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Abstract

Seasonal influenza is a sometimes surprisingly impactful disease, causing thousands of

deaths per year along with much additional morbidity. Timely knowledge of the outbreak

state is valuable for managing an effective response. The current state of the art is to gather

this knowledge using in-person patient contact. While accurate, this is time-consuming and

expensive. This has motivated inquiry into new approaches using internet activity traces,

based on the theory that lay observations of health status lead to informative features in

internet data. These approaches risk being deceived by activity traces having a coincidental,

rather than informative, relationship to disease incidence; to our knowledge, this risk has

not yet been quantitatively explored. We evaluated both simulated and real activity traces of

varying deceptiveness for influenza incidence estimation using linear regression. We found

that deceptiveness knowledge does reduce error in such estimates, that it may help auto-

matically-selected features perform as well or better than features that require human cura-

tion, and that a semantic distance measure derived from the Wikipedia article category tree

serves as a useful proxy for deceptiveness. This suggests that disease incidence estimation

models should incorporate not only data about how internet features map to incidence but

also additional data to estimate feature deceptiveness. By doing so, we may gain one more

step along the path to accurate, reliable disease incidence estimation using internet data.

This capability would improve public health by decreasing the cost and increasing the timeli-

ness of such estimates.

Author summary

While often considered a minor infection, seasonal flu kills many thousands of people

every year and sickens millions more. The more accurate and up-to-date public health

officials’ view of what the seasonal outbreak is, the more effectively the outbreak can be

addressed. Currently, this knowledge is based on collating information on patients who
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enter the health care system. This approach is accurate, but it’s also expensive and slow.

Researchers hope that new approaches based on examining what people do and share on

the internet may work more cheaply and quickly. Some internet activity, however, has a

history of correspondence with disease activity, but this relationship is coincidental rather

than informative. For example, some prior work has found a correspondence between

zombie-related social media messages and the flu season, so one could plausibly build

accurate flu estimates using such messages that are then fooled by the appearance of a new

zombie movie. We tested flu estimation models that incorporate information about this

risk of deception, finding that knowledge of deceptiveness does indeed produce more

accurate estimates; we also identified a method to estimate deceptiveness. Our results

suggest that estimation models used in practice should use information about both how

inputs maps to disease activity and also what the potential of each input to be deceptive is.

This may get us one step closer to accurate, reliable disease estimates based on internet

data, which would improve public health by making those estimates faster and cheaper.

Introduction

Effective response to disease outbreaks depends on reliable estimates of their status. This pro-

cess of identifying new outbreaks and monitoring ongoing ones—disease surveillance—is a

critical tool for policy makers and public health professionals [1].

The traditional practice of disease surveillance is based upon gathering information from

in-person patient visits. Clinicians make a diagnosis and report that diagnosis to the local

health department. These health departments aggregate the reports to produce local assess-

ments and also pass information further up the government hierarchy to the national health

ministry, which produces national assessments [2]. Our previous work describes this process

with a mathematical model [3].

This approach is accepted as sufficient for decision-making [4, 5] but is expensive, and

results lag real time by anywhere from a week [6] to several months [7, 8]. Novel surveillance

systems that use disease-related internet activity traces such as social media posts, web page

views, and search queries are attractive because they would be faster and cheaper [9, 10]. One

can conjecture that an increase of influenza-related web searches is due to an increase in flu

observations by the public, which in turn corresponds to an increase in real influenza activity.

These systems use statistical techniques to estimate a mapping from past activity to past tradi-

tional surveillance data, then apply that map to current activity to predict current (but not yet

available) traditional surveillance data, a process known as nowcasting.

One specific concern with this approach is that these models can learn coincidental, rather

than informative, relationships [3]. For example, Bodnar and Salathé found a correlation

between zombie-related Twitter messages and influenza [11]; one could plausibly use these

data to build an accurate flu model that would be fooled by the appearance of a new zombie

movie.

More quantitatively, Ginsberg et al. built a flu model using search queries selected from 50

million candidates by a purely data-driven process that considered correlation with influenza-

like-illness in nine regions of the United States [12]. Of the 45 queries selected by the algorithm

for inclusion in the model, 6 (13%) were only weakly related to influenza (3 categorized as

“antibiotic medication”, 2 “symptoms of an unrelated disease”, 1 “related disease”). Of the 55

next-highest-scoring candidates, 8 (15%) were weakly related (3, 2, and 3 respectively) and 19

(35%) were “unrelated to influenza”, e.g. “high school basketball”. That is, even using a high-
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quality, very computationally expensive approach that leveraged demonstrated historical cor-

relation in nine separate geographic settings, one-third of the top 100 features were weakly

related or not related to the disease in question. Fig 1 illustrates this problem for flu using con-

tagiousness-related web searches.

Such features, with a dubious real link to the quantity of interest, pose a risk that the

model may perform well during training but then provide erroneous estimates later when

coincidental relationships fail, especially if they do so suddenly. We have previously pro-

posed a metric called deceptiveness to quantify this risk [3]. This metric quantifies the frac-

tion of an estimate that depends on noise rather than signal and is a real number between 0

and 1 inclusive. Deceptiveness of zero indicates the estimate is based completely on informa-

tive relationships (signal), deceptiveness of one indicates the estimate is based completely on

coincidental relationships (noise), and deceptiveness of 1

2
indicates an equal mix of the two. It

is important to note that deceptiveness has nothing to do with semantic relatedness and its

true values are unknowable; however, below we show that it can be usefully estimated using

relatedness information. We hypothesize that disease nowcasting models that leverage the

deceptiveness of input features (perhaps estimated) have better accuracy than those that do

not.

