
Infectious Disease Modelling 6 (2021) 664e677
Contents lists available at ScienceDirect
Infectious Disease Modelling

journal homepage: www.keaipubl ishing.com/idm
Yellow fever virus outbreak in Brazil under current and future
climate

Tara Sadeghieh a, b, c, *, Jan M. Sargeant a, b, Amy L. Greer a, b, Olaf Berke a, b,
Guillaume Dueymes d, Philippe Gachon d, Nicholas H. Ogden c, Victoria Ng c

a Population Medicine, University of Guelph, Guelph, Ontario, Canada
b Centre for Public Health and Zoonoses, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
c Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, St. Hyacinthe,
Qu�ebec, Canada
d ESCER (�Etude et Simulation du Climat �a l’�Echelle R�egionale) Centre, Universit�e du Qu�ebec �a Montr�eal, Qu�ebec, Canada
a r t i c l e i n f o

Article history:
Received 5 January 2021
Received in revised form 20 February 2021
Accepted 5 April 2021

Handling editor. Dr HE DAIHAI HE

Keywords:
Yellow fever
Mosquito-borne disease
Climate change
Infectious disease model
Temperature
* Corresponding author. University of Guelph, 50
E-mail address: tsadeghi@uoguelph.ca (T. Sadeg
Peer review under responsibility of KeAi Comm

https://doi.org/10.1016/j.idm.2021.04.002
2468-0427/© 2021 The Authors. Publishing services
BY-NC-ND license (http://creativecommons.org/licen
a b s t r a c t

Introduction: Yellow fever (YF) is primarily transmitted by Haemagogus species of
mosquitoes. Under climate change, mosquitoes and the pathogens that they carry are
expected to develop faster, potentially impacting the case count and duration of YF out-
breaks. The aim of this study was to determine how YF virus outbreaks in Brazil may
change under future climate, using ensemble simulations from regional climate models
under RCP4.5 and RCP8.5 scenarios for three time periods: 2011e2040 (short-term), 2041
e2070 (mid-term), and 2071e2100 (long-term).
Methods: A compartmental model was developed to fit the 2017/18 YF outbreak data in
Brazil using least squares optimization. To explore the impact of climate change,
temperature-sensitive mosquito parameters were set to change over projected time pe-
riods using polynomial equations fitted to their relationship with temperature according to
the average temperature for years 2011e2040, 2041e2070, and 2071e2100 for climate
change scenarios using RCP4.5 and RCP8.5, where RCP4.5/RCP8.5 corresponds to inter-
mediate/high radiative forcing values and to moderate/higher warming trends. A sensi-
tivity analysis was conducted to determine how the temperature-sensitive parameters
impacted model results, and to determine how vaccination could play a role in reducing YF
in Brazil.
Results: Yellow fever case projections for Brazil from the models varied when climate
change scenarios were applied, including the peak clinical case incidence, cumulative
clinical case incidence, time to peak incidence, and the outbreak duration. Overall, a
decrease in YF cases and outbreak duration was observed. Comparing the observed inci-
dence in 2017/18 to the projected incidence in 2070e2100, for RCP4.5, the cumulative case
incidence decreased from 184 to 161, and the outbreak duration decreased from 21 to 20
weeks. For RCP8.5, the peak case incidence decreased from 184 to 147, and the outbreak
duration decreased from 21 to 17 weeks. The observed decrease was primarily due to
temperature increasing beyond that suitable for Haemagogus mosquito survival.
Conclusions: Climate change is anticipated to have an impact on mosquito-borne diseases.
We found outbreaks of YF may reduce in intensity as temperatures increase in Brazil;
however, temperature is not the only factor involved with disease transmission. Other
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factors must be explored to determine the attributable impact of climate change on
mosquito-borne diseases.
© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications

Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Yellow fever (YF) virus is a Flavivirus similar to dengue and Zika virus and is endemic to South America and Africa. In South
America, it is transmitted by Haemagogus janthinomys and Haemagogus leucocelaenus species of mosquitoes in jungle en-
vironments, and occasionally by Aedes aegypti and Aedes albopictus in urban environments (de Abreu et al., 2019). In general,
YF virus transmission occurs in sylvatic cycles where mosquitoes feed on, and transmit, YF virus between non-human pri-
mates; however, humans living in or travelling along the border between forested and peri-urban or in rural areas can easily
be infected when bitten by infectious mosquitoes. Yellow fever virus can also be transmitted in an urban environment;
however, this has not been documented in Brazil since the 1940s (Bryant et al., 2007; Chippaux& Chippaux, 2018). Symptoms
of YF include fever, headache, muscle pain, nausea, vomiting, and fatigue (Monath& Vasconcelos, 2015). The virus attacks the
liver, causing jaundice, hence the name of the disease. Approximately 55% of individuals with YF virus are asymptomatic, 26%
have mild symptoms, while 19% experience severe symptoms that can lead to death (Johansson et al., 2014; Monath, 2001).
An effective, safe and affordable vaccine is available, and a single dose is sufficient to provide immunity for life. Immunity is
reached within ten days for 80e100% of vaccinated individuals and within 30 days for 99% of vaccinated individuals (Monath
& Vasconcelos, 2015). There are currently no specific antiviral medications for YF.

