

Received 5 September 2018 Accepted 19 September 2018

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China

Keywords: crystal structure; imidazol; ethanaminium; ethanaminium chloride; Hirshfeld surface.

CCDC reference: 1868580

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure and Hirshfeld surface analysis and of 2-ammoniumylmethyl-1*H*-benzimidazol-3-ium chloride monohydrate

Pinar Sen,^a Sevgi Kansiz,^b Necmi Dege,^b S. Zeki Yildiz^c and Galyna G. Tsapyuk^d*

^aUskudar University, Faculty of Engineering and Natural Sciences, Department of Forensic Science, 34662, Istanbul, Turkey, ^bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Kurupelit, Samsun, Turkey, ^cSakarya University, Faculty of Arts and Sciences, Department of Chemistry, 54187 Sakarya, Turkey, and ^dDepartment of General Chemistry, O. O. Bohomolets National Medical University, Shevchenko Blvd. 13, 01601 Kiev, Ukraine. *Correspondence e-mail: tsapyuk@ukr.net

The asymmetric unit of the title compound, $C_8H_{11}N_3^{2+}\cdot 2Cl^-\cdot H_2O$, contains three organic cations, six chloride anions and three water molecules of crystallization, which are connected by extensive hydrogen-bonding interactions into a three-dimensional supramolecular architecture. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from $H \cdots H$ (37.4%), $Cl \cdots H/H \cdots Cl$ (35.5%), $C \cdots H/H \cdots Cl$ (9.5%) and $C \cdots C$ (6.9%) interactions.

1. Chemical context

Heterocyclic compounds containing nitrogen such as benzimidazoles and their derivatives have attracted attention because of their medicinal applications as antiulcer, anticancer, antifungal, antimycobacterial and anti-inflammatory agents (El-masry *et al.*, 2000). Besides being important pharmacophores, in particular amine-substituted benzimidazoles are good intermediates for the synthesis of different organic compounds (Maurya *et al.*, 2007). General methods for the preparation of benzimidazoles involve the reaction of *o*-phenylenediamine and carboxylic acid or its derivatives under harsh dehydrating conditions or with aldehydes followed by oxidation (Peng *et al.*, 2014).

We report herein the compound 2-aminomethylbenzimidazole dihydrochloride (ambmz·2HCl) prepared as described previously (Wu *et al.*, 2008)

2. Structural commentary

The asymmetric unit of the title compound contains three organic cations, six chloride anions and three water molecules of crystallization, which are connected by $O-H\cdots Cl$, $N-H\cdots O$ and $N-H\cdots Cl$ hydrogen bonds (Fig. 1). The r.m.s. deviations of the benzimidazolium ring systems are 0.0085 Å

research communications

Table 1	
Hydrogen-bond	geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O1-H1A\cdots Cl4^{i}$	0.82 (2)	2.63 (2)	3.4431 (15)	168 (3)
$O1 - H2B \cdot \cdot \cdot Cl2$	0.81(2)	2.36 (2)	3.1598 (18)	169 (3)
$O2-H2C\cdots Cl3$	0.82(2)	2.33 (2)	3.1244 (17)	165 (2)
$O2-H2D\cdots Cl1$	0.81 (1)	2.64 (1)	3.4492 (15)	171 (3)
$O3-H3D\cdots Cl5^{ii}$	0.80(2)	2.69 (2)	3.4586 (15)	164 (3)
$O3-H3E\cdots Cl6^{ii}$	0.82(2)	2.32 (2)	3.1364 (18)	173 (3)
$N1 - H1 \cdot \cdot \cdot O1$	0.83 (2)	1.92 (2)	2.746 (2)	174 (2)
$N2-H2\cdots Cl1^{iii}$	0.71(2)	2.44 (2)	3.1519 (17)	175 (2)
$N3-H3 \cdot \cdot \cdot Cl3$	0.88 (3)	2.30 (3)	3.105 (2)	153 (2)
$N3-H3A\cdots Cl1$	0.86 (4)	2.26 (3)	3.119 (2)	173 (3)
N3-H3 B ···Cl4 ^{iv}	0.99 (3)	2.33 (2)	3.267 (2)	156.8 (19)
$N4-H4A\cdots O2$	0.85 (2)	1.91 (2)	2.754 (2)	171 (2)
$N5-H5A\cdots Cl5$	0.83 (2)	2.31 (2)	3.1205 (17)	165 (2)
$N6-H6A\cdots Cl2$	0.87 (3)	2.33 (3)	3.107 (2)	150 (2)
$N6-H6B\cdots Cl1^{v}$	0.98 (3)	2.36 (2)	3.287 (2)	158.2 (18)
$N6-H6C\cdots Cl4^{i}$	0.79 (3)	2.35 (4)	3.1347 (19)	176 (3)
$N7 - H7 \cdot \cdot \cdot O3$	0.85 (3)	1.89 (3)	2.742 (2)	175 (3)
$N8-H8\cdots Cl4$	0.81(2)	2.31 (2)	3.1049 (17)	172 (2)
N9 $-$ H9 A ···Cl6	0.83 (3)	2.35 (3)	3.100 (2)	151 (2)
N9-H9 B ···Cl5	0.80(3)	2.32 (2)	3.120 (2)	176 (2)
N9−H9C···Cl5 ^{vi}	0.99 (3)	2.34 (3)	3.270 (2)	157 (2)
$C4-H4\cdots Cl1^i$	0.92 (2)	2.81 (2)	3.535 (2)	136.7 (16)
$C8-H8B\cdots Cl3^{vii}$	0.93 (3)	2.65 (3)	3.544 (2)	162 (2)