This is an important question because disease forecasting is improved by better nowcasting.

For example, Brooks et al.’s top-performing entry [13] to the CDC’s flu forecasting challenge

[14] was improved by nowcasting. Lu et al. tested autoregressive nowcasts using several inter-

net data sources and found that they improved 1-week-ahead forecasts [15]. Kandula et al.

measured the benefit of nowcasting to their flu forecasting model at 8–35% [16]. Finally, our

own work shows that a Bayesian seasonal flu forecasting model using ordinary differential

equations benefits from filling a one-week reporting delay with internet-based nowcasts [17].

The present work tests this hypothesis using five seasons of influenza-like-illness (ILI) in

the United States (2011–2016). We selected U.S. influenza because high-quality reference data

are easily available and because it is a pathogen of great interest to the public health commu-

nity. Although flu is often considered a mild infection, it can be quite dangerous for some

populations, including older adults, children, and people with underlying health conditions.

Typical U.S. flu seasons kill ten to fifty thousand people annually [5].

Fig 1. Simple deceptive models for influenza-like illness (ILI). This figure shows five one-feature models that map U.S. Google volume for

contagiousness-related searches to ILI data from the CDC (“how long are you contagious”, “flu contagious”, “how long am i contagious”, “influenza

contagious”, “when are you contagious”). We fit using ordinary least squares linear regression over the first three seasons of the study period. Despite a

good fit during the training period, these models severely overestimate the peaks of the fourth and fifth seasons, demonstrating that a model’s history of

accuracy does not yield accurate predictions in the future if it uses deceptive input features, such as these contagiousness searches. Our deceptiveness
metric quantifies the risk of such divergence.

https://doi.org/10.1371/journal.pcbi.1007165.g001
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Our experiment is a simulation study followed by validation using real data. This lets us test

our approach using fully-known deceptiveness as well as a more realistic setting with estimated

deceptiveness. We trained linear estimation models to nowcast ILI using an extension of ridge

regression [18] called generalized ridge [19] or gridge regression that lets us apply individual

weights to each feature, thus expressing a prior belief on their value: higher value for lower

deceptiveness. We used three classes of input features: (1) synthetic features constructed by

adding plausible noise patterns to ILI, (2) Google search volume on query strings related to

influenza, and (3) Google search volume on inferred topics related to influenza.

We found that accurate deceptiveness knowledge did indeed reduce prediction error, and

in the case of the automatically-generated query string features, as much or more than topic

features that require human curation. We also found that semantic distance as derived from

the Wikipedia article category tree served as a useful proxy for deceptiveness.

The remainder of this paper is organized as follows. We next describe our data sources,

regression approach, and experiment structure. After that, we describe our results and close

with their implications and suggestions for future work.

Methods

Our study period was five consecutive flu seasons, 2011–2012 through 2015–2016, using weekly

data. The first week in the study was the week starting Sunday, July 3, 2011, and the last week

started Sunday, June 26, 2016, for a total of 261 consecutive weeks. We considered each season

to start on the first Sunday in July, and the previous season to end on the day before (Saturday).

We used gridge regression to fit input features to U.S. ILI over a subset of the first three sea-

sons, then used the fitted coefficients to estimate ILI in the fourth and fifth seasons. (We used

this training schedule, rather than training a new model for each week as one might do opera-

tionally, in order to provide a more challenging setting to better differentiate the models). We

assessed accuracy by comparing the estimates to ILI using three metrics: r2 (the square of Pear-

son correlation), root mean squared error (RMSE), and hit rate.

The experiment is a full factorial experiment with four factors, yielding a total of 225 models:

1. Class of input features (3 levels): synthetic features, search query string volume, and search

topic volume.

2. Training period (3): one, two, or three consecutive seasons.

3. Noise added to deceptiveness (5): perfect knowledge of deceptiveness to none at all.

4. Model type (5): ridge regression and four levels of gridge regression.

This procedure is implemented in a Python program and Jupyter notebook, which are

available and documented on GitHub at https://github.com/reidpr/quac/tree/master/

experiments/2019_PLOS-Comp-Bio_Deceptiveness.

The remainder of this section describes our data sources, regression algorithm, experimen-

tal factors, and assessment metrics in detail.

Data sources

We used four types of data in this experiment:

1. Reference data. U.S. national ILI from the Centers for Disease Control and Prevention

(CDC). This is a weekly estimate of influenza incidence.

2. Synthetic features. Weekly time series computed by adding specific types of systematic and

random noise to ILI. These simulated features have known deceptiveness.

Estimating influenza using search query deceptiveness and generalized ridge regression
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3. Flu-related concepts. We used the crowdsourced Wikipedia category tree to enumerate a

set of concepts and estimate the semantic relatedness of each to influenza.

4. Real features. Two types of weekly time series: Google search query strings and Google

search topics. These features are based on the flu-related concepts above and use estimated

flu relatedness as a proxy for deceptiveness.

This section explains the format and quirks of the data, how we obtained them, and how

readers can also obtain them.

Reference data: U.S. influenza-like illness (ILI) from CDC. Influenza-like illness (ILI) is

a syndromic metric that estimates influenza incidence, i.e., the number of new flu infections. It

is the fraction of patients presenting to the health care system who have symptoms consistent

with flu and no alternate explanation [6]. The basic process is that certain clinics called sentinel
providers report the total number of patients seen during each interval along with those diag-

nosed with ILI. Local, provincial, and national governments then collate these data to produce

corresponding ILI reports [6].

