduced from Pandit-Taskar et al. [133]. 
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been developed to image markers that are upregulated on or released by activated cyto-
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IFN-γ. The PET probes developed for these markers are discussed in this review. 

5.1. OX40 
The OX40 marker is a member of TNF receptor superfamily, and its expression is 

restricted to antigen-specific activated T cells [135]. Alam et al. developed a [64Cu]Cu-
DOTA-AbOX40 that enables imaging of OX40 receptor to monitor activated T cell re-
sponses in a clinically relevant in situ cancer vaccine model [136]. Then, [89Zr]Zr-DFO-
OX40, which has a longer half-life than 64Cu, was developed by the same group to ob-
serve the longer kinetics of immune response to a vaccine in a murine glioblastoma 
model treated with CpG oligodeoxynucleotide [137]. The PET scans showed uptake of 
[89Zr]Zr-DFO-OX40 in tumour lesions, as well as distant lymph nodes, indicating that 
the immune response initiated by the vaccine can be analysed in the whole body. Alt-

Figure 6. A whole-body image (maximum-intensity projection) in one patient at 24 h post injection of
0.2 mg of [89Zr]Zr-DFO-IAB22M2C demonstrating intense signals in lymph nodes (A). Fusion image
demonstrates the uptake of [89Zr]Zr-DFO-IAB22M2C in lesions in the deltoid (B) that also showed
[18F]FDG uptake (C). (D) Haematoxylin- and eosin-stained section demonstrates melanoma tumour
nodules on right within skeletal muscle. (E) Immunohistochemistry staining shows the presence of
CD8+ T cells at the periphery and infiltrating tumour. Reproduced from Pandit-Taskar et al. [133].

5. PET Imaging of Immune Cell Activation

The PET probes targeting CD3+ and CD8+ T cells may capture the dynamics of T cells;
however, they do not provide information on the activation and functional state of T cells.
The suppressive TME of many malignancies is characterised by the absence of TILs or the
presence of exhausted of T cells, which induce immunotolerance. Therefore, characterising
the activation and function state of infiltrating immune cells may enable a more accurate
prediction of response to cancer immunotherapy. As a result, different PET probes have
been developed to image markers that are upregulated on or released by activated cytotoxic
immune cells. Such markers are OX40, the IL-2 receptor (IL-2R), granzyme B, and IFN-γ.
The PET probes developed for these markers are discussed in this review.

5.1. OX40

The OX40 marker is a member of TNF receptor superfamily, and its expression is
restricted to antigen-specific activated T cells [135]. Alam et al. developed a [64Cu]Cu-
DOTA-AbOX40 that enables imaging of OX40 receptor to monitor activated T cell responses
in a clinically relevant in situ cancer vaccine model [136]. Then, [89Zr]Zr-DFO-OX40,
which has a longer half-life than 64Cu, was developed by the same group to observe the
longer kinetics of immune response to a vaccine in a murine glioblastoma model treated
with CpG oligodeoxynucleotide [137]. The PET scans showed uptake of [89Zr]Zr-DFO-
OX40 in tumour lesions, as well as distant lymph nodes, indicating that the immune
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response initiated by the vaccine can be analysed in the whole body. Although these
studies demonstrate the feasibility of imaging OX40 to detect immune cell activation,
smaller constructs that are radiolabelled with short-lived isotopes may be more beneficial,
as they are associated with lower radiation exposure.

5.2. Interleukin-2 (IL-2) Receptor

IL-2 is a small glycoprotein (~15 kDa) that is predominantly released by T cells during
an immune response. Secreted IL-2 binds to IL-2R that is expressed by activated immune
cells, promoting their proliferation and differentiation. IL-2R is composed of IL-2Rα (CD25),
IL-2Rβ (CD122), and IL-2Rγ (CD132). IL-2Rα possess a low affinity for IL-2 (Kd~10−8 M)
and forms a high affinity trimeric αβγ complex (Kd~10−11M) in the presence of IL-2Rβ
and IL-2Rγ subunits. The expression of high affinity IL-2R is upregulated on immune cells
upon activation and it is also expressed on Tregs [138,139]. Therefore, high affinity IL-2R
represents a potential target for imaging immunosuppressive and immunostimulatory cells
in TME.

