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Abstract: The aim of the research was to design an advanced analytical tool for the precise charac-
terization of microbial aggregates from biofilms formed on food-processing surfaces. The approach
combined imaging flow cytometry with a machine learning-based interpretation protocol. Biofilm
samples were collected from three diagnostic points of the food-processing lines at two independent
time points. The samples were investigated for the complexity of microbial aggregates and cellular
metabolic activity. Thus, aggregates and singlets of biofilm-associated microbes were simultane-
ously examined for the percentages of active, mid-active, and nonactive (dead) cells to evaluate
the physiology of the microbial cells forming the biofilm structures. The tested diagnostic points
demonstrated significant differences in the complexity of microbial aggregates. The significant
percentages of the bacterial aggregates were associated with the dominance of active microbial cells,
e.g., 75.3% revealed for a mushroom crate. This confirmed the protective role of cellular aggregates
for the survival of active microbial cells. Moreover, the approach enabled discriminating small and
large aggregates of microbial cells. The developed tool provided more detailed characteristics of
bacterial aggregates within a biofilm structure combined with high-throughput screening potential.
The designed methodology showed the prospect of facilitating the detection of invasive biofilm forms
in the food industry environment.

Keywords: food-processing; biofilm dispersal; single-cell analysis; bioimaging; machine learning

1. Introduction

Instrumental methods, assessing the complexity of microbial populations, with par-
ticular emphasis on differences in the physiological state of individual cells, constitute a
significant breakthrough in microbiological analyses [1]. These methods enrich the identifi-
cation procedures used so far, with the assessment of the activity of all identified species or
even individual representatives of these species. This is of particular importance among
others for the effective detection of the microbiological contamination of products or for the
evaluation of the suitability of starter cultures before their use in the production process [2].

Complex bacterial communities exist within biofilms, including those formed on
industrial food-processing lines. Food industry environments are prone to biofilm forma-
tion [3]. This is due to nutrient-rich food matrix components covering food contact surfaces
combined with long production periods and large working surfaces [4–6]. Food-processing
environments can be colonized by a wide variety of bacterial species, which can con-
tribute to the formation of biofilm structures. This process is based on interactions within
microbial communities to constitute a complex and dynamic network shaping biofilm
architecture responsible for specific functions [7–10]. Multiple studies have demonstrated
that multispecies biofilms are less sensitive to antimicrobial agents than their monospecies
counterparts [11–18].
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Biofilm-associated microbial cells demonstrate considerable structural and functional
diversities, manifested by the existence of a number of microenvironments within the
entire structure of the biofilm. These ecological niches differ in terms of pH, oxygen
concentration, nutrient availability, and microbial cell density [19]. Thus, the biofilm is
characterized by a heterogenic distribution of diver types and species of microorganisms
in a three-dimensional structure. This diversity is also evident when studying cellular
parameters, especially functional ones such as the membrane potential and metabolic
activity. Functional differentiation in the structure of the biofilm is mainly expressed
by the presence of numerous bacterial cells, characterized by reduced metabolic activity,
described as dormant or damaged as a result of contact with biocidal substances [20,21].
Furthermore, microbial cells thriving in internal biofilm fragments and characterized by
low or intermediate levels of metabolic activity seem particularly challenging. Due to
limited exposure (protective effect from extracellular substances and the surrounding
cells), those cells may be unavailable to antimicrobial substances [22]. The occurrence
of this type of cell during the biofilm life cycle is limited not only to the basic biofilm
structure but mainly refers to the key invasive forms related to the late stages of biofilm
maturation—microbial aggregates [23].