Symmetry codes: (i) x, y - 1, z; (ii) -x, -y + 1, -z + 1; (iii) -x + 3, -y, -z + 2; (iv) x + 1, y - 1, z; (v) x - 1, y, z; (vi) -x + 1, -y + 1, -z + 1; (vii) -x + 2, -y, -z + 2.

for N1/N2/C1–C7, 0.0076 Å for N4/N5/C9–C15, 0.0063 Å for N7/N8/C17–C23 with maximum deviations from planarity of 0.0169 (13) Å for atom C7, 0.0149 (13) Å for atom C15 and 0.0132 (13) Å for atom C23, respectively. The observed bond lengths are in good agreement with previously reported values (Cui, 2011).

3. Supramolecular features

The crystal packing of the title compound features extensive hydrogen bonding (Table 1 and Fig. and 2) involving all three O atoms and all nine N atoms. N5–H5A···Cl5, N8–H8···Cl4, N2–H2···Cl1ⁱⁱ, N9–H9C···Cl5^{vi} and N6–H6B···Cl1^v hydrogen bonds link the ions into chains along the *c*-axis direction. These chains are linked by O–H···Cl and N–H···O hydrogen bonds, generating a three-dimensional network (Fig. 2).

Figure 1

The molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 20% probability level.

Figure 2

The view of the crystal packing of the title compound. Dashed lines denote the hydrogen bonds.

4. Hirshfeld surface analysis

The Hirshfeld surface analysis was performed using *Crystal Explorer* (Turner *et al.*, 2017). The Hirshfeld surfaces, illustrated in Fig. 3, and their associated two-dimensional fingerprint plots were used to quantify the various intermolecular

Figure 3 The Hirshfeld surface of the title compound mapped over d_{norm} , d_{i} and d_{c} .

research communications

Figure 4 Hirshfeld surface mapped over d_{norm} to visualize the intermolecular interactions of the title compound.

interactions in the synthesized complex. Red spots on the Hirshfeld surfaces indicate the intermolecular contacts involved in strong hydrogen bonds and interatomic contacts (Gümüş *et al.*, 2018; Kansız *et al.*, 2018; Kansız & Dege, 2018). The red spots in Fig. 4 correspond to the H···Cl contacts resulting from the N-H···Cl and O-H···Cl hydrogen bonds. The Hirshfeld surfaces were mapped using a standard (high) surface resolution with the three-dimensional d_{norm} surfaces mapped over a fixed colour scale of -0.518 (red) to 1.174 (blue) a.u..

Fig. 5 shows the two-dimensional fingerprint plot of all the contacts contributing to the Hirshfeld surface represented in normal mode. Fig. 6 shows the two-dimensional fingerprint plots of the (d_i, d_e) points associated with various atoms. H...H contacts contribute 37.4% to the Hirshfeld surface. The graph for Cl···H/H···Cl shows the contacts between the chlorine atoms inside the Hirshfeld surface and the hydrogen atoms outside the surface and *vice versa*, and has two symmetrical wings on the left and right sides (35.5%). Further, there are C···H/H···C (9.5%), C···C (6.9%), O···H/H···O (4.1%) and N···H/H···N (3.4%) contacts.