U.S. ILI values tend to range between 1–2% during the summer and 7–8% during a severe flu

season [6, 20]. While an imperfect measure (for example, it is subject to reporting and behavior

biases if some groups, like children, are more commonly seen for ILI [21]), it is considered suffi-

ciently accurate for decision-making purposes by the public health community [4, 5].

In this study, we used weekly U.S. national ILI downloaded from the Centers for Disease

Control and Prevention (CDC)’s FluView website [22] on December 21, 2016, six months

after the end of the study period. This delay is enough for reporting backfill to settle sufficiently

[17]. Fig 1 illustrates these data, and they are available as an Excel spreadsheet in S1 Dataset.

Synthetic features: Computed by us. These simulated features are intended to model a

plausible way in which internet activity traces with varying usefulness might arise. Their pur-

pose is to provide an experimental setting with features that are sufficiently realistic and have

known deceptiveness.

Each synthetic feature x is a random linear combination of ILI y, Gaussian random noise ε,

and systematic noise σ (all vectors with 261 elements, one for each week):

x ¼ wiyþ wrεþ wss ð1Þ

1 ¼ wi þ wr þ ws ð2Þ

Because a feature’s deceptiveness (g 2 [0, 1]) is the fraction of the signal attributable to

noise, here we use simply the weight of its systematic noise: g = ws. Importantly, these features

are synthetic, so we know their true deceptiveness and can assess its impact. In the real world,

however, deceptiveness is unknowable and must be estimated using proxies, as we discuss in

the next section.

Random noise ε is a random multivariate normal vector with standard deviation 1. System-

atic noise σ is a random linear combination of seven basis functions σj:

wss ¼
X7

j¼1

wsjsj ð3Þ

ws ¼
X7

j¼1

wsj ð4Þ
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These basis functions, illustrated in Fig 2, simulate sources of systematic noise for internet

activity traces. They fall into three classes:

• Oprah effect [3]: 3 types. These simulate pulses of short-lived traffic driven by media inter-

est. For example, U.S. Google searches for measles were 10 times higher in early 2015 than

any other time during the past five years [23], but measles incidence peaked in 2014 [24].

The three specific bases are: annual σ1, a pulse every year shortly after the flu season peak;

fore σ2, pulses during both the training and test seasons (second, fourth, and fifth); and late
σ3, pulses only during the test seasons (fourth and fifth). The last creates features with novel

divergence after training is complete, producing deceptive features that cannot be detected

by correlation with reference data.

• Drift: 2 types. These simulate steadily changing public interest. For example, as the case defi-

nition of autism was modified, the number of individuals diagnosed with autism increased

[25].

The two bases are: steady σ4, a slow change over the entire study period of five seasons, and

late σ5, a transition from one steady state to another over the fourth season. The latter again

models novel divergence.

• Cycle: 2 types. This simulates phenomena that have an annual ebb and flow correlating with

the flu season. An example is the U.S. basketball season noted above.

The two bases are: annual σ6, cycles continuing for all five seasons, and ending σ7, cycles that

end after the training seasons. The latter again models novel divergence.

In order to build one feature, we need to sample the nine elements of the weight vector

w = (wi, wr, ws1, . . .ws7), which sums to 1. This three-step procedure is as follows. First, wi, wr,

and ws are sampled from a Dirichlet distribution:

ðwi;wr;wsÞ � Dirð1:0; 0:5; 1:5Þ ð5Þ

EðwiÞ ¼
1

3
; EðwrÞ ¼

1

6
; EðwsÞ ¼

1

2
ð6Þ

Next, the relative weight of the three types of systematic noise is sampled:

ðwso;wsd;wscÞ � wsDirð0:3; 0:3; 0:3Þ ð7Þ

Finally, all the weight for each type is randomly assigned with equal probability to a single

basis function:

ðws1;ws2;ws3Þ � wsoMultinomialð1; ½
1

3
;
1

3
;
1

3
�Þ ð8Þ

ðws4;ws5Þ � wsdMultinomialð1; ½
1

2
;
1

2
�Þ ð9Þ

ðws6;ws7Þ � wscMultinomialð1; ½
1

2
;
1

2
�Þ ð10Þ

This procedure yields a variety of high- and low-quality synthetic features. We sampled 500

of them. Fig 3 shows three examples, and Fig 4 shows the deceptiveness histogram. The fea-

tures we used are available in S3 Dataset.

Flu-related concepts: Wikipedia. In order to build a flu nowcasting model based on web

search queries that incorporates an estimate of deceptiveness, we first need a set of influenza-
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Fig 2. Systematic noise basis functions for synthetic features. These functions model plausible mechanisms of how features

are affected by exogenous events.

https://doi.org/10.1371/journal.pcbi.1007165.g002
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related concepts. We used the Wikipedia inter-article link graph to generate a set of candidate

concepts and the Wikipedia article category hierarchy to estimate the semantic relatedness of

each concept to influenza, which we use as a proxy for deceptiveness. An important advantage

of this approach is that it is automated and easily generalizable to other diseases.

Wikipedia is a popular web-based encyclopedia whose article content and metadata are

crowdsourced [26]. We used two types of metadata from a dataset [27] collected March 24,

2016 for our previous work [9] using the Wikipedia API.