A biofilm dispersing into bacterial aggregates is initiated by the microorganisms them-
selves, mainly as a result of the activation of the quorum sensing mechanism. The quorum
sensing mechanism is a coordinated regulation of gene expression. It controls the entire
microbial population through cellular density-dependent intercellular communication [24].
As a result, a complex ecosystem such as a three-dimensional biofilm architecture may
induce a dispersal phenotype of bacterial cells [25–27]. Thus, the non-surface-attached
aggregates of microbial cells may function as “rescue capsules”, which independently
or in a response to stressful conditions allow bacteria to spread effectively in the envi-
ronment [28]. Moreover, the process of biofilm dispersal is one of the stages of their
development, and like others, it is regulated by environmental signals, signal transduc-
tion pathways, and the so-called cellular and extracellular effectors [29]. In industrial
conditions, the processes are initiated by: (i) biofilm-forming microorganisms themselves,
(ii) physical factors such as shear forces, and (iii) the flow of liquid and (iv) mechanical
interventions—cleaning/disinfection procedures [25].

The presence of biofilms on various technological surfaces that come into contact with
food is a constant source of microbial contamination [30]. In the context of increasing the
role of industrial processes in world food production, the problem of biofilm dispersal in
industrial conditions requires separate attention [3]. In addition, a number of scientific
works describe medical issues and the clinical aspects of the spread of biofilms as a
pathogen transmission pathway in the human body. Hence, an attempt to develop an
analytical tool for monitoring invasive biofilm forms—bacterial aggregates—is a challenge
from the scientific and application points of view.

The aim of the research was to design an advanced tool as a combination of the
analytical protocol (the use of imaging flow cytometry) and interpretation protocol (the use
of unique features of the software for an advanced analysis of the cytometric results). The
application of the developed tool will enable the detailed characterization of aggregates of
microbial cells and the rapid screening of samples from industrial food-processing surfaces.
The main impact of the designed methodology is the prospect of facilitating the detection
of invasive biofilm forms in the food industry environment.

2. Results

The analysis of samples, constituting fragments of biofilms formed on the surfaces of
food-processing technological lines, has focused on developing a protocol for interpreting
the results obtained with the use of an Amnis® FlowSight® imaging flow cytometer. The
interpretation protocol was based on the machine learning (ML) module, a feature of
Amnis® FlowSight® instrument IDEAS® software. ML automatically creates a classifier
that differentiates the population of objects (e.g., single cells and aggregates) from the user
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input (batch data). The ML module is designed to simplify the analysis by allowing users
to visually build a population to improve their discrimination and to combine multiple
fluorochromes and multiple morphological parameters into one “super parameter” (super
feature). The mechanism of proceeding with the use of the machine learning module
is as follows: (i) the selection of the classifiers, (ii) an indication of the representative
populations (through the manual selection of the images of objects), (iii) the selection
of parameters with the highest separating force using machine learning using the linear
discriminant analysis (LDA), and (iv) creating a “super parameter” to discriminate between
the indicated populations.

As a result of the use of advanced tools for processing and interpreting the results of
cytometric analyses obtained on an instrument with bioimaging, a tool was developed for
the precise characterization of the degree of agglomeration of cells forming biofilms. Based
on the “truth” populations specified by the user, the ML module generated the so-called
super parameter (super feature classifier) composed of several dozen separate parameters
that, to varying degrees (weight), determine the morphological differences within the
population of the analyzed objects/cells. The classifier (super parameter) designed in the
ML module allowed to precisely distinguish single microbial cells (singlets) from their
complexes (aggregates) in the form of small aggregates and large aggregates composed
of two to three or more than three microbial cells, respectively (Figure 1). Thereby, the
classifiers reflect the complexity of the identified objects, which is difficult to achieve by
a manual selection and combination of single features. A simpler S_classifier constitutes
10 highly weighted features, mainly describing the size and roundness of singlets. In
contrast, for a complex structure of small and large aggregates, the ML module combines
tens to hundreds of features by minimizing the prediction error.
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Figure 1. Characteristics of microbial aggregates derived from biofilms occurring on industrial
surfaces and analyzed with the use of imaging flow cytometry (IFC) assisted by an advanced tool
for processing and interpreting the cytometric results: a machine learning (ML) module of IDEAS
software. The combination of IFC with the ML-based interpretation of flow cytometric data allowed
for the precise discrimination of single microbial cells (singlets) from cellular complexes (aggregates),
further characterized to identify small (composed of 2 to 3 microbial cells) and large aggregates (more
than 3 cells).

