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Background and Objective: Radiotherapy (RT) is one of the fundamental anti-cancer regimens by 
means of inducing in situ tumor vaccination and driving a systemic anti-tumor immune response. It can affect 
the tumor microenvironment (TME) components consisting of blood vessels, immunocytes, fibroblasts, and 
extracellular matrix (ECM), and might subsequently suppress anti-tumor immunity through expression of 
molecules such as programmed death ligand-1 (PD-L1). Immune checkpoint inhibitors (ICIs), especially 
anti-programmed cell death 1 (PD-1)/PD-L1 therapies, have been regarded as effective in the reinvigoration 
of the immune system and another major cancer treatment. Experimentally, combination of RT and ICIs 
therapy shows a greater synergistic effect than either therapy alone.
Methods: We performed a narrative review of the literature in the PubMed database. The research string 
comprised various combinations of “radiotherapy”, “programmed death-ligand 1”, “microenvironment”, 
“exosome”, “myeloid cell”, “tumor cell”, “tumor immunity”. The database was searched independently by 
two authors. A third reviewer mediated any discordance of the results of the two screeners.
Key Content and Findings: RT upregulates PD-L1 expression in tumor cells, tumor-derived exosomes 
(TEXs), myeloid-derived suppressor cells (MDSCs), and macrophages. The signaling pathways correlated 
to PD-L1 expression in tumor cells include the DNA damage signaling pathway, epidermal growth factor 
receptor (EGFR) pathway, interferon gamma (IFN-γ) pathway, cGAS-STING pathway, and JAK/STATs 
pathway.
Conclusions: PD-L1 upregulation post-RT is found not only in tumor cells but also in the TME and 
is one of the mechanisms of tumor evasion. Therefore, further studies are necessary to fully comprehend 
this biological process. Meanwhile, combination of therapies has been shown to be effective, and novel 
approaches are to be developed as adjuvant to RT and ICIs therapy.
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Introduction

As  onco logy  t r ea tment  en te red  the  new  e ra  o f 
immunotherapy, it presented a concept shift by overcoming 
immunosuppression induced by tumor cells so that the 
immune system was allowed to target and kill tumor cells. 
Immune checkpoint blockade is an inbuilt mechanism to 
prevent activated T cell damage to normal surrounding 
tissues and is achieved by co-inhibitory receptors. However, 
this mechanism is exploited by tumor cells, which express 
such receptors [i.e., programmed death ligand-1 (PD-L1)], 
inhibit T-cell activation, and induce apoptosis. Immune 
checkpoint inhibitors (ICIs) are developed to block immune 
checkpoints and result in T-cell reinvigoration, in a process 
also known as immunotherapy. 

Acting as a traditional tumor therapy, radiotherapy 
(RT) is applied for over 60% of newly diagnosed patients 
(1,2). Researchers have accepted the concept that RT 
could not only control lesions in situ but also trigger 
a systemic immune response called immunogenic cell 
death (ICD) (3). Growing evidence in research on the 
immune regulatory function of RT mainly contained its 
influence on the release of pro-inflammatory mediators and 
immune cells (4). Through this mechanism, RT enhances 
tumor immunogenicity both inside and outside of the 
irradiation field (5). After triggering ICD, multiple damage-
associated molecular patterns (DAMPs) were released (6)  
and recognized by dendritic cells (DCs) (7). DCs can 
further present these antigens to cytotoxic T cells (8) 
and also activate natural killer (NK) cells thus inducing  
in situ immune modulations (9-11). The cell death that 
can activate downstream immune responses and stimulate 
immune surveillance is characterized as immunogenic 
and this leads to the “in situ” vaccination effect (12,13). 
Increasing evidence indicates the immunomodulatory 
effects of RT in systemic antitumor responses (14-16).  
Strikingly, a phenomenon observed in clinical case 
reports, termed the radiation-dependent abscopal effect, 
signifies tumor regression outside the irradiated fields 
(17,18). Unfortunately, even if the abscopal effect is 
so well-known, its rarity of occurrence rate indicates 
that there is seemingly no broad application value (19).  
The underlying mechanisms of why abscopal effects 
happen rarely remain unknown, and it should be correlated 
with the immunosuppression responses that occur after 
irradiation (20).

