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Introduction 

Complement acts in parallel and in concert with the immune system to protect the 
individual from microbial infection by mediating a variety of biologic reactions: 
increased vascular permeability, chemotaxis of leukocytes, opsonization, cytoly- 
sis of target organisms, and enhancement of the immune response. Activation of 
the complement system occurs via the alternative pathway in response to bacteria, 
yeast, virally infected cells [76, 84], or damaged tissue [10, 45], and via the classical 
pathway by particles or tissues recognized by classical pathway-activating anti- 
bodies [76, 84]. Both classical and alternative pathway activation serve to coat the 
offending surface with C3b and/or C4b by way of the metastable thiolester in 
these proteins. C3b and C4b are structural subunits of the C3 and C5 convertases, 
which proteolytically cleave C3 and C5. When unregulated, the convertases am- 
plify the initial deposition of C3b, and allow the cascade to proceed to the 
assembly of fragments C5b through C9, the membrane attack complex (MAC), 
creating channels through the membrane which can cause cell death. Besides 
leading to cytolysis of activating cells, byproducts of C3 and C5 breakdown have 
additional inflammatory roles. The anaphylotoxins, C3a and C5a, induce his- 
tamine release by mast cells which leads to vasodilation and increased vascular 
permeability. C5a is a potent chemotactic factor which recruits and activates 
neutrophils, and both C3a and C5a induce rapid and enhanced production of 
leukotrienes from IL-3-primed basophils [11, 60]. Opsonization, or the deposition 
of C3b and C4b on an activating surface, marks the foreign particle with ligands 
for complement receptors involved in phagocytosis, and can lead to recognition 
by signaling receptors on phagocytes and lymphocytes specific for breakdown 
fragments of C3b. 

While complement activation is a valuable first-line defense against potential 
pathogens, the activities of complement which promote a protective inflammato- 
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ry reaction also carry the potential for harming the host by both indirect and 
direct mechanisms. For  example, activated neutrophils are indiscriminate in their 
release o f  destructive enzymes, and complement components may be deposited on 
nearby cells as well as on targets. There is substantial evidence for the activation 
of  the complement system in human disease, and for the dependency of  tissue 
damage in animal models of  disease on an intact complement pathway [18, 20, 23, 
37, 61,105]. 

Several proteins have evolved to control the extent of  complement activation. 
The classical pathway C1 inhibitor will be discussed elsewhere in this volume, as 
will proteins which interfere with the insertion of  the terminal components of  the 
MAC, such as CD59 and homologous restriction factor. We will concentrate on 
proteins which have evolved to regulate complement activation at the level of  C3 
and C5 convertases, namely, members of  the regulators of  complement activation 
(RCA) gene family, and how they may be used to inhibit tissue damage due to 
complement in both antibody-independent and -dependent systems. 

RCA family 

The RCA gene family, summarized in Table 1 [14, 49], is a genetically linked 
group of  proteins found in a 900-kb region on human chromosome 1, band q32 
[12, 16, 66, 93, 95, 96, 106]. Two of  the RCA members, factor H and C4 binding 
protein (C4bp) are serum proteins, while decay-accelerating factor (DAF) [65], 
membrane cofactor protein (MCP) [62, 65], and complement receptors type 1 and 

Table 1. Characteristics of the proteins of the regulators of complement activation 

RCA Size Ligands Binding Decay Cofactor 
proteins (kDa) a SCRs acceleration activity 

C3bBb C4b2a C3b C4b 

Factor H 160 C3b 1-6 [4,5] + - + - 

C4bp 590 C4b 1-3 b [80] -- + -- + 

DAF 70 C3b 2-4 [22] + + -- - 
C4b 2-4 

MCP 58-63 C3b 2-4 [2] -- - + + 
C4b 1-4 

CR1 190 c C3b 8-11, 15-18 + + + + 
C4b 1-4 [55, 57-59] 