The analysis of environmental samples at various diagnostic points and two indepen-
dent experiments (time points) showed different physiological patterns among the tested
biofilms derived from food-processing surfaces. An imaging flow cytometric analysis
allowed detecting differences in the degree of cellular aggregation of biofilm-forming mi-
croorganisms derived from industrial surfaces and correlating them with the assessment of
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the metabolic activity measured as the cellular redox potential (RSG). A greater proportion
of bacterial aggregates correlated with the higher metabolic activity of microorganisms
forming the biofilm structure. Figure 2 provides evidence for the protective role of cellular
aggregates, as the microbial cells living inside the aggregates demonstrated the high levels
of metabolic activity. This effect is related to the degree of aggregation and is enhanced by
the presence of large aggregates of microbial cells (Figure 2). As demonstrated in Figure 3,
the diagnostic points showing significant percentages of bacterial aggregates (large and
small) in a mushroom crate revealed simultaneously the dominance of active forms in both
singlets and aggregates — 83 and 75.3%, respectively (mean values for both time points).
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Figure 2. Samples from time point 5 August 2019 of food-processing surfaces analyzed using
the imaging flow cytometry protocol assisted by a machine learning (ML) module. The analysis
demonstrated significant differences in the structural and functional complexities of the microbial
aggregates associated with biofilms. Histograms show the intensity values of the classifier (super
feature) generated by the ML module to discriminate singlets vs. small and large microbial aggregates.
Higher percentages of microbial aggregates were associated with the higher average metabolic
activity of bacterial cells forming biofilm structures. This indicated the protective role of cellular
aggregates—the degree of aggregation affected the survival of biofilm-associated microbial cells.

The in-depth evaluation of the complexity of microbial aggregates enabled discrim-
inating between large and small bacterial aggregated forms. This was demonstrated by
samples rich in microbial aggregates (e.g., a mushroom crate) where the percentage of
large aggregates reached 17.5% in the second time point—20 September 2019, with the
total percentage of agglomerates reaching 37.4% of all the observed objects. Other two
diagnostic points (conveyor belt and mushroom feeder) showed lower percentages of large
aggregates vs. all the aggregates: 11.3 vs. 20.6% and 16.6 vs. 25.6% for the conveyor belt
and mushroom feeder, respectively (Figure 3).
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Figure 3. Distribution of the biofilm-derived microbial subpopulations defined using the imaging flow cytometric analysis
combined with a machine learning (ML) module for the interpretation of the cytometric results. The samples were collected
from the surfaces of 3 diagnostic points of food-processing surfaces. The analysis was carried out in 2 independent
experiments (time points): samples A—5 August 2019 and samples B—20 September 2019. The microbial aggregates and
singlets from the biofilm samples were simultaneously examined for the percentages of active, mid-active, and nonactive
(dead) cells using the measurements of the metabolic activity of the microbial cells (evaluation of the cellular physiology).
Asterisks over brackets indicate a significant difference between samples (* p < 0.05, ** p < 0.01, and *** p < 0.001). Whiskers
are standard deviations (SDs).

In addition, individual samples showed, apart from quantitative differences (percent-
age of large aggregates and all aggregates), a significant qualitative differentiation in the
form of the aggregate complexity (aggregates consisting of dozens of microbial cells visible
in Figure 2—the mushroom crate diagnostic point). Again, the sizes of the microbial cell
agglomerates correlated with an increased proportion of metabolically active cell subpopu-
lations, which confirms the protective role of microbial cell aggregates. Figure 3 presents
a detailed comparison of the analyzed samples (three diagnostic points analyzed at two
time points) in terms of: (i) the degree of agglomeration (detection of single cells (singlets),
small aggregates, and large aggregates of microbial cells and (ii) the metabolic activity of
single cells, as well as small and large aggregates (separation of active, intermediate, and
inactive (dead) forms of microorganisms). Figure 3 revealed significant variations in the
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results of the agglomeration degree in the tested biofilm samples; the tested diagnostic
points showed different patterns of complexity of the detected agglomerates.