The radiation-induced regulation of the immune 
microenvironment is a double-edged sword that renders the 

body immune in a very delicate balance between immune 
activation and immunosuppression (4). In addition to the 
activation of the innate and adaptive immune systems, 
RT can also induce immunosuppression responses such as 
the polarization of macrophages with the M2 phenotype 
(21,22), neutrophils with the N2 phenotype (23-26), and 
accumulation of myeloid-derived suppressor cells (MDSCs) 
(27,28). These cells generally induce immunosuppressive 
effects via PD-L1 expression and other mechanisms.

PD-L1 is known as a major co-inhibitory checkpoint 
signaling protein that controls the activation of T cells. Under 
normal circumstances, the programmed cell death 1 (PD-1)/
PD-L1 pathway constrains the hyperactivation of immune 
cells and inhibits autoimmune diseases (29). However, in tumor 
microenvironment (TME), tumor cells hijack this axis and 
induce immune escape (30). The overexpression of PD-L1 on 
tumor cells binds to PD-1 on tumor-infiltrating lymphocytes 
and counteracts the TCR-signaling cascade (31,32). Through 
the binding of PD-1 and PD-L1, signaling transmits negative 
signals to T cells which leads to T cell apoptosis and reduction 
of proliferation which effectively reduces immune responses 
and improves tumor growth. Therefore, the activation of T 
cells is impaired. Multiple types of human cancer including 
non-small cell lung cancer (NSCLC) (33,34), melanoma (35), 
renal cell carcinoma (36), prostate cancer (37), and gastric 
cancer have been verified to highly express PD-L1 (38). 
In addition to cancer cells, available data suggest that host  
cells (39) in the TME and lymph nodes also express PD-L1. 
These infiltrating cells consist of dendritic cells, macrophages, 
neutrophils, fibroblasts, and MDSCs and contribute to 
protumor activities. Moreover, recent studies that focused on 
extracellular vesicles (EVs) have shown that exosomal PD-L1 
possesses the same biological function as cellular PD-L1 and 
could be the key to systemic immunosuppression (40,41).

Irradiation leads to an immune re-modulation in 
the TME by influencing almost all steps of the cancer  
immunity cycle. To be specific, it can increase the 
expression of PD-L1 on both cancer-associated cells 
and tumor cells and the level of PD-L1 in EVs. In this 
article, we detailly review the upregulation of PD-L1 on 
various types of cells under the delivery of RT. From the 
perspective of clinical applications in oncologic treatment, a 
better understanding of biomarker expression between pre- 
and post-RT provides new insight into the establishment of 
an optimal combination strategy. We present the following 
article in accordance with the Narrative Review reporting 
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-22-6049/rc).

https://atm.amegroups.com/article/view/10.21037/atm-22-6049/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-6049/rc
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Methods

We performed a narrative review of the literature in the 
PubMed database. The search terms utilized comprised 
various combinations of “radiotherapy”, “programmed 
death-ligand 1”, “microenvironment”, “exosome”, “myeloid 
cell”, “tumor cell”, and “tumor immunity”. Two authors 
searched the database independently, and a third reviewer 
mediated any disagreements to reach a consensus. To be 
included, papers had to be focused on the radiation-induced 
upregulation of PD-L1 and its impact on tumor immunity. 
All English-language papers published at any time were 
eligible. Peer-reviewed, published literature, and reviews 
were considered eligible for inclusion. Meta-analyses, 
systematic reviews, clinical research, and abstracts were 
excluded. Reference lists of included papers were hand-
searched and included if the inclusion criteria were met. 
The search strategy is summarized in Table 1.

RT increases tumor cell PD-L1 expression

After radiation damages tumor cells and induces direct 
breakage of DNA, a series of biological events induced 
by DNA damage will occur in tumor cells which plays an 
important role in immunomodulatory responses (42-45). On 

the one hand, the dying tumor cells release damage-associated 
molecular patterns to interact with cells in TME (46).  
On the other hand, DNA damage causes changes in 
the immunogenicity of irradiated tumor cells (47). The 
upregulation of PD-L1 expression in tumor cells is one of 
the most representative responses among these changes. RT 
is a well-documented trigger of PD-L1 expression, and this 
occurs via 4 primary mechanisms: (I) DNA damage signaling 
pathway; (II) interferon gamma (IFN-γ) signaling; (III) the 
cGAS-STING pathway; and (IV) the epidermal growth 
factor receptor (EGFR) pathway. Of note, all 4 of these 
mechanisms are involved in the JAK-STAT pathway and 
form the truth of PD-L1 expression in tumor cells after RT.