Figure 6

Two-dimensional fingerprint plots with a d_{norm} view of the H···H (37.4%), Cl···H/H···Cl (35.5%), C···H/H···C (9.5%) and C···C (6.9%) contacts in the title compound.

5. Synthesis and crystallization

o-Phenylenediamine (10.8 g, 99.87 mmol) and glycine (10.00 g, 133.2 mmol) were dissolved in 5.5 M HCl (150 mL). The reaction mixture was purged by argon at room temperature and heated up to reflux temperature for 12 h. The reaction was monitored by TLC. After completion of the reaction, the mixture was concentrated to 50 mL and kept at 269 K for 2 d. The crystals were filtered off and washed twice with acetone and dried to give the desired product (Fig. 7).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. C-bound H atoms were positioned geometrically with C—H distances of 0.93–0.97 Å. and refined as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$. N-bound H atoms were located in difference-Fourier maps and refined isotropically. The coordinates of the water H atoms were determined from a difference-Fourier map and refined isotropically subject to a restraint of O—H = 0.82 (4) Å.

Figure 7 The synthesis of the title compound.

research communications

Table 2Experimental details.

Crystal data Chemical formula $C_8H_{11}N_3^+ \cdot 2Cl^- \cdot H_2O \cdot$ 238.11 M_r Crystal system, space group Triclinic, $P\overline{1}$ Temperature (K) 296 6.9340 (4), 12.1198 (7), *a*, *b*, *c* (Å) 19.2128 (11) $\begin{array}{l} \alpha,\,\beta,\,\gamma\,(^{\circ}) \\ V\,(\mathrm{\AA}^{3}) \end{array}$ 99.859 (5), 90.647 (5), 90.247 (5) 1590.64 (16) Ζ 6 Radiation type Μο Κα $\mu \,({\rm mm}^{-1})$ 0.58 $0.57 \times 0.50 \times 0.46$ Crystal size (mm) Data collection Diffractometer Stoe IPDS 2 Absorption correction Integration (X-RED32; Stoe & Cie, 2002) T_{\min}, T_{\max} 0.788, 0.828 No. of measured, independent and 16045, 6254, 5000 observed $[I > 2\sigma(I)]$ reflections 0.064 $R_{\rm int}$ $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$ 0.617 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.035, 0.092, 0.96 No. of reflections 6254 No. of parameters 536 9 No. of restraints All H-atom parameters refined H-atom treatment $\Delta \rho_{\rm max}, \, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ 0.34. - 0.28

Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002), SHELXL2017/1 (Sheldrick, 2015), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

- Cui, Y. (2011). Acta Cryst. E67, 0625-0626.
- El-masry, A. H., Fahmy, H. H. & Ali Abdelwahed, S. (2000). *Molecules*, 5, 1429–1438.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Gümüş, M. K., Kansız, S., Aydemir, E., Gorobets, N. Y. & Dege, N. (2018). J. Mol. Struct. 1168, 280–290.
- Kansız, S., Almarhoon, Z. M. & Dege, N. (2018). Acta Cryst. E74, 217–220.
- Kansız, S. & Dege, N. (2018). J. Mol. Struct. 1173, 42-51.

Maurya, M. R., Chandrakar, A. K. & Chand, S. (2007). J. Mol. Catal. A Chem. 263, 227–237.

- Peng, P., Xiong, J., Mo, G., Zheng, J., Chen, R., Chen, X. & Wang, Z. (2014). Amino Acids, 46, 2427–2433.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.
- Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *Crystal Explorer17.5*. University of Western Australia, Perth.
- Wu, H.-Y., Li, H., Zhu, B.-L., Wang, S.-R., Zhang, S.-M., Wu, S.-H. & Huang, W.-P. (2008). *Transition Met. Chem.* 33, 9–15.

supporting information

Acta Cryst. (2018). E74, 1517-1520 [https://doi.org/10.1107/S205698901801335X]

Crystal structure and Hirshfeld surface analysis and of 2-ammoniumylmethyl)-1*H*-benzimidazol-3-ium chloride monohydrate

Pinar Sen, Sevgi Kansiz, Necmi Dege, S. Zeki Yildiz and Galyna G. Tsapyuk

Computing details

Data collection: *X-AREA* (Stoe & Cie, 2002); cell refinement: *X-AREA* (Stoe & Cie, 2002); data reduction: *X-RED32* (Stoe & Cie, 2002); program(s) used to solve structure: *WinGX* (Farrugia, 2012); program(s) used to refine structure: *SHELXL2017/1* (Sheldrick, 2015); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *WinGX* (Farrugia, 2012) and *PLATON* (Spek, 2009).