In South America, YF virus is generally endemic in the Amazon, and parts of Peru, Colombia, Venezuela, Guyana, Surinam,
French Guiana, and Brazil (Chippaux& Chippaux, 2018; Ministry of Health, 2018; Nishino et al., 2016). While the last urban YF
epidemic occurred in the 1930s in Brazil, there has been a recent re-emergence of sylvatic YF that has the potential to transmit
to urban locations (Chippaux & Chippaux, 2018; Ministry of Health, 2018; Nishino et al., 2016). The reason for the re-
emergence of YF virus in Brazil is not fully understood. The re-emergence may be due to increasing deforestation, which
increases the contact between the canopy-dwelling Haemagogus spp. and humans, travel and migration between endemic
and epidemic regions, and low immunization coverage in some areas that were previously not considered at-risk for YF
(Chaves, Conn, L�opez,& Sallum, 2018; Chen, Kozarsky,& Visser, 2019; Chippaux& Chippaux, 2018; Dyer, 2017; Ortiz-Martinez
et al., 2017).

In Brazil, YF outbreaks generally occur between November and April, during the rainy season (Ministry of Health, 2018).
The averagemonthly temperature in 2018 ranges from 22 �C to 26 �C. These temperatures are typical in Brazil, as the historical
monthly average temperatures from 1971 to 2000 also range from 22 �C to 26 �C (Giorgi et al., 2009). During the 2017/18
season, there were 1257 confirmed cases and 394 deaths (Ministry of Health, 2018). The majority of cases were in rural areas.
The outbreak was declared by the Ministry of Health in Brazil, and we defined an outbreak as an increase in the number of
cases over the normal yearly case numbers (Portia et al., 2014).

Climate change is a change in global or regional climate patterns, primarily attributed to the increased atmospheric carbon
dioxide produced by the use of fossil fuels (Nema et al., 2012). The future climate is projected using representative con-
centration pathways (RCPs), which are defined by their total cumulative measure of human-produced greenhouse gas
emissions by 2100 (van Vuuren, Edmonds, Kainuma, Riahi, Thomson, et al., 2011). There are four RCP pathways: RCP2.6, which
includes a strict mitigation scenario and the least emissions; RCP4.5 and RCP6.0, which are moderate scenarios, and represent
a 2 �C temperature increase globally; and RCP8.5, which is the worst-case scenario, includes high emissions, and represents a
4 �C increase in global annual mean temperature (IPCC, 2014; van Vuuren et al., 2011).

In Brazil, climate change may cause an overall increase in temperature (Nema et al., 2012). New regions in Brazil may be
hospitable to mosquitoes with the changing climate, such as in more temperate regions (Lowe et al., 2018). In contrast, other
regions, such as parts of the Amazon, may become inhospitable to the vectors (Lowe et al., 2018). Temperature has an impact
on mosquito birth and death rate, as well as the extrinsic incubation period (EIP); the time between a mosquito acquiring a
virus and being able to transmit it (Ciota& Keyel, 2019; Kamal et al., 2018; Wu, Peak, et al., 2016). For Haemagogus spp., under
increasing temperatures, the development rate is expected to increase as the mosquito moves through its life stages faster;
the death rate is expected to decrease until 25 �C, the temperature threshold at which the death rate of mosquitoes begins to
increase; and the EIP is expected to decrease as the replication rate of the virus in the mosquito increases (Lee et al., 2016;
Marinho et al., 2016; Suparit et al., 2018; Tesla et al., 2018). These relationships between temperature and mosquito ecology
may change mosquito distributions throughout Brazil and impact the pathogens’ transmission rate between humans and
mosquitoes (Kamal et al., 2018). In Brazil, high rainfall and a temperature increase of 2 �Cwithin the last decadewere followed
by an increased number of YF cases in non-human primates, and then human cases (Almeida et al., 2014; de Thoisy et al.,
2020). With the anticipated increase in cases with increasing temperature, it is expected that an increase in imported
cases will also be observed. Cases of YF have already been imported to other countries from South America, such as the
Netherlands and Canada (Hamer et al., 2018; PHAC, 2016). To date, there have been 15 imported cases reported in Canada
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(PHAC, 2020). The number of imported cases was likely much higher due to asymptomatic cases and reporting bias. There
were no known imported cases reported in Canada during the South American 2017/18 outbreak (PHAC, 2020).