Our approach demonstrated the potential of IFC in an in-depth study of the struc-
tural and functional complexities within biofilm-derived microbial aggregates. IFC, in
combination with a machine learning (ML) software tool, enabled a multiparametric and
morphological analysis of thousands of individual microbial cells and cellular aggregates
(objects) to correlate conventional flow cytometric data with microscopic images of each in-
dividual object. IFC provided an alternative gating strategy using the aspect ratio and area
features derived from cellular images [31]. Combined with ML, it increased the accuracy of
the morphological study of the complexities of cellular aggregates and facilitated the com-
pilation of these data with the physiology of individual microbial cells. Real alternatives
for studying biofilms, including microscopy-based techniques like confocal laser scanning
microscopy (CLSM), require the creation of a large library of images to provide statistically
relevant data. Thus, they are time-consuming [32]. The developed approach emerged as
an alternative for the use of powerful and user-friendly software tools for biofilm image
analyses like COMSTAT [33] or BiofilmQ [34].

As demonstrated in our study, a single instrument may be applied to gain insight
into the complexity of biofilms’ invasive forms—aggregates of bacterial cells. The ag-
gregated forms of microbial cells forming biofilm structures were assessed in terms of
the quantitative (percentages of singlets vs. small and large aggregates) and qualitative
(complexity of large aggregates) diversities. A unique feature of the designed tool is the
ability to distinguish within aggregates (regardless of the degree of their complexity) cells
characterized by intermediate metabolic activity from those objects that consist of both
active and inactive cells, which, by conventional instruments, are classified as an interme-
diate subpopulation. The implementation of the IFC tool enabled collecting statistically
significant data and processing them using the ML-based interpretation protocol in an
incomparably shorter time. The designed tool enables the fast and reliable screening of
samples from working surfaces in the food industry to detect biofilm = related bacterial
aggregates. It also provides key information concerning the stages of biofilm development.

3. Discussion

The detection and functional analysis of bacteria in biofilms by flow cytometry is
often hampered by their small size and the ability to form small and large aggregates [35].
Traditional flow cytometers that use photomultiplier tubes (PMT) to collect scatter and
fluorescence intensities are limited to identifying single cells and doublets based on the
signal pulse geometry. Single cells have a defined relationship between the pulse area
(related to the cell size), height (intensity), and width (related to the time the cell spends
in the laser beam), where an increase in pulse intensity is proportional to the pulse area,
which is in contrast to doublets and aggregates, which deviate from this relationship [36].
However, this process is error-prone when aggregates mimic single cells in terms of signal
widths/durations due to their orientation in line or coplanar to the laser beam [37], which
is even more evident for bacteria that can form clusters of different sizes and shapes [23].
Moreover, the smallest bacteria are in the submicron range similar to the size of the
debris and often close to the instrumentation noise of PMT-based flow cytometers [35].
The Amnis®brand imaging flow cytometers (IFC) help to overcome these obstacles by
combining the statistical power of flow cytometry with the imaging content of microscopy
in one system. Unlike traditional flow cytometers, an IFC uses a charge-coupled device
camera (CCD) to collect multiple high-resolution images of every cell in a flow, including
the brightfield (BF), darkfield (SSC), and up to 10 fluorescent markers.

The concept of an image analysis is based on using “masks” and “features”. Masks
define a specific region of the image, and the feature algorithms are used to get quantitative
information out of this region. There are three types of masks: default, combined, and
function. Default masks contain all pixels that are detected as different from the back-
ground for each channel. Combined masks are created using Boolean logic to combine
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or subtract masks, and function masks are created with user input (e.g., spot, threshold,
peak, and range) [38]. Once the mask defines the pixels of interest in the image, features are
applied to calculate the quantitative information based on the signal intensity and location
information. The eight feature categories are: size, location, shape, texture, signal strength,
comparison, system, and combined (reference to the IDEAS manual). Singles cells are
differentiated from doublets and debris by using the features aspect ratio (AR) (minor axis
divided by the major axis of the default mask) and area (in microns squared corresponding
to the magnification and number of pixels in the default mask) of the BF image. Single cells
have an intermediate area value and a high AR. Doublets have larger areas and a lower
AR than single cells. Debris has small areas and a range of ARs depending on the shape of
the debris.