DNA damage signaling pathway

RT targets solid tumors and directly induces DNA double-
strand breaks (DSBs) which is the most critical type of 
DNA damage. Sato et al. discovered that the expression of 
PD-L1 upregulates in response to DSBs in living cancer 
cell lines including osteosarcoma, lung cancer, and prostate  
cancer (48). Following DSBs is DNA damage repair 
(DDR). Three central DDR kinases including DNA-
dependent protein kinase catalytic subunit (DNA-PKcs), 
ataxia telangiectasia-mutated (ATM), ataxia telangiectasia 

Table 1 The search strategy summary

Items Specification

Date of search 22/10/2022

Databases and other sources searched PubMed

Terms for search “Radiotherapy”, “programmed death-ligand 1”, “tumor cell”, “microenvironment”, “exosome”, 
“myeloid cell”, “tumor immunity”

Timeframe From 1998 to June 2022

Inclusion and exclusion criteria

Inclusion criteria Focus on the mechanism and signaling pathways correlated to PD-L1 expression after 
irradiation, including cell line and animal studies

Peer-reviewed, published literature, including review papers

English-language papers

Exclusion criteria Meta-analysis, systematic review, and clinical research 

Abstracts, editorials, and letters to the editors 

Studies involving human

Non-English-language papers

Selection process Two authors searched the database independently, and a third reviewer mediated the 
disagreements and came to a consensus
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Figure 1 The DNA damage caused by RT activates the downstream ATM/ATK/Chk1 signaling pathway and is correlated with STAT3 to 
produce IRF3, which promotes PD-L1 expression. Created with Biorender.com. The figure is made in © Biorender – biorender.com (https://
app.biorender.com/) and exported under a paid subscription. PD-L1, programmed death ligand-1; DSB, double-strand break; JAK, Janus 
kinase; STAT, signal transducer and activator of transcription; ATM, ataxia telangiectasia-mutated; RT, radiotherapy.

and Rad3-related protein (ATR), and the phosphoinositol-
3-kinase-related kinases are activated to arrest the cell 
cycle and trigger apoptosis. Among them, ATM is the most 
important signal transducer to serve as a sensor of DSBs (49).  
Following ATM, the transient activation switches to 
ATR, followed by Chk1 activation. This ATM/ATR/Chk 
1-dependent manner not only constitutes the DSBs signal 
axis but also regulates PD-L1 expression after DSBs caused 
by RT. A recent report further demonstrated that there 
was a correlation between ATM/Chk signaling and JAKs-
STATs-IRF1 pathway phosphorylation since the depletion 
of ATM or Chk1 significantly reduced interferon regulatory 
factor 1 (IRF1) expression after RT. Moreover, the depletion 
of IRF1 deregulated the PD-L1 expression. Therefore, PD-
L1 upregulation after DSBs is correlated with the IRF1 
pathway (48). Cheon et al. indicated that IFN-related DNA 
damage resistance signature (IRDS) expression, which is 
upregulated following DNA damage, is also correlated with 
PD-L1 expression (50). To be specific, the IRDS expression 
is induced by the cGAS-STING pathway, leading to cancer 
production of IFN-β that may be responsible for IFN-I 
responses and IRDS expression (51-53) (Figure 1).

IFN-γ signaling 

Multiple proinflammatory molecules induce the expression 
of PD-L1, such as GM-CSF, tumor necrosis factor alpha 
(TNF-α), lipopolysaccharide (LPS), I and II IFN-γ, and 
vascular endothelial growth factor (VEGF). Granulocyte-
macrophage colony-stimulating factor (GM-CSF) and 

VEGF are produced by various cancer stromal cells (54-56).  
IFN-γ and TNF-α are produced by activated type I T cells. 
Recent studies have revealed that IFN is one of the most 
critical factors. This is because type I IFN (α and β) and 
type II IFN (γ) cause PD-L1 upregulation in all cells and 
it is believed that IFN-γ is the strongest inducer among 
all 3 IFNs (57). IFN-γ binds to its receptor and stimulates 
downstream JAKs-STATs-IRF1 signaling, thus inducing 
PD-L1 expression (58,59). Evidence has concluded the role 
of STAT1, STAT3, and the downstream transcription factor 
interferon regulatory factor 1 (IRF1) gene in upregulating 
PD-L1 upon IFN-γ exposure (60,61). Garcia-Diaz et al. 
demonstrated the PD-L1 promoter pathway as the IFN-
γ-JAK1/JAK2-STAT1/STAT2/STAT3-IRF1 axis (58). 
Moreover, the IFN-γ-mediated PD-L1 expression is 
dependent on mTOR.