Many models have investigated YF virus transmission in humans (Raimundo et al., 2015; J. T., 2016; Wu, Peak, et al., 2016;
Yusuf & Daniel, 2019; Zhao et al., 2018) and the importation of YF from South America to other countries (Brent et al., 2018;
Dorigatti et al., 2017; Johansson et al., 2012; Sakamoto et al., 2018). A research gap exists in modelling YF virus transmission
under climate change scenarios. It is expected that the number of cases will continue to rise in Brazil due to climate change, as
seen in other modelling studies in other subtropical locations (Ryan et al., 2018; Tesla et al., 2018; Wu, Peak, et al., 2016). The
extent of the anticipated change has not been quantified in Brazil to date.

The objective of this study was to develop a mathematical compartmental model for YF virus transmission in humans and
to investigate how YF virus outbreaks in Brazil may change under future climate from regional climate model simulations,
using RCP4.5 and RCP8.5 scenarios for three time periods 2011e2040 (short-term), 2041e2070 (mid-term), and 2071e2100
(long-term).

Materials and methods

Model format

We simulated the 2017/2018 YF virus outbreak in Brazil by modifying a compartment model describing chikungunya
dynamics created by Yakob and Clements (Yakob & Clements, 2013), as YF virus and chikungunya virus are both spread by
mosquitoes, have latent periods and asymptomatic carriers of the virus (Fig. 1). The 2017/18 YF virus outbreak was used to the
determine a baseline scenario and estimate the model outputs of an outbreak similar to the one in 2017/18 in future climate
scenarios. Further information on the model format and equations can be found in appendix (A.1).

We made four simplifying assumptions: first, the human population was closed (i.e., no births or natural deaths were
included in the model). The mosquito population was open, as we assumed that the mosquitoes would die while they are
infectious due to their short lifespan (maximum 20 days; Bates, 1947). Second, we assumed that there was a homogeneously
mixed population, where all humans and mosquitoes in Brazil were equally likely to acquire and transmit YF virus. Third, we
assumed that transmission was occurring between humans and mosquitoes and did not include non-human primates as
intermediate hosts. We modelled Haemagogus spp. as the mosquito vector of interest, as they were the vectors implicated in
the Brazil outbreak (deAbreau et al., 2019). Fourth, we assumed that the intrinsic incubation period and recovery ratewere the
same for both symptomatic and asymptomatic individuals. The model was developed in R (R Core Team, 2019, Vienna,
Austria).

Optimization

We used least squares optimization to estimate the transmission parameters from mosquitoes to humans and from
humans to mosquitoes, the initial number of susceptible mosquitoes, and the initial number of exposed mosquitoes. We
Fig. 1. Model structure representing the compartments, where S are susceptible humans, E are exposed humans, I are symptomatic infectious humans, A are
asymptomatic infectious humans, R are recovered humans, D are the human deaths due to YF, X are susceptible mosquitoes, Y are exposed mosquitoes, and Z are
infectious mosquitoes. The virus is transmitted from mosquitoes to humans with a probability of b1 when infectious mosquitoes take a blood feed from sus-
ceptible humans, and the virus is transmitted from humans to mosquitoes with a probability of b2 when susceptible mosquitoes take a blood meal from infectious
humans (asymptomatic and symptomatic, as denoted by the dotted line). Parameters are described in Table 1.
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conducted the optimization by fitting the human symptomatic infectious compartment to the 2017/2018 YF virus case count
data in Brazil (Ministry of Health, 2018). The case count data were extracted from the Brazilian Ministry of Health epidemic
curve using ImageJ (Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, https://imagej.nih.
gov/ij/, 1997e2018). To capture the heterogeneity in the parameters used to model YF outbreaks, parameters were drawn
from a set of probability distributions according to the literature (Table 1). The parameter distributions were identified using
maximum likelihood estimation, as implemented by the fitdistplus package in R (Delignette-Muller & Dutang, 2015). To
determine the best fit parameters, we found the global minimum by running ten thousand iterations using the box-constraint
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS-B) algorithm. The algorithm finds the global minimum by using a gradient
projection method of optimization with a set of constraints for each iteration (Byrd et al., 1995). The optimization was
conducted using R’s optim function (R Core Team, 2019, Vienna, Austria).
Current and future Climate scenarios