Different studies have demonstrated the clinical potential of using radiolabelled IL-2
probes for detecting activated immune cells in chronic autoimmune diseases via SPECT
imaging. Gialleonardo et al. have explored PET imaging of activated T cells using [18F]-
fluorobenzoyl-interleukin 2 ([18F]FB-IL-2) probe [140]. This probe uses N-succinimidyl-4-
[18F]fluorobenzoate ([18F]SFB) to affect radiolabelling of the recombinant IL-2 molecule,
because of the simplicity of conjugating it with the lysine side chain of a peptide/protein
(Figure 7A). Gialleonardo et al. have shown that using this method, recombinant IL-2
could be labelled with good yield (c.a. RCY = 10%) and purity [140]. In addition to
this, Allott et al., using click-chemistry, achieved labelling of IL-2 (Figure 7B) with E-2-(((4-
[18F]fluorobenzylidene)amino)oxy)-N-(4-(6-methyl-1,2,4,5-tetrazin-3-yl)benzyl)acetamide
([18F]FBoxTz). This method allows the whole IL-2 radiolabelling process to be fully auto-
mated under GMP compatible conditions with a similar yield to the [18F]SFB method [141,142].
Additionally, [18F]FB-IL-2 was shown to specifically distinguish between unstimulated and
stimulated PBMCs in various murine models [140,143,144]. Although [18F]FB-IL-2 was
found to be safe in patients with metastatic melanoma receiving ICI therapy, its tumour
uptake did not correlate with treatment outcome [145]. In addition, there was no correla-
tion between IL-2R expression and baseline uptake of [18F]FB-IL-2 in four tumour tissue
samples. This may be due to competitive binding with endogenous IL-2, as was suggested
by the authors of the study; nevertheless, further studies are required to confirm this.
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5.3. Granzyme B

One way to monitor the function of cytotoxic T cells in response to cancer immunother-
apy is by imaging granzyme B, which is a serine protease that is secreted by both cytotoxic
T cells and natural killer cells to induce cancer cell death.

The granzyme B PET agent, mNOTA-GZP, is a peptide-derived compound that was
first described in 2017 by Larimer et al. [146]. The peptide sequence was further developed
from a tetrapeptide substrate sequence IEPD described by Thornberry et al. in 1997 [147].
To enable this sequence for PET imaging, proline was replaced by phenylaniline in the
sequence (hence, IEFD) to make it an irreversible inhibitor. Then, a poly-glycine linker
and NOTA chelator were added to the sequence to enable radiolabelling. The resulting
probe has binding Ki of 47 nM. Additionally, 68Ga and [18F]AlF have both been used
for the labelling of mNOTA-GZP. Indeed, [18F]AlF is an interesting emerging method
for the radiolabelling immune molecules. As summarised by Archibald and Allot, its
simplicity and efficiency make it a very attractive labelling method [148]. This method has
the advantage of high Al–F bond energy, allowing fast complexation of [18F]AlF with a
suitable chelator, such as 2,2′,2′ ′-(1,4,7-triazacyclono-nane-1,4,7-triyl)triacetic acid (NOTA).
One example of this is the granzyme B imaging agent [18F]AlF-mNOTA-GZP developed by
Goggi et al., which was easily synthesized via heating up the fluoride aluminium chloride
with a chelator-modified tracer in a suitable buffer at 100 ◦C for 15 min [119]. One caveat is
that the elevated temperature will only permit small molecule or peptide-like compounds
to be directly labelled by this method. Pre-clinical data have shown that both [68Ga]Ga-
mNOTA-GZP and [18F]AlF-mNOTA-GZP exhibit high specificity for granzyme B [119,146].
Tumour accumulation correlated with granzyme B expression in syngeneic mice treated
with cancer immunotherapy.