Apart from DNA breakage, RT damages cancer cells 
through the generation of reactive oxygen species (ROS). 
ROS can provoke inflammation responses in situ and play 
an important role in cell signaling (62). In this way, RT 
induces secretion of inflammatory mediators including 
NF-κB and SMAD2/3, cytokines including IL-1, 2, 6, 8, 
and 33, TNF-α, β, and IFN-γ (63-65). There is a strong 
relationship between the dose of RT and the duration of 
inflammatory responses (66). In this situation, RT increases 
the PD-L1 expression by upregulating IFN-γ (Figure 2).

cGAS-STING pathway

The cyclic GMP-AMP synthase-stimulator of interferon 
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Figure 2 RT stimulates the escalation of IFN-γ that binds with IFNR and further activates the JAKs/STATs pathway to produce IRF1, 
which promotes PD-L1 expression. Created with Biorender.com. The figure is made in © Biorender – biorender.com (https://app.
biorender.com/) and exported under a paid subscription. IFN, interferon; PD-L1, programmed death ligand-1; JAK, Janus kinase; STAT, 
signal transducer and activator of transcription; IRF, interferon regulatory factor; RT, radiotherapy; IFNR, interferon receptor.

genes (cGAS-STING) pathway is an important cytosolic 
DNA sensing pathway and is affected by RT (67,68). It acts 
as a double-edged sword in cancer immunity modulation 
following RT. 

On the one hand, the cGAS-STING pathway can 
trigger innate immune responses and participate in 
multiple links of adaptive immune responses (69,70). 
There is a well-established phenomenon that RT could 
induce DSB and thus produce micronuclei in cancer 
cells. cGAS build up a bridge between DDR and STING 
by surveillance of these micronuclei. The downstream 
signaling molecular system contains IRF3 and canonical 
nuclear factor-κB (NF-κB) cooperatively turn on the 
transcription of type I IFN production signaling and 
trigger innate immune responses (71). 

On the other hand, this pathway still has negative effects 
such as facilitating immunosuppressive cell infiltration 
and upregulating immune checkpoint expression (72,73). 
After DNA damage caused by RT, STING-induced TBK1 
upregulation facilitates the non-canonical NF-κB p52/RelB 
activation (74,75). The RelB can bind to the IFNB gene 
promoter and inhibit the production of type I IFN. Besides, 
the activation of the cGAS-STING pathway induced by RT 

triggers the phosphorylated IRF3 to enter the nucleus and 
interacts with IRF1. With the augments of IRF1 activation, 
PD-L1 transcription increased (76). This upregulation of 
PD-L1 post-RT is confirmed blocked after the knockdown 
of cGAS, STING, and IRF3 (Figure 3).

EGFR pathway

EGFR is one of the ERBB family receptor tyrosine 
kinases, its major downstream pathways contain RAS/RAF/
MAPK, PI3K/AKT/mTOR, and IL-6/JAK/STAT3/5 
which regulate cell proliferation, survival, migration, and 
differentiation. The Atlantic trial reported that patients 
with EGFR+/ALK+ NSCLC had higher PD-L1 expression 
in tumor cells (77-79). Some studies have demonstrated that 
if the activity of EGFR is inhibited by EGFR-TKIs, the 
PD-L1 expression in NSCLC with mutant EGFR would 
be decreased (80,81). Evidence has also proven that the 
activation of the EGFR pathway could trigger the immune 
response in murine melanoma models (82). The findings 
of several studies reported that EGFR regulates PD-L1 
expression through the MAPK/Hippo Kinase/yes-associated 
protein (YAP) signaling pathway in human NSCLC  
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Figure 3 cGAS is activated by JAK/STATs and binds with DNA damage. STING-induced TBK1 upregulation facilitates the NF-κB 
activation and promotes PD-L1 expression. Created with Biorender.com. The figure is made in © Biorender – biorender.com (https://app.
biorender.com/) and exported under a paid subscription. EGFR, epidermal growth factor receptor; PD-L1, programmed death ligand-1; 
JAK, Janus kinase; STAT, signal transducer and activator of transcription; RAS, rat sarcoma; RAF, rapidly accelerated fibrosarcoma; 
MEK, mitogen-activated protein kinase; ERK, extracellular signal-regulated kinase; AKT, protein kinase B; mTOR, mammalian target of 
rapamycin; IRF1, interferon regulatory factor 1; cGAS, cyclic GMP-AMP synthase; NF-κB, nuclear factor kappa-B.