2-Ammoniumylmethyl-1H-benzimidazol-3-ium chloride monohydrate

Crystal data

 $C_{8}H_{11}N_{3}^{+}\cdot 2CI^{-}\cdot H_{2}O \cdot M_{r} = 238.11$ Triclinic, *P*1 a = 6.9340 (4) Å b = 12.1198 (7) Å c = 19.2128 (11) Å a = 99.859 (5)° $\beta = 90.647$ (5)° $\gamma = 90.247$ (5)° V = 1590.64 (16) Å³

Data collection

Stoe IPDS 2 diffractometer Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus Detector resolution: 6.67 pixels mm⁻¹ rotation method scans Absorption correction: integration (X-RED32; Stoe & Cie, 2002) $T_{min} = 0.788$, $T_{max} = 0.828$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.092$ S = 0.966254 reflections 536 parameters 9 restraints Z = 6 F(000) = 744 $D_x = 1.491 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 18110 reflections $\theta = 1.7-27.4^{\circ}$ $\mu = 0.58 \text{ mm}^{-1}$ T = 296 KPrism, brown $0.57 \times 0.50 \times 0.46 \text{ mm}$

16045 measured reflections 6254 independent reflections 5000 reflections with $I > 2\sigma(I)$ $R_{int} = 0.064$ $\theta_{max} = 26.0^\circ, \theta_{min} = 1.7^\circ$ $h = -8 \rightarrow 8$ $k = -14 \rightarrow 14$ $l = -23 \rightarrow 23$