Another PET tracer, [64Cu]Cu-DOTA-GRIP B, takes a very different approach for
imaging granzyme B [123]. Instead of inhibiting the enzyme, Zhao et al. joined a mem-
brane binding peptide and a masking peptide with the granzyme B cleavable sequence
of IEPDVSQV. The cleavable link has the same IEPD sequence reported by Thornberry
et al., which explains its high efficiency to cleavage. At its native state, the membrane
accumulation sequence is protected by the masking peptide and does not have any mem-
brane binding ability. Once the IEPDVSQV linker has been digested by granzyme B, the



Pharmaceutics 2022, 14, 2040 18 of 31

membrane binding peptide is activated and binds to any nearby cell membranes to affect
tracing of granzyme B. Radiolabelling is carried out at a slightly elevated temperature of
50 ◦C for 30 min in a pH 7.0 buffer. The long half-life of 64Cu enables imaging at a later
time point compared to 18F and 68Ga probes.

5.4. IFN-γ

Interferon gamma (IFN-γ) is a cytokine that is secreted by activated lymphocytes.
Furthermore, IFN-γ plays a critical role in the activation of various immune cells and in the
induction of anti-tumour immune response. Secreted IFN-γ promotes the polarization of
macrophages towards a more pro-inflammatory and tumouricidal phenotype. In addition,
IFN-γ results in the differentiation of T cells towards the Th1 subset, as well as the matura-
tion of naïve T cells to effector CD8+ T cells [149]. Although IFN-γ was initially shown to
inhibit B cell responses [150], its inhibitory effect is observed in pre-activated B cells and not
resting B cells. IFN-γ controls the production of immunoglobulin isotypes by B cells; it in-
creases the production of IgG2 and IgG3 by activated B cells while inhibiting the production
of IgG, IgM, and IgE [151,152]. Furthermore, IFN-γ signalling leads to tumour cell death
through mechanisms, such as the upregulation of HLA/MHC complex and Fas/FASL path-
way, thus, making IFN-γ an attractive target for PET imaging of effector lymphocytes [153].
[89Zr]Zr-DFO-anti-IFN-γ mAb PET probe was found to detect increased levels of IFN-γ
in tumour-bearing BALB/c mice receiving HER2/neu DNA vaccination [154]. In a model
of induced T cell exhaustion, [89Zr]Zr-DFO-anti-IFN-γ uptake was found to be similar to
isotype control, demonstrating a lack of anti-tumour T cell activity. Due to the limitations
of mAb as imaging probes, the same group studied the pharmacokinetics and specificity
of four 89Zr-labelled anti-IFN-γ diabodies. Only one radiolabelled diabody demonstrated
promising in vitro and in vivo properties [155]. Nevertheless, further studies are necessary
to achieve optimal imaging performance.

5.5. PET Imaging of Metabolic Targets Associated with Activated Immune Cells

Imaging of metabolic pathways that are associated with the activation of immune cells
is an alternative potential method that could be used to determine therapeutic outcomes.
Thymidine kinase 1 (TK1), deoxycytidine kinase (dCK), and deoxyguanosine kinase (dGK)
have been studied as potential targets for PET imaging of immune cell activation [156,157].
Arabinofuranosylguanine (AraG), a substrate of mitochondrial dGK, is upregulated in
activated T cells. The [18F]F-AraG probe, developed by Namavari et al. for imaging T cell
activation and proliferation in cancer, employs comparable radiochemistry to the synthesis
of [18F]FDG [158] (Figure 8). It utilizes a nucleophilic fluorination followed by the cleavage
of the protecting group.
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followed by acid deprotection.

The specificity of [18F]F-AraG for activated T cells and its feasibility in predicting
responses to anti-PD-1 therapy was observed in murine tumour models. A biodistribution
study of [18F]F-AraG in six healthy volunteers demonstrated its safety [159]. Currently,
[18F]F-AraG is being evaluated in patients with advanced NSCLC [160,161].
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Table 4. Overview of PET probes under evaluation for imaging treatment-induced immune response.