Climate data for the period when the 2017/2018 outbreak occurred was not necessary as the climatic conditions under
which it occurred are inherent in the data and thus assumed to represent the current climate period. For future climate
scenarios, we obtained South American monthly minimum and maximum temperature (�Celsius) data from an ensemble of
regional climate models (RCMs). These data were obtained from the COordinated Regional Downscaling EXperiment (COR-
DEX; Giorgi et al., 2009) datasets for the South America Domain with a horizontal resolution of 0.44� (SAM-44; CORDEX-
SAM44, n.d.). An ensemble climate model was created for the monthly minimum and maximum temperatures (�Celsius)
for each RCP4.5 and RCP8.5 scenario (van Vuuren et al., 2011) for years 2011e2100 using ten individual models’ combinations
(A.2). We chose to use RCP4.5 and RCP8.5 as they represent a middle- and worst-case climate change scenario by 2100 (van
Vuuren et al., 2011). We used these RCPs for consistency and greater sample size, due to the limited number of simulations
available for other RCPs. We used two R packages, R raster (Hijmans, 2019) and maptools (Bivand & Lewin-Koh, 2019), to
extract the temperature data for Brazil. We obtained the monthly mean temperature by averaging the minimum and
maximum temperatures for both RCP scenarios using amoving five-year average, and then averaged these values across years
for each month from 2011 to 2040, 2041e2070, and 2071e2100; these time periods represent short-, medium-, and long-
term projected climate change scenarios.

We developed polynomial equations for each of the three temperature-dependent mosquito parameters (EIP, death rate,
and development rate) using laboratory data (Table 3 and Fig. 2). The best-fit polynomial equations were chosen based on an
analysis of variance (ANOVA) test, where the best-fit polynomial was chosen on a significance level of 0.05. The equations
were then used with the best parameter estimates for the model from the 2017/2018 YF virus outbreak to estimate the
number of symptomatic infectious individuals over time for both RCP4.5 and RCP8.5 for each time period. It was assumed that
the outbreak was being introduced into a populationwhere 80% of the population was immune in each time period, due to a
combination of both natural immunity and vaccination (Machado et al., 2013; Shearer et al., 2017).
Sensitivity analysis

A sensitivity analysis was conducted to examine how sensitive the model outcomes (the peak incidence, number of weeks
to the peak, and the duration of the outbreak) were to temperature changes related to the temperature-dependent pa-
rameters (mosquito death and development rates and the EIP), and to determine whether a parameter was more or less
sensitive to climate. The analysis was conducted by determining the value of the parameters using polynomial equations
(Table 3) associated with the parameters with a 1 �C difference. The temperatures used were 25 �C and 26 �C, as 25 �C is the
temperature at which the death rate of mosquitoes begins to increase. The model was, then, run with the new parameter
values one-by-one for each new parameter value (a total of six times), while keeping the other parameters the same as the
base model.

An additional analysis was conducted to explore the impact of vaccination and herd immunity on YF transmission by
reducing the proportion of the susceptible human population from 10% to 90% in 10%-increments. The model was run with
the parameters used for the base model for each proportion.
Results

Fitted model using 2017/18 outbreak data

Model results showed a good fit between the symptomatic infectious individuals and observed incidence (Fig. 3). The
model underestimated the peak incidence by 30 cases, the cumulative incidence by 4 cases, and number of weeks to peak by 1
week, but overestimated the duration of the outbreak by 6 weeks (Table 4). All best fit parameters and variables are shown in
Tables 1 and 2 respectively.
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Table 1
Parameter values in the YF model including best fit parameters for the 2017/18 YF virus outbreak in Brazil (Ministry of Health, 2018). The value of the
parameter was chosen from the associated distribution. The distributions were used to introduce heterogeneity into themodel parameters when conducting
the least squares optimization.