First, Wikipedia articles contain many hyperlinks to other articles within the encyclopedia.

This work used the article “Influenza” and the 572 others it links to, including clearly related

articles such as “Infectious disease” and apparently unrelated ones such as “George W. Bush”,

who was the U.S. president immediately prior to 2009 H1N1.

Second, Wikipedia articles are leaves in a category hierarchy. Both articles and categories

have one or more parent categories. For example, one path from “Influenza” to the top of the

tree is: Healthcare-associated infections, Infectious diseases, Diseases and disorders, Health,

Main topic classifications, Articles, and finally Contents. This tree can be used to estimate

semantic relatedness between two articles. The number of levels one must climb the tree before

Fig 3. Example synthetic features. This figure shows the least and most deceptive features and a third with medium deceptiveness.

https://doi.org/10.1371/journal.pcbi.1007165.g003

Fig 4. Deceptiveness histogram for all three feature types. Synthetic features have continuous deceptiveness and are grouped into ten bins, while the

two types of search features have seven discrete deceptiveness levels.

https://doi.org/10.1371/journal.pcbi.1007165.g004
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finding a common category is a metric called category distance [9]; the distance between an

article and itself is 1. For example, the immediate categories of “Infection” include Infectious
diseases. Thus, the distance between these two articles is 2, because we had to ascend two levels

from “Influenza” before discovering the common category Infectious diseases.
We used category distance between each of the 573 articles and “Influenza” to estimate the

semantic relatedness to influenza. The minimum category distance was 1 and the maximum 7.

The basic intuition for this approach is that Wikipedia category distance is a reasonable

proxy for how related a concept is to influenza, and this relatedness is in turn a reasonable

proxy for deceptiveness. For example, consider a distance-1 feature and a distance-7 feature

that are both highly correlated with ILI. Standard linear regression will give equal weight to

both features. However, we conjecture that the distance-7 feature’s correlation is more likely to

be spurious than the distance-1’s; i.e., we posit that the distance-7 feature is more deceptive.

Thus, we give the distance-1 feature more weight in the regression, as described below.

Because category distance is a discrete variable d 2 ½1; 7� \ Z, while deceptiveness g 2 [0, 1]

is continuous, we convert category distance into a deceptiveness estimate ĝ as follows:

ĝ ¼ ð1 � 2�Þ
d � 1

6
þ � ð11Þ

The purpose of � 6¼ 0 is to ensure that features with minimum category distance of 1 receive

regularization from the linear regression, as described below. In our initial data exploration,

the value of � had little effect, so we used � = 0.05; therefore,

ĝ 2 f0:05; 0:20; 0:35; 0:50; 0:65; 0:80; 0:95g. We emphasize that category distance is already a

noisy proxy for deceptiveness. Even with zero noise added to deceptiveness, ĝ 6¼ g.

It is important to realize that because Wikipedia is continually edited, metadata such as

links and categories change over time. Generally, mature topic areas such as influenza and

infectious disease are more stable than, for example, current events. The present study assumes

that the dataset we used is sufficiently correct despite its age; i.e., freshly collected links and cat-

egories might be somewhat different but not necessarily more correct.

The articles we used and their category distances are in S2 Dataset.

Real features: Google searches. Typically, each feature for internet-based disease surveil-

lance estimates public interest in a specific concept. This study uses Google search volume as a

measure of public interest. By mapping our Wikipedia-derived concepts to Google search que-

ries, we obtained a set of queries with estimated deceptiveness. Then, search volume over time

for each of these queries, as well as their deceptiveness, are input for our algorithms.

We tested two types of Google searches. Search query strings are the raw strings typed into

the Google search box. We designed an automated procedure to generate query strings from

Wikipedia article titles. Search topics are concepts assigned to searches by Google using pro-

prietary and unspecified algorithms. We built a map from Wikipedia article titles to topics

manually.

Our procedure to map articles to query strings is:

1. Decode the percent notation in the title portion of the article’s URL [28].

2. Change underscores to spaces.

3. Remove parentheticals.

4. Approximate non-ASCII characters with ASCII using the Python unidecode package [29].

5. Change upper case letters to lower case. (This serves a simplifying rather than necessary

purpose, as the Google Trends API is case-insensitive.)

Estimating influenza using search query deceptiveness and generalized ridge regression
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6. Remove all characters other than alphanumeric, slash, single quote, space, and hyphen.

7. Remove stop phrases we felt were unlikely to be typed into a search box. Matches for the fol-

lowing regular expressions were removed (note leading and trailing spaces):

• “ and\b”

• “^global ”

• “^influenza .? virus subtype ”

• “^list of ”

• “^the ”

This produces a query string for all 573 articles. The map is 1-to-1: each article maps to

exactly one query string, and each query string maps to exactly one article. The process is

entirely automated once the list of stop phrases is developed.

Google search topics is a somewhat more amorphous concept. Searches are assigned to top-

ics by Google’s proprietary machine learning algorithms, which are not publically available

[30]. A given topic is identified by its name or a hexadecimal code. For example, the query

string “apple” might be assigned to “Apple (fruit)” or “Apple (technology company)” based on

the content of the full search session or other factors.

To manually build a mapping between Wikipedia articles and Google search topics, we

entered the article title and some variations into the search box on the Google Trends website

[23] and then selected the most reasonable topic named in the site’s auto-complete box. The

topic code was in the URL. If the appropriate topic was unclear, we discussed it among the

team. Not all articles had a matching topic; we identified 363 topics for the 573 articles (63%).