Hydrogen site location: difference Fourier map All H-atom parameters refined $w = 1/[\sigma^2(F_o^2) + (0.056P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.34$ e Å⁻³ $\Delta\rho_{min} = -0.28$ e Å⁻³ Extinction correction: SHELXL-2017/1 (Sheldrick 2015), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.0327 (17)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	1.44783 (7)	0.25544 (4)	0.93231 (2)	0.04012 (12)
Cl4	0.55220 (7)	0.93572 (4)	0.73215 (2)	0.03912 (12)
C15	0.44034 (7)	0.39635 (4)	0.59956 (2)	0.04089 (13)
C13	0.85067 (7)	0.04098 (4)	0.91238 (3)	0.04840 (14)
C16	-0.13546 (8)	0.60301 (5)	0.58937 (3)	0.05432 (15)
Cl2	1.13465 (8)	0.15568 (5)	0.74387 (3)	0.05337 (15)
O2	0.9557 (2)	0.29533 (13)	0.93050 (9)	0.0492 (3)
01	1.0439 (2)	-0.10288 (14)	0.73035 (9)	0.0517 (4)
N4	0.7622 (2)	0.41261 (12)	0.84094 (8)	0.0332 (3)
O3	0.0525 (2)	0.64579 (14)	0.39493 (9)	0.0553 (4)
N7	0.2335 (2)	0.81071 (13)	0.48888 (8)	0.0333 (3)
N5	0.6592 (2)	0.46067 (13)	0.74372 (9)	0.0347 (3)
N1	1.2273 (2)	-0.21584 (13)	0.82407 (8)	0.0334 (3)
N2	1.3362 (2)	-0.25722 (14)	0.92226 (9)	0.0376 (4)
N8	0.3400 (2)	0.90994 (13)	0.58704 (9)	0.0358 (3)
N6	0.7067 (3)	0.17781 (15)	0.79023 (10)	0.0427 (4)
N9	0.2868 (3)	0.60170 (15)	0.53791 (10)	0.0447 (4)
N3	1.2803 (3)	0.02017 (15)	0.86850 (10)	0.0421 (4)
C14	0.7037 (2)	0.55975 (14)	0.78881 (9)	0.0314 (4)
C22	0.2942 (2)	0.98527 (15)	0.54300 (9)	0.0323 (4)
C9	0.7708 (2)	0.52904 (14)	0.85148 (9)	0.0315 (4)
C15	0.6935 (2)	0.37525 (15)	0.77671 (9)	0.0335 (4)
C1	1.2214 (2)	-0.33227 (14)	0.81587 (9)	0.0324 (4)
C17	0.2255 (2)	0.92225 (14)	0.48021 (9)	0.0319 (4)
C10	0.8268 (3)	0.60738 (16)	0.90934 (10)	0.0369 (4)
C18	0.1652 (2)	0.97150 (16)	0.42385 (10)	0.0355 (4)
C7	1.2981 (2)	-0.17423 (15)	0.88773 (9)	0.0339 (4)
C2	1.1642 (3)	-0.41361 (16)	0.75996 (10)	0.0377 (4)
C6	1.2930 (2)	-0.35839 (15)	0.87927 (10)	0.0349 (4)
C13	0.6926 (3)	0.67112 (16)	0.78093 (11)	0.0385 (4)
C23	0.3047 (2)	0.80652 (15)	0.55283 (9)	0.0342 (4)
C20	0.2469 (3)	1.15029 (16)	0.49646 (11)	0.0392 (4)
C21	0.3055 (3)	1.10154 (16)	0.55279 (11)	0.0382 (4)
C12	0.7490 (3)	0.74911 (16)	0.83844 (11)	0.0394 (4)
C5	1.3092 (3)	-0.46915 (17)	0.88878 (11)	0.0421 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C19	0.1785 (3)	1.08684 (16)	0.43313 (10)	0.0389 (4)