Symbol Name Description Value per week
(distribution)

Source

b1 Transmission rate
(mosquito to human)

Rate at which mosquitos infect humans 5.22e-7
infections per
week

Fit to the 2017/18 YF virus outbreak in Brazil
(Ministry of Health, 2018)

b2 Transmission rate
(human to mosquito)

Rate at which humans infect mosquitos 1e-12
infections per
week

Fit to the 2017/18 YF virus outbreak in Brazil
(Ministry of Health, 2018)

4 Proportion of
symptomatic
humans

Proportion of infected individuals who develop symptoms 0.45 Johansson et al. (2014)

u Death rate (humans) Average of the rate of death per week of symptomatic
humans during the 2016/17 and 2017/18 YF outbreaks

2.38 human
deaths per
week

World Health Organization (2019)

1= l1 Incubation period
(human)

Rate of symptom onset after initial infection per week
(human)

1.31 per human
week
Gamma
(1.17,2.33)

(Johansson et al., 2010; Monath, 2001)

1= l2 Extrinsic incubation
period (mosquito)

Rate of viraemic onset after initial infection per week
(mosquito)

0.54 per
mosquito week
Gamma
(0.5,0.7)

(Bates & Roca-Garcia, 1946; Johansson et al.,
2010; Monath, 2001)

1= g Duration of
infectiousness

Rate of viraemia completion after infection (symptomatic
and asymptomatic humans)

0.82 per
mosquito week
Pert (0.63,0.85)

(Johansson et al., 2012; Massad et al., 2001)

m Death rate
(mosquito)

Rate at which mosquitoes die per week 0.36 per
mosquito week
Pert (0.35,1.4)

Bates (1947)

d Development rate
(mosquito)

Rate at which mosquitoes develop from hatching to adult
per week

0.58 per
mosquito week
Pert (0.5,0.7)

(Alencar et al., 2008; Bates, 1947; Degallier
et al., 2006; T�atila-Ferreira et al., 2017)
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Climate change projection models

The number of cases at peak for both RCP scenarios decreased compared to the 2017/18 outbreak numbers. For RCP4.5
(Fig. 4) there was a 1.1-fold decrease between the modelled results and the short-term time period (18 cases at peak), a 1.02-
fold decrease between short- and medium-term (4 cases at peak), and a 1.01-fold decrease between medium- and long-term
(2 cases at peak), indicating a decreasing trend as the temperature increases (Table 4). A similar patternwas also observed for
the cumulative case counts and estimated number of deaths. The number of weeks to the peak number of symptomatic cases
remained the same, while the duration of the outbreak decreased as the temperature increased (from 22 to 20 weeks) (Table
4).

For RCP8.5 (Fig. 5), there was a 1.10-fold decrease in the peak number of cases between the 2017e2018 outbreak and the
short-term time period (18 cases at peak), a 1.05-fold decrease between short- and medium-term (8 cases at peak), and a
1.08-fold decrease between medium- and long-term time periods (12 cases at peak), showing downward trend of YF cases in
Brazil with increasing temperature. A similar pattern was observed for the cumulative incidence and estimated number of
deaths. The number of weeks to the peak remained the same while the duration of the outbreak decreased as temperature
increases (21e17 weeks) (Table 4).

Sensitivity analysis

The death rate was the most influential parameter amongst the three climate-sensitive parameters reducing peak inci-
dence by 12 cases (Table 5). There was no change to the development rate due to temperature. For EIP, the peak incidence
increased slightly by 4 cases.

The proportion of the population with immunity had a substantial impact on the overall epidemic curve, resulting in a
reduction in outbreak peak from 868 cases (10% immunity) to 99 cases (90% immunity) and the duration of the outbreak from
28 weeks (10% immunity) to 20 weeks (90% immunity) (Fig. 6 and Table 6).

Discussion

The objective of this paper was to develop a mathematical model for YF virus transmission between humans and
mosquitoes in Brazil and to determine how the epidemiology of the YF virus outbreak may change as a result of changing
668



Table 2
Best fit initial conditions used in the YF model, fitted to the 2017/18 YF virus outbreak in Brazil (Ministry of Health, 2018).

Symbol Name Value Source

N Total human
population

209,469,000 United Nations Population Division (2019)

S Susceptible humans 41,893,754 Total human population minus remaining human compartments (N e E � I e A e R)
Approximately 20% of the population is estimated to be susceptible.