Among these 363 articles, the map is 1-to-1.

Table 1 shows a few examples of both mappings, and Fig 4 shows the deceptiveness

histograms.

We downloaded search volume for both query strings and topics from the Google Health

Trends API [31] on July 31, 2017. This gave us a weekly time series for the United States for

each search query string and topic described above. These data appear to be a random sample,

changing slightly from download to download.

Each element of the time series is the probability that the reported search session contains

the string or topic, multiplied by 10 million. Searches without enough volume to exceed an

unspecified privacy threshold are set to zero, i.e., we cannot distinguish between few searches

and no searches. For this reason, we removed from analysis searches with more than 2/3 of the

261 weeks having a value of zero. This resulted in 457 usable of 573 query strings (80%) and

349 of 363 topics (96%). Fig 5 shows two of these time series.

Our map and category distances are in S2 Dataset, and the search queries used in Fig 1

are in S4 Dataset. Google’s terms of service prohibit redistribution of the search volume data.

Table 1. Sample Wikipedia articles and the queries to which they map.

Article Query string Topic name Topic code

Sense (molecular biology) sense Sense (Molecular biology) /m/0dpw95

Influenza A virus subtype H9N2 h9n2 Influenza A virus subtype H9N2 (Virus) /m/0b3dc1

George W. Bush george w bush George W. Bush (43rd U.S. President) /m/09b6zr

Löffler’s syndrome loffler’s syndrome none none

https://doi.org/10.1371/journal.pcbi.1007165.t001
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However, others can request the data using the same procedure we used [32]; instructions

accompany the experiment source code.

Gridge regression

Linear regression is a popular approach for mapping features (inputs) to observations (out-

put). This section describes the algorithm and the extensions we used in our experiment to

incorporate deceptiveness information.

The model for linear regression is

y ¼ Xbþ ε ð12Þ

where y is an N × 1 observation vector, X = [1, x1, x2, . . ., xp] is an N × (p + 1) feature matrix

where xi is the N × 1 standardized feature vector (i.e., mean centered and standard deviation

scaled) corresponding to feature i, β is a (p + 1) × 1 coefficient vector, ε�MVN(0, σ2 I), where

MVN(μ, S) is a multivariate normal distribution with mean μ and covariance matrix S, σ2 > 0

is a scalar, and I is an N × N identity. Standardizing the features of X is a convention that places

all features on the same scale.

The goal of linear regression is to find the estimate of β that minimizes the sum-of-squared

residual errors. The ordinary least squares (OLS) estimator b̂OLS solves the following:

b̂OLS ¼ arg min
b

XN

j¼1

yj � b0 �
Xp

i¼1

bixji

 !2

ð13Þ

or in matrix form:

b̂OLS ¼ ðX0XÞ� 1Xy ð14Þ

b̂OLS is the unbiased, minimum variance estimator of β, assuming ε is normally distributed

[33, ch. 1–2]. A prediction corresponding to a new feature vector €x is ŷOLS ¼ €xb̂OLS.

While ŷOLS is unbiased, it is often possible to construct an estimator with smaller expected
prediction error—i.e., with predictions on average closer to the true value—by introducing

some amount of bias through regularization, which is the process of introducing additional

information beyond the data. Also, regularization can make regression work in situations with

more features than observations, like ours.

Fig 5. Search volume for two queries presented to our model. The topic “Influenza A virus (Virus)” shows a seasonal pattern roughly corresponding

to ILI, while the raw query “respiratory system” shows a seasonal pattern that does not correspond to ILI.

https://doi.org/10.1371/journal.pcbi.1007165.g005
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One popular regularization method is called ridge regression [18], which extends OLS by

encouraging the coefficients β to be small. This minimizes:

b̂
ridge
l ¼ arg min

b

XN

j¼1

yj � b0 �
Xp

i¼1

bixji

 !2

þ l
Xp

i¼1

b
2

i

( )

ð15Þ

or equivalently:

b̂
ridge
l ¼ ðX0X þ lIÞ� 1X0y: ð16Þ

The additional parameter λ� 0 controls the strength of regularization. When λ = 0, this

is equivalent to OLS. As λ increases, the coefficient vector β is constrained towards zero more

vociferously. Ridge regression applies the same degree of regularization to each feature, as λ is

common to all features.

A second extension, called generalized ridge regression [19] or gridge regression, adds a fea-

ture-specific modifier κi to the regularization:

b̂
gridge
lk ¼ arg min

b

XN

j¼1

yj � b0 �
Xp

i¼1

bixji

 !2

þ l
Xp

i¼1

kib
2

i

( )

ð17Þ

κi� 0 adjusts the regularization penalty individually for each feature (ridge regression is a spe-

cial case where κi = 1 8 i). Gridge retains closed-form solvability:

b̂
gridge
lk ¼ ðX0X þ lKÞ� 1X0y ð18Þ

where K is a diagonal matrix with κi on the diagonal and zero on the off-diagonals.

Gridge regression allows us to incorporate feature-specific deceptiveness information by

making κi a function of feature i’s deceptiveness. The more deceptive feature i, the larger κi.

Experiment factors

Our experiment had 225 conditions. This section describes its factors: input feature class

(3 levels), training period (3), deceptiveness noise added (5), and regression type (5).

Input feature class. We tested three classes of input features:

1. Synthetic. Randomly generated transformations of ILI, as described above.

2. Search query string. Volume of Google searches entered directly by users, as described

above.