(83-87). The AKT/mTOR pathway has also been validated 
as responsible for EGFR-mediated PD-L1 expression (88). 
In addition to these 2 pathways, the AKT/STAT3 pathway 
might also play a role in the regulation of PD-L1 expression 
on NSCLC cell lines (89-91). Even though the underlying 
mechanism is still unclear, there is a strong correlation 
between the EGFR pathway and PD-L1 expression at the 
molecular level.

When it comes to discussing the influence that RT 
made on the EGFR signaling pathway, the RT-induced 
DSB is of central importance. According to the preceding 
paragraph, DSB can facilitate the assembly of the DNA-PK 
complex. Hence, these kinases further facilitate the non-
homologous end-joining (NHEJ) process to repair DNA 
breakage (92). However, irradiated cells show a reduction 
of the nuclear activity of the DNA-PK complex which 
is important in NHEJ. To escape cell death, cancer cells 
enhance the activation of EGFR and further stimulate the 
AKT to mediate DNA-PKcs phosphorylation (93-95).  
It can be concluded that radiation directly activates EGFR 
which in turn facilitates the PI3K-AKT cascade and 
mediates anti-apoptosis responses by inducing DNA-PK 

activation and helping the DDR (96-98) (Figure 4).

JAK/STAT pathway

The Janus kinase/signal transducer and activator of 
transcription (JAK/STAT) signaling pathway is a cytokine-
stimulated signal transduction pathway and directly 
regulates the communication from transmembrane 
receptors to the nucleus (99-101). The JAKs-STATs-IRF1 
pathway was shown to regulate PD-L1 expression after 
treatment (58). The JAK/STAT pathway can be activated by 
DSBs and ROS accumulation induced by RT (102,103), in 
fact, all the mechanisms above are correlated with the JAK/
STAT pathway. Khashab et al. found that JAK inhibition 
can prevent DNA damage and apoptosis by modulation 
of the ATM/ATR/Chk pathway in the testicular ischemia-
reperfusion injury model (104). This phenomenon indicates 
the fact that the JAK/STAT pathway is a part of DNA 
damage-induced downstream signaling, and that JAK/STAT 
is the main signaling pathway that mediates IFN-induced 
gene expression and results in the activation of IFN-γ 
activation sites (GASs).
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Figure 4 EGFR activates any of RAS/RAF/MAPK, PI3K/AKT/mTOR, or JAK/STATs pathways and further upregulates PD-L1 expression. 
Created with Biorender.com. The figure is made in © Biorender – biorender.com (https://app.biorender.com/) and exported under a paid 
subscription. cGAS, cyclic GMP-AMP synthase; JAK, Janus kinase; STAT, signal transducer and activator of transcription; GTP, guanosine 
triphosphate; ATP, adenosine triphosphate; cGAMP, 2’3’-cyclic-guanosine monophosphate (GMP)-adenosine monophosphate (AMP); 
TBK1, tank-binding kinase 1; IRF, interferon regulatory factor; PD-L1, programmed death ligand-1; NF-κB, nuclear factor kappa-B; 
EGFR, epidermal growth factor receptor; RAS/RAF/MAPK, rat sarcoma/rapidly accelerated fibrosarcoma/mitogen-activated protein kinase 
signaling; PI3K/AKT/mTOR, phosphatidylinositol-3 kinase/protein kinase B/mammalian target of rapamycin signaling.