E Exposed humans 0 Estimated
I Infectious humans

(symptomatic)
21 First day of case count

A Infectious humans
(asymptomatic)

25 Estimated from proportion of symptomatic humans

R Recovered 0.8*N Estimated, where about 50e60% of the overall population show immunization records (Shearer et al.,
2017) and 97% of a rural Brazilian population show titres to YF virus (Machado et al., 2013)

D Total human deaths
due to YF

0 Estimated

M Total mosquito
population

418,938,000 Estimated double human population (Fitzgibbon et al., 2017; Wang et al., 2017)

X Susceptible mosquitoes 418,937,761 Total mosquito population minus remaining mosquito components (M e Y e Z)
Y Exposed mosquitoes 150 Fitted to the 2017/18 YF virus outbreak in Brazil (Ministry of Health, 2018)
Z Infectious mosquitoes 995 Fitted to the 2017/18 YF virus outbreak in Brazil (Ministry of Health, 2018)

Table 3
Polynomial equations to describe the parameters’ relationship to temperature (�C).

Parameter Polynomial Equation Source

Extrinsic incubation period 1/(96.69e2.8 T)*7 Bates and Roca-Garcia (1946)
Death rate (mosquito) 4.76e0.38 T þ 0.008T2 Bates (1947)
Development rate (mosquito) �0.32 þ 0.03 T Bates (1947)

Fig. 2. Plots showing the relationship of the three climate-dependent parameters (EIP, death rate, and development rate) with temperature (�C). The red circles
indicate the original laboratory data points for EIP (Bates & Roca-Garcia, 1946), and the mosquito death and development rates (Bates, 1947).
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climatic conditions, which are expected to alter mosquito dynamics. Our key findings were that with increasing temperature,
YF virus outbreaks in Brazil would decrease in duration and total incidence, with both values lower when compared to the
2017/18 outbreak. The reduction in the outbreak is contradictory to some previous modelling studies, which show the
outbreak intensity of mosquito-borne diseases is likely to increase in locations similar to Brazil (Gaythorpe et al., 2020;
Hamlet et al., 2018; Tesla et al., 2018). We also found that of all the temperature-sensitive parameters in the model, the
mosquito death rate was more influential on model outcomes than the development rate and EIP. Finally, our YF vaccination
analysis identified that outbreak intensity is closely linked to herd immunity; acquired either via infection or vaccination.

Our study showed for both RCP scenarios, the number of cases and outbreak duration reduced with increasing temper-
ature. The reduction in cases and outbreak duration with increasing temperature is contrary to previous modelling studies
which noted an increase in cases (Tesla et al., 2018; Gaythorpe et al., 2020; Hamlet et al., 2018). In a previous modelling study,
669



Fig. 3. Number of modelled clinical human cases (black line) by week compared to the observed incidence of the 2017/18 YF virus outbreak in Brazil, from
December to April (red dots and dashed line).
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it was noted that an increase in temperature would increase the cases of Zika virus in the Americas (Tesla et al., 2018),
although this study was on Zika virus and Aedes spp. of mosquitoes, not YF virus and Haemagogus spp. The other studies were
conducted on African YF virus and the same increase in cases with increasing temperature was noted (Gaythorpe et al., 2020;
Hamlet et al., 2018). While the general patterns are the same, the development and death rate of Haemagogus spp. over
temperature are different from Aedes spp (Marinho et al., 2016; Tesla et al., 2018). Research has indicated that, as temperature
increases, Haemagogus mosquito development rate increases linearly, while the mosquito death rate was parabolic and
declined until 25 �C before increasing (Bates, 1947) (Fig. 2). Although our findings are contrary to previous studies, it does
have similar findings to some. Amodelling study in Australia noted a reduction in the incidence and duration of dengue due to
increasing temperature. The authors indicated that the decrease may be due to higher mosquito death; although, the
mosquito vector used in the model was Aedes aegypti rather than Haemagogus spp. (Williams et al., 2016). Another study was
conducted in Africa, and noted that with increasing temperature, African climate may become more suitable for Aedes spp. of
mosquitoes and the transmission of arboviruses, such as dengue, rather than Anopheles spp. of mosquitoes and malaria
(Mordecai et al., 2020). Thus, it is possible that a humid tropical/sub-tropical region, like Brazil, may also experience a change
in the incidence of disease, due to changes in the suitability of the climate to the different mosquito species.

We found that the mosquito death rate was more influential on the model output than mosquito development rate and
EIP. This could further explain the decrease in the number of cases as temperature increases, because the number of
mosquitoes that survive the EIP diminishes. This would reduce the population of infectious mosquitoes and, in turn, trans-
mission. Another study found the mosquito lifecycle to be important in explaining dengue outbreaks, as infected mosquitoes
must survive the length of the EIP before they are able to spread dengue (Lee et al., 2018), and while this study was conducted
on Aedes spp., Haemagogus spp. must also survive the length of the EIP before being able to transmit YF virus.