3. Search topic. Volume of Google search topics inferred by Google’s proprietary algorithms,

as described above.

Each feature comprises a time series of weekly data, with frequency and alignment match-

ing our ILI data.

Training period. We tested three different training periods: 1st through 3rd seasons

inclusive (three season), 2nd and 3rd (two seasons), and 3rd only (one season). Because the

4th season contains transitions in the synthetic features, we did not use it for training even

when testing on the 5th season.

Deceptiveness noise added. The primary goal of our study is to evaluate how much

knowledge of feature deceptiveness helps disease incidence models. In the real world, this

knowledge will be imperfect. Thus, one of our experiment factors is to vary the quality of fea-

ture deceptiveness knowledge.
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Our basic approach is to add varying amounts of noise to the best available estimate of

each feature’s deceptiveness ĝ 2 ½0; 1�. Recall that for synthetic features, ĝ ¼ g is known

exactly, while for the search-based features, ĝ is an estimate based on the Wikipedia category

distance.

To compute the noise-added deceptiveness ~g i for feature i, for noise added γ, we simply

select a random other feature j and mix with its deceptiveness: ~g i ¼ ð1 � gÞĝ i þ gĝ j. There are

five levels of this factor:

• Zero noise: γ = 0, i.e., the model gets the best available estimate of gi.

• Low noise: γ = 0.05.

• Medium noise: γ = 0.15.

• High noise: γ = 0.4.

• Total noise: γ = 1, i.e., the model gets no correct information at all about gi.

Models do not know what condition they are in; they get only ~g i, not γ.

Regression type. We tested five types of gridge regression:

1. Ridge regression: κi = 1, i.e., ignore deceptiveness information.

2. Threshold gridge regression: keep features with category distance di� 3 and discard them

otherwise, as in [9]. This is implemented as a threshold ~g i ¼ 0:35, which is applicable to

both search and synthetic features (which have no di).

ki ¼

(
0:1 if ~g i � 0:35

1 otherwise
ð19Þ

3. Linear fridge: ki ¼ ~g i.

4. Quadratic fridge: ki ¼ ~g 2
i .

5. Quartic fridge: ki ¼ ~g 4
i .

These levels are in rough ascending order of deceptiveness importance. (We additionally

tested, but do not report, a few straw-man models to help identify bugs in our code).

All models used λ = 150.9. This value was obtained by 10-fold cross-validation [34]. For

each model, we tested 41 values of λ evenly log-spaced between 10−1 and 107; each fold fitted

a model on the 9 folds left in and then evaluated its RMSE on the one fold left out. The λ with

the lowest mean RMSE (plus a bias of up to 0.02 to encourage λs in the middle of the range)

across the 10 folds, was reported as the best λ for that model. We then used the mean of these

best λs for our experiment.

Assessment of models

To evaluate a model, we apply its coefficients learned during the training period to input fea-

tures during the 52 weeks of the fourth and fifth seasons respectively, yielding estimated ILI ŷ.

We then compare ŷ to reference ILI y for each of the two test seasons. For each model and met-

ric, this yields two scalars.

We report three metrics:

1. r2, the square of the Pearson correlation r. Most previous work reports this unitless metric.
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2. Root mean squared error (RMSE), defined as:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

XN

j¼1

ðyj � ŷjÞ
2

v
u
u
t ð20Þ

has interpretable units of ILI.

3. Hit rate is a measure of how well a prediction captures the direction of change. It is defined

as the fraction of weeks when the direction of the prediction (increase or decrease) matches

the direction of the reference data [10]:

PN
j¼2

signðyj � yj� 1Þ¼
? signðŷj � ŷj� 1Þ

N � 1

ð21Þ

Because it captures the trend (is the flu going up or down?), it directly answers a simple, rel-

evant, and practical public health question.

Results

Output of our regression models is illustrated in Fig 6, which shows 15 selected conditions.

These conditions are close to what would be done in practice: use all available training infor-

mation and add no noise. The differences between gridge regression types are subtle, but they

are real, and close examination shows that the stronger gridge models that place higher impor-

tance on deceptiveness information are closer to the ILI reference data. The remainder of this

section analyzes these differences across all the conditions.

Fig 7 illustrates the effect on error (RMSE) of adding noise to deceptiveness information.

In low-added-noise conditions (γ = 0 or 0.05), the gridge algorithms generally have lower

error (median 0.35, range 0.15 − 0.65) than plain ridge (median 0.46, range 0.31 − 0.97),

while in higher-added-noise conditions (γ = 0.40 or 1) their error is higher (median 0.41,

range 0.24 − 2.7). That is, conditions with better knowledge of deceptiveness outperform

the baseline, and performance declines as deceptiveness knowledge worsens, which is the

expected trend. In addition, we find that quadratic and quartic algorithms tend to produce

lower error than generalized ridge, threshold or linear fridge. Trends in r2 are similar;

see S1 Fig. This supports our hypotheses that (a) incorporating knowledge of feature

deceptiveness can improve estimates of disease incidence based on internet data and (b)

semantic distance, as expressed in the Wikipedia article category tree, is an effective proxy

for deceptiveness.