Target Name Format Radioisotope Active Clinical Trial Trial
Number Highlights

PD-1

[89Zr]Zr-DFO-
nivolumab

mAb 89Zr

Phase 1
NSCLC EudraCT: 2015-004760-11 • Safe

• Uptake correlated with PD-1 expression

Phase 2
Melanoma NCT05289193 • Recruiting

[89Zr]Zr-DFO-
pembrolizumab

mAb 89Zr
Phase 2
NSCLC NCT03065764

• Safe
• Tumour uptake was higher in patients that exhibited

response to pembrolizumab treatment (not
statistically significant)

• Tumour uptake did not correlate with PD-1
expression determined by IHC [162].

PD-L1

[89Zr]Zr-DFO-
durvalumab

mAb 89Zr
Phase 2
HNSCC NCT03829007

• Safe and feasible
• Tracer did not predict treatment-induced immune

response
• Tracer uptake did not correlate to PD-L1 expression

[163].

Phase 2
NSCLC NCT03853187 • Recruiting

[89Zr]Zr-DFO-
REGN3504

mAb 89Zr

Phase 1
Patients with advanced
PD-L1 positive
malignancies

NCT03746704 • No published clinical data

[89Zr]Zr-DFO-avelumab mAb 89Zr
Phase 1
NSCLC NCT03514719 • No published clinical data

[68Ga]Ga-NOTA-(hPD-
L1)

nanobody 68Ga Pre-clinical -

• Site-specifically radiolabelled
• High tumour uptake in PD-L1 expressing tumours
• Imaging is possible as early as 1-h post-injection

[111].
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Table 4. Cont.

Target Name Format Radioisotope Active Clinical Trial Trial
Number Highlights

[68Ga]Ga-NOTA-Nb109 nanobody 68Ga Pre-clinical -

• Non-blocking PET tracer
• Specifically binds to PD-L1 in various tumours
• High tumour uptake is observed at 10 min

post-injection due to its small size [112,113].

[89Zr]Zr-DFO-6E11 mAb 89Zr Pre-clinical -

• Site-specific conjugation of DFO with glycan
conjugation chemistry

• Detected PD-L1 expression in murine tumour
models [105].

[68Ga]Ga-THP-APN09
PET

nanobody 68Ga
Phase 1
Lung cancer, melanoma,
and other solid tumours

NCT05156515 • No published clinical data

CTLA-4 [89Zr]Zr-DFO-
ipilimumab

mAb 89Zr
Phase 2
Metastatic melanoma NCT03313323 • Recruiting

LAG-3 [89Zr]Zr-DFO-
REGN3767

mAb 89Zr
Phase 1
Relapsed/Refractory
DLBCL

NCT04566978 • Recruiting

TIGIT [68Ga]Ga-NOTA-GP12
Peptide
antagonist

68Ga

Pre-clinical
-

• Possess high specificity and affinity for TIGIT
• Demonstrated high tumour uptake xenograft models

[117].

Tested in two patients
with advanced NSCLC

• No adverse effects were observed
• Moderate accumulation in tumour was observed
• Rapid clearance from circulation

CD3 [89Zr]Zr-DFO-anti-CD3 mAb 89Zr Pre-clinical -
• High tumour uptake correlated with response to

CTLA-4 immunotherapy in xenograft mouse model
[129].
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Table 4. Cont.

Target Name Format Radioisotope Active Clinical Trial Trial
Number Highlights

CD4

[64Cu]Cu-NOTA-IAB41 Minibody 64Cu Pre-clinical -

• Specifically detects human CD4+ T cells without
impacting their abundance, proliferation, and
activation

• Can visualize various peripheral tissues in addition
to orthotopically implanted GBM tumours [164].

[89Zr]Zr-malDFO-GK1.5
cDb

Cys-
Diabody

89Zr Pre-clinical -

• Low-dose GK1.5 cDb yields high-contrast
immune-PET images with minimal effects on T cell
biology in vitro and in vivo and may be a useful tool
for investigating CD4+ T cells in the context of
preclinical disease models [165].