Finally, our findings on the impact of vaccination on the model outcomes showed that the proportion of individuals with
immunity (either naturally acquired or via vaccination) significantly influenced the model outcomes. Similar findings have
been shown for the African strain of YF virus where a national vaccination campaign increased vaccination uptake by 70%
which subsequently reduced the number of cases by 5.6-fold (Zhao et al., 2018).

Our study is not without limitations. First, we assumed that the intrinsic incubation period and recovery rate were the
same for both symptomatic and asymptomatic individuals, thus we could have overestimated the values of these parameters,
as it is likely these values are reduced for an asymptomatic individual. Next, we used some simplifying assumptions and did
not capture Brazil’s population or geographic heterogeneity, or stochasticity, which can influence parameters in the model
(Carlson et al., 2016; Perkins et al., 2016). Our model also did not consider changes that may occur over time in Brazil, such as
socio-economic status, urbanization, deforestation and other land changes, which have an impact on both exposure and
mosquito-borne diseases by introducing more cases as contact between human and mosquito populations increases (Chaves
et al., 2018; Lambin et al., 2010; MacDonald & Mordecai, 2019). Previous studies have noted that precipitation impacts
mosquito-borne diseases by creating or destroying potential egg-laying locations (Alto & Juliano, 2001; Lega et al., 2017).
Precipitation in Brazil is expected to decrease under future climate conditions (IPCC, 2014). The interaction between pre-
cipitation and temperature, and the subsequent impact on Haemagogus spp. of mosquitoes is currently unknown and may
have impacted our model results. Although this is the case, the amount of uncertainty is high in climate models regarding
precipitation over tropical areas, especially for extreme rainfall over continental areas (IPCC, 2013; Kent et al., 2015; Wootten
et al., 2017). Further research is required using precipitation from CORDEX runs. Despite our model’s simplicity, it can be used
as a framework for more complex models.

Further research should be conducted on Haemagogus spp. of mosquitoes, as little is known about how the increasing
temperature will impact their development, death rate and EIP, and the papers describing these values may be outdated
(Bates, 1947; Bates & Roca-Garcia, 1946). Additionally, region-specific or heterogeneous models could be created, including
parameters, that are different across Brazil, both at the present climate and future climate. Further research could be con-
ducted to determine which regions may be more likely to experience an increase in cases and which would experience a
decrease in cases, based on such variables as climate and geography.
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Table 4
Model results fitted to the current outbreak and under future climates (RCP4.5 and RCP8.5) for short-, medium-, and long-term time periods. Each column is
presented from blue (lowest value) to white (medium) to red (highest value). The percentages below the values represent the difference between the
observed and predicted values. For reference, the estimated projected population of Brazil averaged across the short-, medium-, and long-term time periods
are 221,537,000, 230,769,000, and 22-,976,000 respectively (United Nations Population Division, 2019).

Fig. 4. Symptomatic infectious humans (Compartment I) model output for scenario RCP4.5, from 2011 to 2040 (blue), 2041e2070 (orange), and 2071e2100 (red),
compared to the model output fitted to the 2017/18 YF virus outbreak (black circles and line).

T. Sadeghieh, J.M. Sargeant, A.L. Greer et al. Infectious Disease Modelling 6 (2021) 664e677

671



Fig. 5. Symptomatic infectious humans (compartment I) model output projected under RCP8.5, from 2011 to 2040 (blue), 2041e2070 (orange), and 2071e2100
(red), compared to the model output fitted to the 2017/18 YF virus outbreak (black circles and line).
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Conclusion

Weprojected YF outbreaks in Brazil based on the 2017/18 outbreak under two climate change scenarios.We found that the
increase in temperature in subtropical/tropical countries, such as Brazil, results in a potential reduction in YF peak incidence,
cumulative incidence, outbreak duration, and the number of weeks to the peak to levels below the intensity of the 2017/18
outbreak. Based on these findings, we anticipate that future outbreaks of YF in Brazil will be less intense, due to parts of Brazil
becoming unsuitable for Haemagogus spp. of mosquitoes to survive, and suboptimal for YF virus replication under climate
change. While the reduction in outbreak intensity is positive, it is important to remember that the impact of climate on
mosquito-borne diseases involves multiple factors beyond temperature, such as precipitation and future land use, and that
Aedes spp. can also transmit the YF virus. Additionally, different countries with different climate or geographymay experience
an increase in outbreak sizes, rather than a decrease, highlighting the importance of context when planning for public health
inventions and future strategies. Our study provides a baseline for modelling YF in Brazil using Haemagogus spp. as the
mosquito vector and highlights the need for further study on these mosquito species.
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Appendix. 1