Fig 8 summarizes the improvement of the four gridge algorithms over plain ridge for all

three metrics in the zero- and low-noise conditions (γ = 0 and 0.05). Over all feature types and

metrics, the gridge algorithms perform a median of 1.4 times better (range 0.7 − 3.8). The best

improvement is seen in synthetic features (median 2.1, range 0.8 − 6.0), while a more modest

but still positive improvement is seen in topic features (median 1.06, median 0.6 − 2.3). These

results suggest that adding low-noise knowledge of deceptiveness to ridge regression improves

error. It also appears that the benefits of gridge level off between quadratic (deceptiveness

squared) and quartic (deceptiveness raised to the fourth power): while quartic sometimes beats

quadratic ridge, it frequently is worse than plain ridge.

We speculate that the lack of observed benefit of gridge on hit rate is due to one or both

of two reasons. First, plain ridge may be sufficiently good on this metric that it has already

reached diminishing returns; recall that in Fig 6 all five algorithms captured the overal trend of
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ILI well. Second, ILI is noisy, with lots of ups and downs from week to week regardless of the

medium-term trend. This randomness may limit the ability of hit rate to assess performance

on a weekly time scale without overfitting. That is, we believe that gridge’s failure to improve

over plain ridge on hit rate is unlikely to represent a concerning flaw in the algorithm.

Fig 6. ILI predictions for zero-added-noise, 3-season-trained models. This figure shows the 15 models in the “ideal” situation: no noise added to

deceptiveness, and trained on all three training seasons. The different types of gridge regression show subtle yet distinct differences, with the models

taking into account deceptiveness more generally being closer to the ILI reference data.

https://doi.org/10.1371/journal.pcbi.1007165.g006

Estimating influenza using search query deceptiveness and generalized ridge regression

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007165 October 1, 2019 15 / 23

https://doi.org/10.1371/journal.pcbi.1007165.g006
https://doi.org/10.1371/journal.pcbi.1007165


Discussion

Our previous work introduced deceptiveness, which quantifies the risk that a disease estima-

tion model’s error will increase in the future because it uses features that are coincidentally,

rather than informatively, correlated with the quantity of interest [3]. This work tests the

hypothesis that incorporating deceptiveness knowledge into a disease nowcasting algorithm

reduces error; to our knowledge, it is the first work to quantitatively assess this question.

To do so, we used simulated features with known deceptiveness as well as two types of

real web search features with deceptiveness estimated using semi- and fully-automated

algorithms.

Fig 7. Gridge regression error compared to plain ridge, 5th season. Gridge algorithms that take into account deceptiveness usually have lower RMSE

than plain ridge, which does not. Further, adding deceptiveness noise usually gives the appropriate trend: worse deceptiveness knowledge means worse

predictions. r2 and RMSE on the 4th season show similar trends, while hit rate shows limited benefit from gridge; these figures are available in S1 Fig.

https://doi.org/10.1371/journal.pcbi.1007165.g007
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Fig 8. Improvement over ridge in zero- and low-noise conditions. This figure illustrates performance of the gridge algorithms divided

by plain ridge in the same condition. The third group compares query string gridge models against topic ridge. Boxes plot the median

with first and third quartiles, and the whiskers show the maximum and minimum. Each box-and-whiskers summarizes 12 data points.

For the two error metrics, increasing the importance of deceptiveness through quadratic gridge yields increasing improvement over

plain ridge, but the trend ends at quartic gridge. Notably, this is true even when comparing query string models (which are completely

automatic) against topic ridge (which requires lots of manual attention), suggesting that deceptiveness information can be used to

replace expensive human judgement. Hit rate, however, seems to gain limited benefit from deceptiveness in this experiment.

https://doi.org/10.1371/journal.pcbi.1007165.g008
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Findings

Our experiment yielded three main findings:

1. Deceptiveness information does help our linear regression nowcasting algorithms, and it

helps more when it is more accurate.

2. A readily available, crowdsourced semantic relatedness measure, Wikipedia category dis-

tance, is a useful proxy for deceptiveness.

3. Deceptiveness information helps automatically generated features perform the same or bet-

ter than similar, semi-automated features that require human curation.

The effects we measured are stronger for the synthetic features than the real ones. We spec-

ulate that this is for two reasons. First, the web search feature types are skewed towards low

deceptiveness, because they are based on Wikipedia articles directly linked from “Influenza”,

while the synthetic features lack this skew. Second, the synthetic features can have zero-noise

deceptiveness information, while the real features cannot, because they use Wikipedia category

distance as a less-accurate proxy. If verified, the second would further support the hypothesis

that more accurate deceptiveness information improves nowcasts.

The third finding is interesting because it is relevant to a long-standing tension regarding

how much human intervention is required for accurate measurements of the real world using

internet data: more automated algorithms are much cheaper, but they risk oversimplifying the

complexity of human experience. For example, our query strings were automatically generated

from Wikipedia article titles, which are written for technical accuracy rather than salience for

search queries entered by laypeople. To select features for disease estimation, one could use a

fully-automated approach (e.g., our query strings), a semi-automated approach (e.g., our top-

ics, which required a manual mapping step), or a fully-manual approach (e.g., by expert elicita-

tion of search queries or topics, which we did not test).

One might expect that a trade-off would be present here: more automatic is cheaper, but

more manual is more accurate. However, this was not the case in our results. The third

box plot group in Fig 8 compares the gridge models using query string features to a baseline of

plain ridge on topic features. Query strings perform favorably regardless of whether the base-

line is plain ridge on query strings or topics, and sometimes the improvement is greater than

gridge using topic features. This suggests that there is not really a trade-off, and fully automatic

features might be among the most accurate.