CR2 140 C3dg 1-2 [15, 63] _ _ d _ 
iC3b 1-2 [54] 
EBV 1-2 [15, 63] 

SCRs, Short concensus repeats; DAF, decay-acelerating factor; MCP, membrane cofactor 
protein; EBV, Epstein-Barr virus 
a Apparent size on SDS-PAGE of nonreduced samples 
b Murine C4bp 
c Most common allotype 
d iC3b 
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Fig. 1. Schematic representations of members of the RCA gene family, with closed boxes repre- 
senting C4b-binding regions; open boxes, C3b-binding regions; cross-hatched boxes, iC3b-/C3dg- 
binding regions; O, site of O-linked glycosylation; G, glycolipid anchor; U, domain with un- 
known function; D, disulfide bridge-containing domain; T, transmembrane domain; and C, 
cytoplasmic domain 

2 (CR1, CR2) [3] are membrane bound. They are structurally related proteins 
composed of 4 to 30 of the globular domains termed short consensus repeats 
(SCRs) [92] (Fig. 1). Each SCR is approximately 60 amino acids long, and has 
several conserved residues, including 4 cysteines which are disulfide linked within 
each SCR in a 1 to 3, 2 to 4 manner [53, 64]. Finally, the RCA proteins are 
functionally similar in that they recognize activation products of C3 or C4. Factor 
H [109] regulates alternative pathway complement activation in the fluid phase 
and on nonactivating surfaces, while C4bp inactivates classical pathway-activat- 
ing particles containing C4b [35, 41, 98]. CR2, which has been reported to have 
weak cofactor activity for the proteolytic degradation of iC3b by the serum 
protease factor I [74], is more interesting for its signaling role on B lymphocytes 
[17, 43, 44, 68, 102]. 

DAF, MCP, and CR1 interact with C3b and C4b and regulate their ability to 
form C3 and C5 convertases. DAF accelerates the dissociation of the catalytic 
subunits of alternative and classical pathway C3 convertases, Bb, and C2a, re- 
spectively [36], and prevents association with new catalytic subunits. MCP irre- 
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versibly inactivates C3 or C5 convertases by acting as a cofactor for the proteolyt- 
ic digestion of C3b or C4b. CR1 has all of these functions. It has been postulated 
that MCP and DAF have evolved cooperatively to protect autologous cells from 
complement-mediated damage, and that the function of CR1 is to inactivate C3b 
and C4b found on complement-activating complexes [6, 99]. 

The structure and function of DAF, MCP (and CR1) are discussed by Morgan 
and Meri elsewhere in this volume and a summary of their characteristics is shown 
in Table 1. However, CR1 is considered in detail here because it is the molecule 
which has principally been used for therapy. 

CRI (CD35). The most common allotype of CR1 is composed of 30 SCRs, 28 of 
which are arranged in tandemly repeating units of 7 SCRs termed long ho- 
mologous repeats, or LHRs-A through -D, followed by two additional SCRs, a 
hydrophobic transmembrane domain, and a 43 amino acid cytoplasmic domain 
[57, 58, 48]. Deletion mutant analysis showed that the first two SCRs of LHR-A 
were responsible for C4b binding specificity, while the first two SCRs in LHRs-B 
and -C specified for C3b binding [58]. Thus, the most common allotype of CR1 
has a total of three active binding sites, and is bivalent for C3b. Other more rare 
allotypes of CR1 [26-29, 113] are generally caused by the duplication or elimina- 
tion of an intact LHR with C3b-binding function, leading to allotypes with more 
or fewer C3b-binding sites. This alteration can affect CR1 function, as assessed 
by the loss of affinity in binding C3b dimers, and a reduction in the effectiveness 
in inhibiting the C3 and C5 convertases [112]. The genomic structure of CR1 
suggests that it evolved by duplication of segments of the gene encoding LHRs, 
perhaps by homologous recombination with unequal crossover [50, 114]. The 
extensive internal homologies between LHRs would facilitate their insertion or 
deletion to create the different alleles encoding the polymorphic allotypes of CR1, 
which differ by 30-40 kDa, the predicted size of an LHR. An additional CRl-like 
region [48, 50, 115] is found in the RCA locus, evidence of a non-functional 
rearrangement of the CR1 genetic elements. 