In the simulation, humans move through the compartments from the susceptible compartment (compartment S) to
exposed compartment (compartment E), to the infectious compartments (either symptomatic, compartment I, or asymp-
tomatic, compartment A), and finally to either the recovered compartment (compartment R) or the disease-induced death
compartment (compartment D). The mosquitoes move from the susceptible compartment (compartment X) to the exposed
compartment (compartment Y), and then to the infectious compartment (compartment Z). When infectious mosquitoes bite
susceptible humans, successfully infected humans move from compartment S to compartment E. When susceptible
mosquitoes feed on infectious humans (compartments I and A), a proportion of the mosquitoes move from compartment X to
compartment Y. Individuals remain in the recovered compartment after infection as humans have life-long immunity to the
disease (Monath, 2001). These dynamics are described with the following ordinary differential equations, where the pa-
rameters and initial conditions are outlined in Tables 1 and 2 respectively:

dS
dt

¼ � b1SZ

dE

dt

¼ b1SZ � l1E
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Table 5
Results of the sensitivity analysis for the mosquito death rate (m), mosquito development rate (d), and EIP (l2), The parameter values were calculated using
their respective relationships to temperature (Table 3, Fig. 2) at 25 �C and 26 �C. Each column is presented from blue (lowest value) to white (medium) to red
(highest value).

Fig. 6. Number of symptomatic infectious YF virus cases by week from the 2017/18 outbreak data (black dots and line) compared to modelled cases at 10%
population (purple), 20% immunization (blue), 30% immunization (green), 40% immunization (dark orange), 50% immunization (orange), 60% immunization (red),
70% immunization (yellow), 80% immunization (cyan), and 90% immunization (magenta). The model was fitted using 80% immunization (cyan) which represents
the closest fit to the observed data (Machado et al., 2013; Shearer et al., 2017).
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dI
dt

¼ 4l1E � gI � uI

dA

dt

¼ð1�4Þl1E � gA

dR

dt

¼gðIþAÞ

dD

dt

¼uI
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Table 6
Model outcomes (peak incidence, cumulative incidence, number of disease-induced deaths, number of weeks to peak, and duration of outbreak) for various
proportion of immunized individuals (either natural or acquired). Each column is presented from blue (lowest value) to white (medium) to red (highest
value). The percentages below the values are the percent change when the outcome value is compared to 80%, as that is the immunization level used in the
model.
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dX
dt

¼ dM � b2XðIþAÞ � mX

dY

dt

¼ b2XðIþAÞ� l2Y � mY

dZ

dt

¼ l2Y � mZ
Appendix. 2

Table A.1
The ten simulations used in this study from Regional Climate Models (RCMs) driven by different Coupled Global Climate Models (GCMs). The simulations use
the two Representative Concentration Pathways (RCP4.5 and RCP8.5). This South American climate data was obtained from the CORDEX-SAM44 database
(CORDEX-SAM44, n.d.). All RCMs use a grid at around 0.44� of horizontal resolution.
Regional Climate Model D
riven conditions from
Coupled Global Climate Model
(CGCM)

I

675
nstitution for CGCMs
RCA4-v3 from the Rossby Centre regional
atmospheric model (RCA4; Strandberg
et al., 2014)

C
SIRO-QCCCE-CSIRO-Mk3-6-0 T
he Commonwealth Scientific and Industrial Research Organisation
(CSIRO, Australia) and Queensland Climate Change Centre of Excellence
(QCCCE), Australia
CCCma-CanESM2 C
anadian Centre for Climate Modelling and Analysis (CCCma), Canada

IPSL-IPSL-CM5A-MR I
nstitut de recherche en sciences de l’environnement (IPSL), France

NCC-NorESM1-M N
orwegian Climate Centre (NCC), Norway

ICHEC-EC-EARTH I
rish Centre for High-End Computing (ICHEC), Ireland

MPI-M-MPI-ESM-LR M
ax Planck Institut für Meteorologie (MPI), Germany

NOAA-GFDL-GFDL-ESM2M N
ational Oceanic and Atmospheric Administration (NOAA), United States

of America

MIROC-MIROC5 M
odel for Interdisciplinary Research on Climate (MIROC), Japan

MOHC-HadGEM2-ES M
et Office Hadley Centre (MOHC), United Kingdom
REMO2009 from the Climate
Service Centre Germany (GERICS);
Jacob et al. (2012)

M
PI-M-MPI-ESM-LR M
PI, Germany
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