89Zr-labelled anti-CD4
scFv

ScFv 89Zr Pre-clinical - • Can monitor the in vivo distribution of CD4+ T cells
by immuno-PET [166].

CD8

[89Zr]Zr-DFO-
IAB22M2C

Minibody 89Zr

Phase 1
Melanoma, lung, and
hepatocellular carcinoma

NCT03107663

• No side effects were observed
• High uptake was observed in spleen followed by

bone marrow (CD8+ T-cell rich tissues)
• Uptake in tumour was detected at 2 h post-injection

(most positive lesions were detectable by 24 h) [133].

Phase 2
Advanced and
metastatic solid
malignancies

NCT03802123 • Active (no published clinical data)

[68Ga]Ga-NODAGA-
SNA006a

Nanobody 68Ga
Phase 1

• No adverse events
• Highest uptake was observed in spleen
• Uptake correlated with CD8 expression as confirmed

by IHC [118].

Phase 2 • Recruiting
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Table 4. Cont.

Target Name Format Radioisotope Active Clinical Trial Trial
Number Highlights

OX40
[64Cu]Cu-DOTA-
AbOX40

mAb 64Cu
Pre-clinical - • Both PET probes were demonstrated to detect

treatment-induced immune response in murine
models [136,137].[89Zr]Zr-DFO-OX40 mAb 89Zr

IL-2R
[18F]FB-IL2 Small

protein
(cytokine)

18F
Phase 1 NCT02922283

• Safe and feasible
• Did not detect treatment-related immune response

[145].

[18F]FBox-TTCO-IL2 Pre-clinical - • No in vivo data published [141].

Granzyme
B

[18F]AlF-mNOTA-GZP Peptide 18F Pre-clinical

-

• Tumour uptake correlated with immune response in
syngeneic tumour models

• Data demonstrated that pre-existing phenotypic
abnormalities impact tracer uptake [119,146,147].[68Ga]Ga-mNOTA-GZP Peptide 68Ga Pre-clinical

[64Cu]Cu-DOTA-GRIP B Peptide 64Cu Pre-clinical • Tumour uptake correlated with tumoural granzyme
B expression in syngeneic mouse model [123].

IFN-γ

[89Zr]Zr-DFO-anti-IFN-
γ

mAb 89Zr Pre-clinical -
• Tracer demonstrated specificity for IFN-γ
• Detects active anti-tumour immunity in situ in

syngeneic murine models [154].

[89Zr]Zr-DFO-NCS-anti-
IFN-γ
HL-11

Diabody 89Zr Pre-clinical -

• Promising physiochemical properties were
determined

• High tumour uptake was observed in syngeneic
mouse model [155].
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Target Name Format Radioisotope Active Clinical Trial Trial
Number Highlights

AraG [18F]F-AraG

Small
molecule
(Nucleoside
analog)

18F

Early phase 1
In healthy volunteers and
patients with advanced
NSCLC

NCT04678440
• Recruiting

Phase 1
cancer patients undergoing
immunotherapy and/or
radiation therapy

NCT03142204
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6. Conclusions

PET imaging of cytotoxic T cells is a powerful non-invasive method for characterising
immune responses to cancer immunotherapies and, consequently, to aid clinical decision-
making for cancer treatment. Despite the growing success of many immunotherapeutic
agents, they still face challenges. Therefore, the identification of novel predictive biomark-
ers and the characterisation of the TME may improve patient selection and treatment
evaluation. In this review, we discussed the most recent developments in PET imaging of
immune response. The high sensitivity of PET in combination with T cell-specific probes
enables quantification of cytotoxic T cell dynamics. Although PET tracers for CD8+ and
CD3+ capture T cell dynamics, they do not provide information on the functional state
of cytotoxic T cells. Therefore, tracers targeting IL-2R, granzyme B, OX40, IFN-γ, and
AraG may provide more comprehensive information on treatment responses. However,
some PET imaging approaches have been associated with unclear results as seen for IL-2R,
consequently hindering the clinical application of these tracers. Nevertheless, multiple
PET tracers targeting activation/exhaustion markers are being developed and evaluated in
clinical studies.
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