Krych and colleagues [59] have mapped the amino acids in SCRs-8 and -9 
which confer C3b-binding ability when transferred to the C4b-binding site in 
SCRs-I and -2. Interestingly, these changes did not affect C4b binding. The limits 
of the intact binding site were mapped with additional deletion mutants [55], 
showing that the first four SCRs of either LHR-B (SCRs-8 through -11) or -C 
(SCRs-15 through -18) were necessary and sufficient to reconstitute the binding 
affinity for polymerzed C3b and the cofactor activity of full-length CR1. As the 
third and fourth SCRs in LHR-A are virtually identical to those in the C3b-bind- 
ing LHRs, it is postulated that these SCRs play a similar role in C4b binding. 
When DNA encoding SCRs-8 through -11 is inserted at the amino terminus of the 
secreted form of an immunoglobulin heavy chain gene and expressed in a cell with 
an endogenous light chain, the purified chimeric protein retains all C3b-binding 
and cofactor functions of CR1, and has been shown in vitro to inhibit alternative 
pathway activation induced in human serum by zymosan [55]. 

CR1 is present on erythrocytes, B lymphocytes, neutrophils, monocytes, 
macrophages [31], and eosinophils, as well as on some T lymphocytes [111], 
follicular dendritic cells [94], glomerular podocytes [28, 56], Kupffer cells [46], and 
Schwann cells [116]. It was purified on the basis of its factor H-like ability to 
dissociate the alternative pathway C3 convertase and to act as a cofactor for the 
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factor I-mediated cleavage of C3b [30]. On a weight basis, it was eight-fold more 
active than factor H, and was not restricted by alternative pathway activating 
surfaces. Further studies showed that CR1 could act as a cofactor for C4b cleav- 
age [51], thus inactivating the classical convertases as well as alternative pathway 
convertases. CR1 also accelerates the decay of each convertase [40, 51]. Unlike 
cells expressing MCP or DAF, CR1 expression on a cell allows it to rosette with 
C3b-bearing particles, or to bind soluble polymerized C3b, and to act as a cofac- 
tor for the cleavage of C3b and C4b in these particles [69, 70, 97]. Although CR1 
has intrinsic activity as well as extrinsic activity [70], it is reasonable to postulate 
that the 90-nm extension of CR1 from the cell membrane [107] allows control of 
complement activation on adjacent complexes. CR1 has been implicated in con- 
trolling the solubility and clearance of immune complexes [21], participating in 
endocytosis of complexes and particles by neutrophils and macrophages [1], as 
well as having other putative immunoregulatory roles [3, 24, 108]. 

Potential clinical applications of RCA proteins 

Complement has been shown to play a role in the pathogenesis of some types of 
inflammatory tissue damage initiated by both non-immunologic [39, 45] and 
immunologic [37, 61, 91,105] conditions. In animal models, removal of classical 
pathway-activating antibodies [33, 87], depletion of complement by cobra venom 
factor [19, 32, 39, 61], or testing the models in animals genetically deficient in 
specific complement components [39, 105] abrogates or delays pathogenesis. Tis- 
sue injury can be caused by complement either directly or indirectly. The forma- 
tion of the MAC on diseased or healthy cells may lead to cell lysis or even to 
activation, as for example occurs with endothelial cells in which MAC insertion 
results in calcium flux and expression of binding sites for various thrombolytic 
mediators [42], as well as release of heparin sulfate from endothelial surfaces to 
contribute to a hypercoagulable state [86]. Indirectly, the byproducts of C3 and 
C5 degradation recruit and activate neutrophils, and may synergize with inter- 
leukins to cause synthesis of inflammatory mediators such as leukotrienes [11, 60]. 
Neutrophil activation caused by the complement system has been implicated in 
damage to organs distinct from those in which activation has occurred, such as 
in adult respiratory distress syndrome (ARDS) [100]. 