Increased PD-L1 on EVs derived from irradiated 
tumor cells induces tumor evasion

PD-L1 generally expresses on tumor membranes and binds 
with PD-1 on immunocytes (CD8+ T) to achieve a crucial 
part of tumor immune evasion. Meanwhile, multiple types 
of research have concluded that PD-L1 level in tumors 
increases both in vivo and in vitro post-RT (42,105,106), 
and the upregulation of PD-L1 induced by cGAS-STING 
pathway activation after radiation was revealed by Du 
et al. (76) Since the discovery of EVs, numerous studies 
have reported that PD-L1 is also found on tumor-derived 
EV(TEX) membranes, especially exosomal PD-L1,  
which contributes significantly to immunosuppression 
through CD8+T cell deactivation (41,107,108). Hence, 
exosomal PD-L1 is determined to be associated with tumor 
growth, progression, and metastasis (109). Another study 
revealed that total exosomal PD-L1 increases through 
either escalated exosome secretion or enhanced PD-L1  
synthesis via multiple pathways activation, including the 
previously mentioned cGAS-STING pathway (107). 
Several mechanisms involving exosome secretion have 
been conducted and verified; it is suggested that the MAPK 
and P53 pathways are responsible for increased secretion 

after exposure to radiation stimuli (110,111). EV PD-L1-
induced immune evasion has been verified in different types 
of tumors, such as NSCLC, prostate, breast, gastric, head, 
and neck cancer, among others (112). A study conducted 
by Timaner et al. (113) found that microparticles derived 
from irradiated breast cancer are associated with immune 
modulation and are responsible for cytotoxic T-cell 
inhibition; however, after blocking the PD-1/PD-L1 axis, 
T-cell inhibition is alleviated. This study also reveals that 
TEXs are mainly distributed in the spleen and liver instead 
of lymph nodes, which may be the potential mechanism 
of systemic immunomodulatory effects post-RT (114). 
Theodoraki et al. (115) demonstrated that tumor PD-L1 
level is positively correlated with exosomal PD-L1 level. 
Therefore, we come to assume that radiation stimulates 
PD-L1 expression in tumor cells, which further impacts 
on exosomal PD-L1, and eventually causes tumor evasion. 
Although it is reported that increased PD-L1 expression 
on tumor cells is a positive marker for immunotherapy 
administration (116), evidence shows that exosomal  
PD-L1 has the potential to counteract with anti-PD-1/ 
PD-L1 therapy due to competitive antagonizing with 
PD-1 on T-cells resulting in T-cell exhaustion and leading 
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to failure of ICI treatment (40,41,112). Poggio et al. (40) 
suggested that exosomal PD-L1 blockade rescues anti-tumor 
immunity and CD8+ T-cell reinvigoration. Furthermore, 
studies have discovered glioblastoma-derived exosomes 
impact on not only CD8+ T-cells, but induce macrophage 
phenotype skewing towards M2 as well as enhance PD-L1  
expression on monocytes, which results in local TME 
immunosuppression (117-119). This phenomenon was 
also reported in another study, which deduced that TEXs 
signal through TLR2 and induce macrophage NF-κB 
activation leading to PD-L1 upregulation and conversion 
to immunosuppressive phenotype (120). Hence, inhibiting 
exosome secretion could be a potential target for immuno-
RT adjuvant therapy.

RT stimulates PD-L1 expression in tumor-
infiltrating cells

MDSCs

MDSCs are a heterogeneous population of immature 
myeloid cells which are capable of inducing T-cell 
inactivation and dysfunction. MDSCs are divided mainly 
into two subsets: polymorphonuclear MDSCs (PMN-
MDSCs) and monocytic MDSCs (M-MDSCs), and 
several pieces of evidence indicate that M-MDSCs are 
principally responsible for its immunosuppression effect 
by PD-L1 expression (121). Thus, PD-L1 expression is 
found highly relative to tumor existence, inferring that 
TME might impact MDSCs (122). MDSCs alterations 
are also observed after RT, and PD-L1 expression on 
MDSCs in TME is detected elevated after single high-
dose radiation. Meanwhile, the combination of anti-PD-L1 
therapy and RT is shown to induce tumor regression in up-
regulated PD-L1 on MDSCs scenarios (25). The effects 
of ablative hypofractionated radiotherapy, however, are 
drawing conflicting results that PD-L1 on MDSCs either  
increased (123) or decreased (124). RT also affects the 
quantities of circulating and tumor-infiltrating MDSCs. 
Studies indicate that circulating MDSCs increase after 
chemo-RT in cervical cancer and human papilloma virus 
(HPV)-related oropharyngeal cancer patients, whereas a 
decrease was observed in hepatocellular carcinoma patients 
who underwent RT. Xu et al. (27) illustrated that the 
CSF1/CSFR signaling pathway is responsible for MDSCs 
recruitment upon irradiation by recruiting the DNA 
damage-induced kinase ABL1 which binds with CSF1 
gene promoter and eventually results in CSF1 escalation 