C4	1.2532 (3)	-0.54982 (17)	0.83351 (12)	0.0443 (5)
C11	0.8145 (3)	0.71817 (16)	0.90146 (11)	0.0401 (4)
C8	1.3424 (3)	-0.05475 (17)	0.91637 (11)	0.0414 (4)
C16	0.6469 (3)	0.25681 (17)	0.74466 (11)	0.0428 (4)
C3	1.1819 (3)	-0.52313 (17)	0.77020 (12)	0.0423 (4)
C24	0.3525 (3)	0.70519 (18)	0.58323 (12)	0.0458 (5)
H2	1.384 (3)	-0.2526 (17)	0.9558 (11)	0.028 (5)*
H18	0.111 (3)	0.9325 (18)	0.3840 (12)	0.044 (6)*
H10	0.873 (3)	0.5879 (16)	0.9522 (11)	0.033 (5)*
H2A	1.108 (3)	-0.3947 (17)	0.7161 (11)	0.039 (5)*
H11	0.854 (3)	0.7742 (19)	0.9433 (11)	0.046 (6)*
H19	0.136 (3)	1.1218 (17)	0.3927 (11)	0.039 (5)*
H20	0.255 (3)	1.223 (2)	0.5012 (12)	0.048 (6)*
H13	0.649 (3)	0.6891 (17)	0.7361 (11)	0.039 (5)*
H12	0.740 (3)	0.816 (2)	0.8342 (12)	0.050 (6)*
H21	0.350 (3)	1.1439 (19)	0.5987 (12)	0.047 (6)*
Н5	1.355 (3)	-0.4842 (19)	0.9333 (12)	0.050 (6)*
H4	1.264 (3)	-0.6238 (19)	0.8385 (11)	0.040 (5)*
H5A	0.608 (3)	0.4556 (18)	0.7041 (12)	0.041 (6)*
H1	1.179 (3)	-0.179 (2)	0.7956 (13)	0.055 (7)*
H4A	0.811 (3)	0.372 (2)	0.8683 (12)	0.052 (6)*
H8	0.393 (3)	0.9236 (17)	0.6251 (12)	0.036 (5)*
H24A	0.291 (3)	0.710 (2)	0.6289 (13)	0.058 (7)*
H24B	0.491 (5)	0.697 (3)	0.5884 (17)	0.101 (10)*
H7	0.183 (4)	0.757 (2)	0.4601 (14)	0.063 (7)*
H9A	0.167 (4)	0.600 (2)	0.5354 (13)	0.058 (7)*
H16A	0.518 (4)	0.253 (2)	0.7334 (15)	0.076 (8)*
H9B	0.325 (4)	0.551 (2)	0.5559 (13)	0.055 (7)*
H9C	0.336 (4)	0.593 (2)	0.4891 (16)	0.080 (9)*
H16B	0.709 (3)	0.2385 (19)	0.7019 (13)	0.052 (6)*
H3C	1.143 (3)	-0.581 (2)	0.7340 (12)	0.050 (6)*
H8A	1.472 (4)	-0.045 (2)	0.9269 (13)	0.061 (7)*
H8B	1.282 (4)	-0.035 (2)	0.9596 (14)	0.066 (7)*
H6A	0.831 (4)	0.176 (2)	0.7947 (13)	0.061 (8)*
H6B	0.660 (3)	0.194 (2)	0.8388 (14)	0.059 (7)*
H6C	0.667 (4)	0.118 (3)	0.7738 (15)	0.065 (8)*
H2C	0.920 (3)	0.2322 (16)	0.9337 (14)	0.063 (8)*
H2D	1.072 (2)	0.289 (2)	0.9267 (17)	0.098 (12)*
H3A	1.316 (4)	0.087 (3)	0.8871 (16)	0.086 (10)*
H3B	1.330 (3)	0.000(2)	0.8197 (14)	0.060 (7)*
Н3	1.154 (4)	0.022 (2)	0.8652 (12)	0.056 (7)*
H3D	-0.062 (3)	0.649 (3)	0.3941 (19)	0.106 (12)*
H3E	0.082 (4)	0.5804 (16)	0.3962 (15)	0.071 (9)*
H1A	0.926 (3)	-0.102 (3)	0.7339 (18)	0.100 (12)*
H2B	1.076 (4)	-0.0391 (16)	0.7286 (15)	0.069 (9)*