For a complement inhibitor to be clinically useful, several requirements must 
be met. First, the molecule should be able to inhibit complement activation at the 
level of the C5 convertases of both alternative and classical pathways, not only 
to protect a cell from lysis, as may be achieved by CD59, but also to block the 
generation of C5a which would induce neutrophil influx and attendant inflamma- 
tion. Secondly, an inhibitor should have a high affinity for the multivalent com- 
plexes of C3b and C4b found in the convertases. Third, it should irreversibly 
inactivate the convertases, and fourth, the inhibitor should be able to recycle and 
inhibit multiple convertases. 

The members of the RCA family represent potential therapeutic inhibitors 
that can be evaluated according to these requirements. C4bp and factor H cause 
irreversible inactivation of C4b and C3b, but they are unlikely to be useful. The 
former acts only to prevent spontaneous, but not immune complex-induced clas- 
sical pathway activation. As its major ligand is C4b, damage caused by primary 
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alternative pathway activation or that reCruited by classical pathway activation 
would be unaffected. The latter serves only to prevent spontaneous but not 
induced activation of the alternative pathway. 

Except for DAF found in the fluid phase, which functions similarly to C4bp 
in C4b2a decay acceleration [72], DAF and MCP are intrinsic regulators of 
complement, which function only when incorporated into a cell membrane. DAF 
does not induce irreversible inactivation of C3b and C4b, is restricted by alterna- 
tive pathway activating surfaces [83], and is not associated with a clinical pheno- 
type in its absence on Inab blood group erythrocytes [47, 73, 101], all of which 
suggests a modest inhibitory potential. MCP meets several requirements by acting 
in both pathways, by irreversibly inhibiting the function of C3b and C4b, and by 
being able to recycle with additional substrate. These characteristics may indicate 
that MCP is a suitable candidate for a cell-bound inhibitor, but its monovalency 
and relatively low affinity suggest that it could not serve as an effective soluble 
inhibitor. 

CR1 meets these requirements by being capable of inhibiting both the classical 
and alternative pathway C3 and C5 convertases, by interacting multivalently with 
these complexes through its three binding sites, by irreversibly inactivating C3b 
and C4b through promoting their proteolysis by factor I, and by recycling for 
inhibition of additional C3/C5 convertases after release from degraded C3b and 
C4b. 

Applications of soluble CR1 

A soluble form of CR1 (sCR1) was made by genetically engineering a stop codon 
in CRI eDNA before the transmembrane and cytoplasmic domains [107]. When 
purified from the media of cells transfected with the altered eDNA, this molecule 
was able to bind C3b and serve as a cofactor for C3b cleavage. The classical 
pathway-mediated lysis of sensitized sheep erythrocytes and the alternative path- 
way activation induced by zymosan were efficiently inhibited by sCR1 at concen- 
trations 100-fold lower than normal serum concentrations of factor H and C4bp 
[107]. This molecule has been tested for its ability to inhibit damage caused by 
complement in several models of disease (Table 2). 

Non-antibody-dependent complement activation 

Reperfusion injury. The complement system was suggested to have a deleterious 
effect on ischemic myocardium by the finding that administration of cobra venom 
factor to dogs prior to coronary artery occlusion decreased the size of the myocar- 
dial infarction [67]. The maintenance of viable myocardium was correlated to 
reduced neutrophil infiltration. To determine whether complement activation 
contributed to reperfusion injury of ischemic myocardium, 1 mg sCR1 was ad- 
ministered as a single bolus injection to rats immediately before temporary occlu- 
sion of the left coronary artery for 35 min, after which perfusion was reestab- 
lished. Seven days later, the animals were killed and sCR1 was found to have 
reduced the sizes of the infarcts by 44%. In a second group of rats subjected to 
myocardial ischemia and reperfusion, the mechanism of the protective effect of 
sCR1 was shown to be inhibition of MAC deposition on endothelial cells in the 