Another advantage of IFC is the high fluorescence sensitivity, which is a requirement
for the detection of the smallest bacteria. This is achieved by reading out the signals of the
CCD camera using time delay integration (TDI). In TDI, the photo charges stored in each
image pixel are shifted from row to row down the detector, as each row of pixels is read
sequentially off the bottom of the chip. Since the objects are continuously illuminated, the
signals are integrated over the entire length of the detector with no readout noise, leading
to a higher net sensitivity [39].

Flow cytometric methods, both conventional and imaging flow cytometry (IFC), still
rarely appear as the methodology of choice for biofilm analyses. Thus, techniques that
allow the evaluation and measurement of the physical and chemical aspects of biofilms
as holistically treated structures prevail. Most of them do not measure the cellular charac-
teristics of “key players” in the formation of biofilms or microorganisms [40]. The most
widely used technique for assessing the viability of microbial cells from biofilms is based
on colony counting to determine the colony-forming units (CFU) on an agar medium.

The approach presented in this study responded to the most serious limitations of
the total viable count (poor plate) methods: (i) the fraction of live cells detached from
the biofilm structure may not be representative of the original biofilm population, and
(ii) the biofilm-derived cell subpopulation may belong to living but non-cultured forms of
microorganisms, and as a result, it may not be detected by colony counting methods [41].
The developed tool, being a combination of imaging flow cytometry and a machine learning
module-based interpretation protocol, significantly improved the analytic potential of
conventional flow cytometry. The IFC instrument (a unique combination of a conventional
flow cytometer with a fluorescence microscope), together with advanced software for an
in-depth analysis of the cytometric results, provides the ability to image large numbers of
cells in high resolution and improves the cytometric analysis of cells even in complex cell
populations/consortia [42,43].

The key aspect is the software used to process, present, and interpret the results of
the analysis by flow cytometry with bioimaging. They constitute correlated data of the
measured parameters of fluorescence light with digitally processed images of the analyzed
objects/cells. An image analysis is performed using software that allows the measurement
of almost 1000 photometric and morphometric features [44]. Imaging flow cytometry
increases the analytical potential and the ability to detect the functional and structural
complexities within cell agglomerates, which implicates the improved precision of the
determination of microbial contamination of food-processing lines and products [45]. The
change in the “approach” to the analysis of cells using imaging cytometry is fundamental
and results not only from the quantity or quality of the information obtained but also
from the way/ways of interpreting and classifying the obtained data, hence the large role
of interpretation tools, which include the machine learning module (ML) used at work
to improve the resolution of the results. This resulted in an increase in the precision of
determinations, organization of data, and determination of the most important trends in
the interpretation of the results.

The ML-based software-assisted IFC analysis provided: (i) a precise “look” into the
heterogeneity of the microbial population while increasing the range of information ob-
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tained about cells (direct correlation of the fluorescence intensity with cell morphology) [43]
and (ii) allowed for comprehensive monitoring of the dynamics of complex processes, such
as biofilm formation [43,46].

The application potential of the designed tool for the food industry seems to be related
to crucial aspects of quality control and safety in the food production chain. The role of
aggregates of microbial cells, ignored due to the limitations of detection of most instru-
mental analytical techniques, is an example of a challenge for such modern solutions, as
presented in this study. Aggregates of microbial cells appear in the industrial environment
in a “natural” way, as a stage in the biofilm life cycle, but also, their occurrence is associated
with the cleaning and disinfection procedures routinely used in the food industry. They
lead to the dispersion of biofilms and the release of aggregated forms of microorganisms
on a scale exceeding the aggregate dispersion characteristics of the processes related to
“natural” biofilm life cycles [19,23].