There are real-world implications for these observations. Adding deceptiveness estimates

can improve nowcasting of disease, and the amount of human attention needed to create good

features may be minimal. In an operational context, disease models should be re-fit whenever

new data become available; for example, in the U.S. for influenza, new ILI data are published

weekly. The computational cost to fit our model is trivial, so this would not be a concern. Our

related work investigates this question directly, finding that our observations hold in a real-

world, real-time flu forecasting context [17].

Limitations

All experiments are imperfect. Due to its finite scope, this work has many limitations. We

believe that the most important ones are:

• Wikipedia is changing continuously. While we believe that these changes would not have a

material effect on our results, we have not tested this.

• Wikipedia has non-semantic categories, such as the roughly 20,000 articles in category Good
article that our algorithm that would assign distance 1 from each other. We have not yet
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encountered any other relevant non-semantic categories, and “Influenza” is not a Good
article, so we believe this limitation does not affect the present results. However, any future

work extending our algorithms should exclude these categories from the category distance

computation.

• The mapping from Wikipedia articles to Google query strings and topics has not been opti-

mized. While we have presented mapping algorithms that are reasonable both by inspection

and supported by our current and prior [9] results, we have not compared these algorithms

to alternatives.

• Linear regression algorithm metaparameters were not fully evaluated. For example, � was

assigned using our expert judgement rather than experimentally optimized.

• Other methods of feature generation may be better. This experiment was not designed to

evaluate the full range of feature generation algorithms. In particular, direct elicitation of fea-

tures such as query strings and topics should be evaluated.

• The deceptiveness metric itself is unrelated to semantic information; it is a measure of the

risk of correlation changes. However, we use a deceptiveness proxy that is entirely driven by

semantic relatedness. In the present work, this is a useful proxy that does appear to improve

models, but it may not generalize to all other applications.

Future work

This is an initial feasibility study using a fairly basic nowcasting model. At this point, the

notion of deceptiveness for internet-based disease estimation is promising, but continued and

broader positive results are needed to be confident in this hypothesis. In addition to addressing

the limitations above, we have two groups of recommendations for future work.

First, multiple opportunities to improve nowcasting performance should be investigated.

Additional deceptiveness-aware fitting algorithms such as generalized lasso [35] and general-

ized elastic net [36] should be tested. Category distance also has opportunities for improve-

ment. For example, it can be made finer-grained by measuring path length through the

Wikipedia category tree rather than counting the number of levels ascended: the distance

between “Influenza” and “Infection” would become 3, taking into account that Infectious dis-
eases was a direct category of the latter. Finally, alternate deceptiveness estimates need test-

ing, for example category distance based on the medical literature. In addition to better

nowcasting, utility needs to be demonstrated when deceptiveness-aware nowcasts augment

best-in-class forecasting models, such as those doing well in the CDC’s flu forecasting chal-

lenge [14].

Second, we are optimistic that our algorithms will generalize well to different diseases and

locations. This is because our best feature-generation algorithm is fully automated, making it

straightforward to generalize by simply offering new input. For example, to generate features

for dengue fever in Colombia, one could: start with the article “Dengue fever” in Spanish Wiki-

pedia; write a set of Spanish stop phrases; use the Wikipedia API to collect links from that arti-

cle and walk the category tree; pull appropriate search volume data from Google or elsewhere;

and then proceed as described above. Future studies should evaluate generalizability to a vari-

ety of disease and location contexts.

Conclusion

We present a study testing the value of deceptiveness information for nowcasting disease inci-

dence using simulated and real internet features and generalized ridge regression. We found
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that incorporating such information does in fact help nowcasting; to our knowledge, ours is

the first quantitative evaluation of this question.

Based on these results, we hypothesize that other internet-based disease estimation methods

may also benefit from including feature deceptiveness estimates. We look forward to further

research yielding deeper insight into the deceptiveness question.

Supporting information

S1 Dataset. Influenza-like-illness (ILI) data from the Centers for Disease Control and Pre-

vention (CDC). These data are public domain. Our value-add is simply to clarify the dates and

reformat the data.

Tab “ILINet_National” (unchanged download from the CDC):

• REGION TYPE: Always “National”.

• REGION: Always “X”.

• YEAR: Year of row.

• WEEK: Week number of row.

• AGE n −m (6 columns): ILI case count in the specified age range.

• ILITOTAL: Total ILI case count (all ages).

• NUM. OF PROVIDERS: Number of reporting ILI providers.

• TOTAL PATIENTS: Total number of patients seen at reporting ILI providers.

Tab “data” (our reformatted version):

• Start date: Sunday starting the week.

• End date: Saturday ending the week.

• Year: Year of row.

• Week: Week number of row.

• provider_ct: Number of reporting ILI providers.

• national: National ILI average, weighted by state population.

(XLS)

S2 Dataset. Mapping of Wikipedia article URLs to Google search queries and topics. Row 1

gives totals of each column. Columns:

• article: Wikipedia article URL.

• raw query: Google search query string derived from Wikipedia article URL.

• topic: Google search topic we think best matches the Wikipedia article.

• topic code: Hexadecimal code for Google search topic.

• raw found: 1 if query string found in the Google Health Trends API, 0 if not.

• topic found: 1 if topic found in GHT API, 0 if not.

(XLSX)
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S3 Dataset. Synthetic features used in our study. Column “Start date”: Sunday starting the

week. Remaining columns: Value of synthetic feature i on that week.

(XLSX)

S4 Dataset. List of raw queries used in Fig 1.

(XLSX)

S1 Fig. Error for metrics and seasons not shown in Fig 7.

(PDF)
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