Therapeutic uses of recombinant complement protein inhibitors 423 

Table 2. Complement-dependent disease models in which soluble CR1 reduces pathology 

Complement-dependent sCR1 effects 
disease models 

Antibody mediated: 
Hyperacute rejection: 

Cardiac allografts in Lewis rats 
[88] 

Cardiac xenograft (guinea pigs to rats) 
[89, 117] 

Immune complex-induced inflammation: 
Reversed passive Arthus reaction [119] 

Immune complex-induced alveolitis [77] 

Non-antibody mediated: 
Reperfusion injury: 

Reperfusion injury of ischemic 
myocardium in rats [107] 

Reperfusion injury of intestine in rats [45a] 

Thermal trauma: 
Acute skin and lung injury by thermal 
trauma [77] 

Allograft heart survival increased 
from 3.25-/+0.81 h to 32 - /+4.47 h 

Xenograft survival increased from 
17-23 min to 64-747 min in a dose- 
dependent manner 

Reduces vasculitis 

Reduces alveolitis by 68-72% 

Reduces myocardial infarction 
size by 44% 

Reduces intestinal and pulmonary injury 

Reduces damage in lung by 45-46% 
and in skin by 25% (1 hr), 44% (4 h) 

sCR1, soluble CR1 

ischemic zones, and suppression of  neutrophil accumulation at these sites [107]. 
This study demonstrated for the first time the potential utility of  sCR1 as a 
therapeutic inhibitor of  complement, and has been extended by another  study 
showing reduction of  local and remote injury after ischemia-reperfusion of  the 
intestine [45a]. 

Thermal trauma. In a rat model of  thermal injury to 2 5 - 3 0 %  of  body surface 
area, sCR1 reduced dermal vascular permeability by 44%, and pulmonary vascu- 
lar permeability and hemorrhage by 45% [77]. Thus, sCR1 is protective both 
locally at the primary site of  non-immune injury, and distally in the lung in this 
model of  ARDS. 

Antibody-dependent complement activation 

Hyperacute rejection. The current shortage of  human organs available for trans- 
plantation is an incentive to develop systems in which xenogeneic organs could be 
used [7, 9]. However, the occurrence of  natural antibodies directed to endothelial 
antigens in discordant xenografts [87], or of  an alternative pathway activating 
capability of  the xenograft [34, 75, 104] causes rapid rejection by a thrombotic 
process induced by MAC assembly on endothelial cells [13, 75, 85]. A similar 
process may account for hyperacute graft rejection that occurs in recipients hav- 
ing alloantibodies specific for donor  antigens. The role of  complement in this 
process was confirmed and a potential inhibitor described when human sCR1 was 
shown to suppress hyperacute rejection of  allo- or xenografts. Hyperacute rejec- 
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tion of cardiac allografts in sensitized Lewis rats was delayed from 3.25 + 0.81 h 
in untreated rats to 32.00 +4.47 h in animals that received 3 mg/kg sCR1 [88]. 
When administered to rats immediately prior to reperfusion of guinea pig cardiac 
xenografts, sCR1 extended graft survival from 17 min in untreated rats to 64 to 
747 min, with the time of survival correlating with the dose of CR1 administered, 
ranging from 3 to 60 mg/kg in this trial [89]. Both treated and untreated animals 
showed significant IgM deposition in the xenografts, indicating that sCR1 inhib- 
ited damage at the level of complement activation, rather than affecting the levels 
of natural antibody [89, 90]. The use of recombinant RCA proteins expressed in 
endothelial cells of xenografts is discussed below. 