Recently, biofilm dispersal has been suggested as a promising strategy for increasing
the contact surface for the action of biocides [19]. On the other hand, however, there is a
concern about the increased emissions of aggregates, which are invasive forms that facilitate
the spread of microorganisms along the production line [47]. In this way, undesirable
and, especially, pathogenic microorganisms can be directly released into the production
environment. In addition, bacterial aggregates are still characterized by an increased
resistance to external factors, including cleaning and disinfection procedures, used in the
food industry. It has been proven that microbial cells released from a biofilm may be more
virulent, which is explained by decreased levels of the c-di-GMP-signaling molecule [48].
Such cells show a stronger ability to penetrate and kill macrophages [49].

4. Methods
4.1. Preparation of Samples for Analysis

Samples were collected from the surfaces of 3 diagnostic points: a mushroom crate
(plastic surface), conveyor belt (stainless steel surface), and mushroom feeder (stainless-
steel surface) from a fruit and vegetable processing company in Greater Poland. The
analysis was carried out in 2 independent experiments (time points): samples A—5 August
2019 and samples B—20 September 2019. In that period, button mushrooms (Agaricus
bisporus) were the processed product. As the company has a 3-shift working system, with
cleaning procedures employed after each shift, representative samples were collected in
the middle of each shift. In the collection procedure, 3 separate swabs of an area of 100 cm2

were taken using a sterile cotton swab. The swabs were immediately placed in tubes with
2 mL of 1% PBS solution and transferred to the Department of Biotechnology and Food
Microbiology laboratory for direct staining and analysis.

4.2. Imaging Flow Cytometry Analysis to Assess the Structural and Functional Complexities of
Biofilm-Derived Bacterial Aggregates

The microbial cells in sample tubes were vortexed to detach the collected cells from
inner and outer swab surfaces. Afterwards, a filtration step was employed using a nylon
net 60-µm syringe filter (assembled with a Swinnex filter holder of 25 mm, both from Merck
Millipore, Darmstadt, Germany). The samples were stained with the BacLight™ Redox
Sensor™ Green Vitality Kit (Life Technologies, Carlsbad, CA, USA) according to the manu-
facturer’s instructions. The kit contains the membrane impermeable DNA dye propidium
iodide (PI) (maximum excitation/emission at 493/636 nm) for cellular viability assessment
and RedoxSensor Green (RSG) reagent to measure the metabolic activity. This compound is
a fluorogenic redox indicator dye, which is subjected to conversion by microbial reductases
involved in the electron transport chain [50]. The converted dye, following excitation
(maximum = 490 nm), emits a green fluorescence (maximum = 520 nm). The intensity of
the green fluorescence emission is directly proportional to the cellular redox potential,
which reflects the levels of metabolic activity of microbial cells [51]. To assess the cellular
metabolic activity and viability, the samples were acquired on an Amnis® brand FlowSight®
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(Luminex, Austin, TX, USA) imaging flow cytometer equipped with three excitation lasers
(120 mW 405 nm, 60 mW 488 nm, and 150 mW 642 nm); a 70-mW 785-nm side scatter (SSC)
laser; and a 12-channel CCD camera for signal detection. Only the 488-nm and SSC laser
were enabled during acquisition (at 15–30 and 70 mW, respectively). The cells were run in
PBS (pH 7.4, without calcium and magnesium ions) (Thermo Fisher Scientific, Waltham,
Massachusetts, USA) as the sheath fluid and imaged at 20× magnification. Single-color
compensation controls for PI and RSG were also acquired using the integrated software
INSPIRE® (Luminex, Austin, TX, USA) for data collection.