post-RT. In addition, other investigations suggest that the 
STING/type I interferon pathway (28) and NF-κB (125) 
also potentiate MDSCs recruiting. Interestingly, Chen 
et al. (126) reported that SBRT combined with sunitinib 
treatment alleviates immunosuppression by reducing 
MDSC and Treg infiltration. Similar studies also found 
that in TUBO (25) and MC38 (127) tumor animal models, 
concurrent anti-PD-L1 therapy and RT significantly 
decreased MDSC in TME and reinvigorated CD8+ T-cells. 
In conclusion, RT can have either immunosuppressive or 
anti-tumor properties, however, the properties are dose-
, scheduled regimen-, and tumor type-related. Hence, 
further investigations are needed to unveil MDSCs 
functions in tumor progression or remission and to instruct 
pharmaceutical and clinical practices.

Macrophages

Macrophages are critical components in the TME. Tumor-
associated macrophages (TAMs) are generally categorized 
into two types, M1 and M2. The M1 phenotype is generally 
considered tumor-killing and innate immunogenic, M2 on 
the other hand, is immunosuppressive due to PD-L1 and 
other checkpoint molecules expression on its membrane, 
and is associated with tumorigenesis, immune evasion, and 
T-cell inhibition (128,129). Several studies have confirmed 
macrophage recruitment after RT through various 
approaches, including the CCL2 and CSF1 pathways, 
oxygen deprivation and HIF upregulation, and CXCR-
4-signaling pathways (117,130,131). These recruited 
macrophages are mostly M2 phenotype and therefore, result 
in tumor progression and treatment failure (21). Genard  
et al. (22) reported that macrophage polarization induced 
by radiation is dose-related. Commonly, low-dose radiation 
promotes polarization towards M2 phenotype, whereas 
high-dose towards M1 phenotype in vitro. In another 
study, Meng et al. (132) concluded that a single large dose 
at 20 Gy or at 2 Gy in 10 fractions both leads to the M2 
phenotype macrophage conversion. Contrarily, Klug et al. 
proposed an opposite view regarding macrophages under 
low-dose radiation differentiates to iNOS+/M1 phenotype 
and orchestrates T-cell function (133). Thus, similar to 
TEXs, M2 TAMs-derived exosomes are found to promote 
cancer cell migration through the PI3K-AKT signaling 
pathway (134) and M2 TAMs-derived exosomal miR21 
is closely related to the mechanism of glioma immune  
escape (135). However, contradictory to most TEXs’ 
functions as mentioned above, a study revealed that 
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microparticles secreted by radiated tumors locate and 
convert M2 TAMs in the TME to M1 TAMs by JAK-
STAT and MAPK pathways activation (136). From the 
conflicting results, we can only conclude that the effect of 
macrophages in the TME is complex and still unclear due 
to various factors (e.g., cancer types and classifications, 
TME differences, radiation, etc.). Depleting M2 TAMs in 
the TME, of which the result has been verified, is still an 
effective approach to eliminate infiltrative macrophage-
relevant immunosuppression (129). However, other 
than macrophage-derived exosomes, cancer-associated 
fibroblasts-derived exosomes are also found to be 
immunosuppressive via the miR92/PD-L1 pathway in 
breast cancer (137).

Conclusions 

This article mainly summarized current research on 
PD-L1 in TME and tumor cells upon radiation and 
discussed its immunosuppression effects. Some published 
research suggests that PD-L1 level is widely upregulated 
after RT, not only on tumor cells, but macrophages, 
MDSCs, and derived exosomes. We summarized existing  
PD-L1 synthesis signaling pathways within tumor cells. It is 
noteworthy that the JAK/STAT pathway is considered the 
cardinal axis to trigger other signaling pathways involved in 
PD-L1 expression and to mediate other cancer-associated 
biological processes. RT is primarily responsible for DNA 
damage and ROS generation and subsequently activates 
JAK/STAT pathways.