Immune complex-induced inflammation. In a rat model of immune complex-in- 
duced alveolitis, sCR1 treatment reduced vascular permeability, hemorrhage and 
neutrophil accumulation by 68-72% [77]. sCR1 also inhibited the reversed pas- 
sive Arthus reaction in rats, in which intravenous injection of ovalbumin (OVA) 
is followed by intradermal injection of anti-OVA antibodies [119]. 

Other forms of complement inhibitors 

Systemic complement inhibition may be undesirable because of suppressed host 
defense; the targeting of an inhibitor to a particular tissue may overcome this 
drawback. In the mapping of the CRl-binding site [55], it was shown that the 
C3b-binding SCRs could be transferred to the amino termini of antibody heavy 
chains and retain function. This expression of SCRs near the antigen-binding site 
had no effect on the ability of the antibody to bind its hapten, 4-hydroxy-3-nitro- 
phenacetyl, and allowed purification of the chimera on hapten-sepharose. Thus, 
if a monoclonal antibody specific for a particular tissue antigen unique to the site 
of complement activation were identified, a chimeric CR1/antibody inhibitor 
could be created that might yield effective local, rather than systemic complement 
inhibition. 

Long-lasting suppression of complement activation by particular cells may be 
achieved through introduction into such cells of genes encoding complement 
regulatory proteins. This strategy may be applicable to the creation of endothelial 
cells having low complement-activating potential, the best example of potential 
utility being in xenografts because of the incompatibility between DAF, MCP, 
and CD59 expressed by xenografts and the heterologous source of complement 
[118]. 

To provide an experimental rationale for this approach, DAF was incorporat- 
ed into porcine endothelial cells in a dose-dependent manner, and was shown to 
confer protection from lysis by 10% human serum [25], a result anticipated by 
earlier findings on the effects of DAF incorporated into PNH erythrocytes [71, 
78], or expressed in murine/human cell hybrids [103]. A more prolonged effect of 
DAF was achieved in vitro by transfection of murine NIH-3T3 cells with human 
DAF cDNA, which suppressed their lysis by antibody and human complement 
[81, 110]. Similarly, high levels of expression o fMCP cDNA in NIH-3T3 cells also 
diminished their sensitivity to classical pathway-mediated lysis [81, 110]. It is 
hoped that the protection in vitro of cells from lysis by heterologous complement 
may predict the successful creation of a transgenic donor animal for xenogeneic 
transplantation [8, 25, 82, 85, 103]. However, the occurrence of hyperacute allo- 
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graft rejection, in which species-specific DAF, MCP,  and CD59 [79] are incapable 
of  suppressing complement  activation induced by antibodies directed to alloanti- 
gens on graft endothelial cells suggests that the expression of  these regulatory 
proteins in xenografts derived f rom transgenic animals will not  avoid hyperacute 
rejection. 

The capacity of  sCR1 to suppress hyperacute rejection in a dose-dependent 
manner  for several hours may  indicate that  this R C A  protein should be evaluated 
for its potential  role as a membrane  inhibitor of  complement  activation. Accord- 
ingly, preliminary studies have demonstrated that  expression of  wild-type CR1 in 
t ransformed human  endothelial ceils confers relative resistance to lysis mediated 
by human  complement  and rabbit  ant ibody (Braverman, Seok-u  Kim, and 
Fearon,  unpublished). 

Conclusion 

In conclusion, it is apparent  that  researchers are poised at the threshold of  devel- 
oping inhibitors o f  complement  activation f rom the molecules in the R C A  family. 
By creating soluble forms of  these protective proteins for in vivo administration, 
or by making transgenic animals expressing these proteins or their derivatives, it 
may  be possible to inhibit complement-mediated pathology stemming f rom au- 
to immune disease, reperfusion injuries, and physical t rauma.  This technology 
combined with current at tempts to protect  allografts f rom cellular rejection with 
monoclonal  antibodies against members  of  the integrin family of  adhesion 
molecules [52] makes  it possible that  the excessive mortal i ty  due to the severe 
shortage of  human  donor  organs could be overcome by the use of  xenografts. 
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