4.3. Machine Learning Based Interpretation Protocol of the Imaging Flow Cytometry Data

The image analysis was performed using image-based algorithms in ImageStream
Data Exploration and Analysis Software (IDEAS® 6.2.187, Luminex, Austin, TX, USA).
Typical files contained imagery for 5000 events. The analysis was restricted to stained
cells in the best focus. Stained cells were identified by their maximum pixel intensity
(Raw Max Pixel > 100 (au)) for PI and RSG, which was confirmed by the corresponding
images. Out-of-focus events were excluded by using the feature BF Gradient RMS, a
measurement of image contrast. The analysis enabled the detection of nonactive (dead),
intermediate (mid-active), and active microbial cells representing the discrete subpopu-
lations. Subpopulations active, mid-active, and dead were defined based on differences
in the level of metabolic activity measured as the cellular redox potential (CRP) by gating
in the dot plots of green fluorescence from the RedoxSensor Green reagent (Ch02) vs. red
fluorescence (channel 5: Ch05) from propidium iodide. The calculation of the CRP values
was performed using medians of the green fluorescence (channel 2: Ch02) signals of the
gated subpopulations [52].

To improve the differentiation of single cells (S), small aggregates (SA), and large
aggregates (LA), and to make full use of the high dimensionality of the imaging data,
we loaded the data into the machine learning (ML) module of IDEAS® 6.3. After man-
ual selection of the three “truth” populations, the ML algorithm calculated three super
features (classifiers) that maximally separated each “truth” population from the others.
The classifiers were based on user-defined and/or ML-generated features, which were
normalized (each feature has a mean µ = 0 and a standard deviation σ = 1) and ranked by
the Fisher’s discrimination ratio (RD) metric (RD = interclass variance/intraclass variance
= [(µ(positive truth) − µ(negative truth)]/(σ (positive truth) + σ (negative truth))) to quan-
tify the separation power. Afterwards, the classifiers were created by linearly combining
the top-ranked features with weights proportional to the RD scores until a maximum
separation was achieved (linear discriminant analysis).

For every classifier, truth populations between 35 and 50 events were manually
tagged and loaded into the ML module. ML generated and tested the features of all
8 main categories corresponding to the BF, SSC, PI, and RSG channels. The resulting
S_classifier contained a series of 10 differentially weighted features. They mainly described
the elongation and size of the BF images and the homogeneity of the SSC signals. Singlets
were smaller and less elongated, and the SSC signal was less homogenous than in the
aggregates. The SA_ and LA_classifiers contained 119 and 45 features, respectively. The
SA_classifier refined the shape of the aggregates in the BF image deeper by using more
shape-related features, whereas the LA_classifier mainly used size features of the BF and
SSC images. Thus, the small aggregates were more elongated and had a higher tendency to
have a single axis of elongation than the singlets and large aggregates. The large aggregates
themselves were defined by the highest diameters and areas of the SSC and BF images.
All three classifiers were plotted into histograms and events with values higher than zero
belonging to the images that were best-represented by their classifier.

4.4. Statistical Analysis

Obtained results were expressed as the mean ± standard deviation (±SD) of the
replicates. The statistical importance of the differences between compared sets of data was
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analyzed using one-way analysis of variance (ANOVA). The levels of significance were set
at p < 0.05. Statistical analysis and graphical presentation of the obtained data were carried
out using OriginPro, Version 2021b (OriginLab Corporation, Northampton, MA, USA).

5. Conclusions

Imaging flow cytometry increases the analytical potential and the ability to detect func-
tional and structural complexities within cell agglomerates, which increases the precision
of the determinations of microbial contamination of technological lines and products. Opti-
mizing the analytical procedures in a combination of fluorescence staining and imaging
flow cytometry has the potential to improve the detection of important diagnostic points
within the food production chain (food-processing hot spots). They may constitute areas
prone to biofilm formation and/or surfaces where biofilm dispersal initiates, resulting in
the spread of numerous bacterial aggregates. The assessment of the intensity of the cell
agglomerates in combination with detailed morphological (small- and large-cell aggregates)
and functional characteristics (detection of active, indirect metabolic activity and inactive
cells) is a perspective for the development of microbiological diagnostics.

The developed tool provided more detailed characteristics of bacterial aggregates
within biofilm structures combined with high-throughput screening potential. The IFC pro-
cedure for determining the cellular redox potential of the microorganisms forming biofilms
on food-processing surfaces enabled a “look” inside the three-dimensional structure of
individual aggregates and determined the physiological state of each of the cells that make
up the aggregate and single forms.
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