Recognition of the immunomodulatory properties 
of RT provided inspiration to combine it with agents 
such as ICIs to induce synergistic anticancer function. 
Escalated tumoral PD-L1 has been confirmed with immune 
suppressive functions, such as CD8+ T cell inhibition, tumor 
progression, metastasis, and so on, and inhibits synthesis 
and release of cytokines, and diminishes abscopal effects. 
Although some patients with high PD-L1 expression are 
reported to exhibit better outcomes after anti-PD-1/PD-
L1 therapies (138,139), new evidence shows that tumor-
derived exosomal PD-L1 are positively related to RT and 
are capable of inducing resistance to ICI treatment (140). 
Hence, targeting the secretion of EVs might be a potential 
therapeutic method against the immunosuppression induced 
by exosomal PD-L1.

When it comes to the issue regarding T cell exhaustion 
in the TME, PD-L1 is currently considered the main 
cause of this phenomenon, however, other molecules 

are also found responsible. Cytotoxic T-cell-associated 
antigen 4 (CTLA-4), T-cell immunoglobulin mucin-3 
(TIM-3), lymphocyte activation gene 3 (Lag-3), T-cell 
immunoglobulin and ITIM domain (TIGIT) (141) are 
T-cell receptors that mediate T cell inactivation, and other 
substances such as IL-2 (142) and cholesterol (143) also 
contribute to T cell exhaustion. Study found that TIM-3  
upregulation and Treg infiltration mediate resistance to 
RT and PD-L1 blockade in head and neck squamous cell 
carcinoma. And significant enhanced T-cell cytotoxicity is 
achieved when treated with anti-TIM-3 concurrently with 
anti-PD-L1 and RT (144). Similarly, promoted responses 
and immunity are also observed in melanoma treated with 
RT, anti-CTLA-4, and anti-PD-L1 combination (145).

In addition to the diversity of immune checkpoint 
inhibitor selection, delivery technology and imaging 
improvements in recent decades have promoted the 
development of different radiotherapy methods. More 
than one modulation of RT was reported to improve 
immune regulation in TME. Including the delivery of using 
numerous fractions of relatively low doses, stereotactic 
ablative radiotherapy (SABR), and moreover, personalized 
ultrafractionated stereotactic adaptive radiotherapy 
(PULSAR). Low dose radiotherapy of murine tumors was 
reported to promote T cell infiltration and facilitate the 
efficacy of the combinatorial immunotherapy in an IFN-
dependent manner (146). And also, there was evidence 
to elucidate the safety and efficacy of the SABR-ICI 
combination (147). Recently reported PULSAR combined 
with PD-L1 achieved better tumor control than traditional 
daily fractions (148).

Despite the several mechanisms of tumor evasion 
induced by RT, they should not be the reason to deny the 
therapeutic effect of RT, let alone other therapies are proven 
more effective when combined with RT. Conventional 
photon RT may be more likely to induce tumor evasion, 
recent studies show that carbon-ion radiotherapy (CIRT) 
could trigger immune responses and sensitize tumors to 
PD-1 therapy (149,150). Even if certain tumors don’t 
respond well to RT, other treatment options can still be 
taken. Meanwhile, a thorough review conducted by Yap  
e t  a l .  ( 1 5 1 )  d e m o n s t r a t e d  t h a t  c o m b i n a t i o n  o f 
immunotherapy with chemotherapy and angiogenesis 
inhibitors or dual immune-checkpoint blockade benefits 
non-immunogenic tumors as well as bring up novel 
immunotherapy combination approaches.

In this article, we tried to elaborate PD-L1-related 
signaling pathways and their radiation-related expression 
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cell profiles, nevertheless certain mechanisms remained 
unveiled. Although some novel molecular studies on PD-L1  
have suggested other possible pathways, they are not 
mentioned in this article because insufficient concrete 
evidence on the mechanisms has been demonstrated. The 
functions exosomal PD-L1 induces are mostly experimental 
conclusions and theories as well, further verifications 
remain needed. As for the effects of tumor-infiltrating cells, 
such as TAMs and MDSCs, conflicting results of their 
functions post-RT are reported possibly due to various 
factors (e.g., dose and fractionation of RT, tumor state, and 
type). Hence, more studies on the biological behavior of 
these cells are needed for greater understanding, in order 
to treat against or induce these cells’ transitions into anti-
tumor phenotypes.

Generally, the effect of RT alone has been diminished 
as more cases of tumor evasion, metastasis, and resistance 
to therapies are observed and reported. A combination 
of multiple therapies is shown to be more effective and 
prolongs patients’ overall survival significantly. Meanwhile, 
as the study of the cancer-immunity cycle extends to 
molecular aspects, new strategies could be developed to 
amplify the efficacy of RT. 
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