supporting information

Atomic displacement parameters $(Å^2)$

	<i>L</i> /11	<i>L</i> ¹²²	<i>L</i> ³³	<i>L</i> ¹²	<i>L</i> /13	<i>L</i> /23
<u></u>	0.0420 (2)	0.0200 (2)	0.0260 (2)	0.00027 (18)	_0.00272 (18)	0.00520 (18)
CII CI4	0.0439(2)	0.0399(2)	0.0300(2)	-0.00037(18)	-0.00373(18) -0.00346(18)	0.00330(18)
C14 C15	0.0430(2) 0.0447(3)	0.0388(2) 0.0395(2)	0.0348(2) 0.0378(2)	-0.00130(18)	-0.00340(18) -0.00542(18)	0.00430(18) 0.00547(18)
CI3	0.0447(3)	0.0393(2)	0.0378(2)	-0.00350(18)	0.00342(18)	0.00347(18)
CIS CI6	0.0480(3)	0.0438(3)	0.0518(3)	0.0020(2)	-0.0013(2)	0.0112(2)
C10 C12	0.0303(3)	0.0508(3)	0.0013(3)	-0.0003(2)	-0.0013(2) -0.0007(2)	0.0085(2)
02	0.0491(3)	0.0319(3)	0.0000(3)	-0.0049(2) -0.0016(7)	-0.0007(2)	0.0120(2)
02	0.0490(9)	0.0438(9)	0.0338(9)	-0.0010(7) -0.0045(7)	-0.0070(7)	0.0121(7)
NI4	0.0473(9)	0.0340(9)	0.0300(9)	-0.0043(7)	-0.0098(7)	0.0209(8)
N4 O2	0.0340(7)	0.0320(7)	0.0337(8)	0.0003(0)	-0.0023(0)	0.00/1(0)
03	0.0496 (9)	0.0456 (9)	0.0652(10)	0.0011 (7)	-0.0110(8)	-0.0056(7)
N/	0.0323(7)	0.0331(8)	0.0331(8)	-0.0025(6)	-0.0008(6)	0.0017(6)
NO NI	0.0336 (8)	0.0387 (8)	0.0314 (8)	0.0013 (6)	-0.0032 (6)	0.0047(6)
NI	0.0317(7)	0.0359 (8)	0.0341 (8)	-0.0008 (6)	-0.0022 (6)	0.0106 (6)
N2	0.0333 (8)	0.0494 (10)	0.0314 (9)	-0.0017(7)	-0.0053 (7)	0.0107 (7)
N8	0.0342 (8)	0.0420 (9)	0.0298 (8)	-0.0059 (6)	-0.0038 (6)	0.0028 (6)
N6	0.0505 (11)	0.0310 (9)	0.0451 (10)	-0.0057 (8)	0.0012 (8)	0.0025 (7)
N9	0.0501 (11)	0.0375 (9)	0.0485 (11)	0.0051 (8)	0.0010 (8)	0.0128 (8)
N3	0.0469 (10)	0.0358 (9)	0.0426 (10)	-0.0042 (7)	0.0018 (8)	0.0034 (7)
C14	0.0264 (8)	0.0346 (9)	0.0331 (9)	0.0007 (6)	0.0018 (7)	0.0052 (7)
C22	0.0265 (8)	0.0378 (9)	0.0315 (9)	-0.0035 (7)	0.0011 (7)	0.0027 (7)
C9	0.0275 (8)	0.0312 (8)	0.0357 (9)	-0.0003 (6)	0.0023 (7)	0.0054 (7)
C15	0.0295 (8)	0.0347 (9)	0.0353 (9)	0.0001 (7)	0.0003 (7)	0.0029 (7)
C1	0.0266 (8)	0.0355 (9)	0.0361 (9)	-0.0010 (7)	0.0026 (7)	0.0093 (7)
C17	0.0274 (8)	0.0337 (9)	0.0334 (9)	-0.0023 (6)	0.0034 (7)	0.0019 (7)
C10	0.0349 (9)	0.0406 (10)	0.0343 (9)	-0.0015 (7)	0.0003 (7)	0.0042 (8)
C18	0.0306 (8)	0.0423 (10)	0.0320 (9)	-0.0003 (7)	0.0002 (7)	0.0016 (8)
C7	0.0287 (8)	0.0391 (9)	0.0343 (9)	-0.0018 (7)	0.0006 (7)	0.0073 (7)
C2	0.0319 (9)	0.0440 (10)	0.0371 (10)	-0.0025 (7)	0.0017 (7)	0.0066 (8)
C6	0.0269 (8)	0.0417 (10)	0.0378 (9)	0.0014 (7)	0.0008 (7)	0.0112 (8)
C13	0.0334 (9)	0.0399 (10)	0.0442 (11)	0.0032 (7)	0.0036 (8)	0.0130 (8)
C23	0.0291 (8)	0.0384 (9)	0.0353 (9)	-0.0026 (7)	0.0008 (7)	0.0066 (7)
C20	0.0344 (9)	0.0343 (10)	0.0485 (11)	-0.0028 (8)	0.0075 (8)	0.0051 (8)
C21	0.0318 (9)	0.0384 (10)	0.0408 (10)	-0.0061 (7)	0.0020 (8)	-0.0030 (8)
C12	0.0359 (9)	0.0307 (9)	0.0519 (12)	0.0024 (7)	0.0068 (8)	0.0076 (8)
C5	0.0339 (9)	0.0470 (11)	0.0498 (12)	0.0041 (8)	0.0033 (8)	0.0202 (9)
C19	0.0349 (9)	0.0419 (10)	0.0412 (10)	0.0012 (7)	0.0053 (8)	0.0100 (8)
C4	0.0354 (10)	0.0389 (10)	0.0608 (13)	0.0044 (8)	0.0106 (9)	0.0146 (10)
C11	0.0351 (9)	0.0367 (10)	0.0457 (11)	-0.0036 (7)	0.0058 (8)	-0.0013 (8)
C8	0.0423 (11)	0.0437 (11)	0.0362 (10)	-0.0059 (8)	-0.0033 (9)	0.0017 (8)
C16	0.0494 (12)	0.0369 (10)	0.0398 (11)	-0.0013 (8)	-0.0073 (9)	-0.0001 (8)
C3	0.0349 (9)	0.0401 (10)	0.0509 (12)	-0.0025 (8)	0.0069 (8)	0.0044 (9)
C24	0.0478 (11)	0.0460 (11)	0.0456 (12)	-0.0031 (9)	-0.0062 (9)	0.0141 (9)

Geometric parameters (Å, °)

O2—H2C	0.817 (16)	C22—C17	1.391 (2)
O2—H2D	0.812 (17)	C22—C21	1.391 (3)
O1—H1A	0.819 (17)	C9—C10	1.383 (3)
O1—H2B	0.810 (16)	C15—C16	1.494 (3)
N1—C7	1.328 (2)	C1—C2	1.381 (3)
N1—C1	1.393 (2)	C1—C6	1.396 (2)
N1—H1	0.83 (2)	C17—C18	1.384 (2)
N2—C7	1.322 (2)	C10-C11	1.380 (3)
N2—C6	1.386 (3)	C10—H10	0.95 (2)
N2—H2	0.71 (2)	C18—C19	1.381 (3)
N3—C8	1.461 (3)	C18—H18	0.91 (2)
N3—H3A	0.87 (4)	С7—С8	1.488 (3)
N3—H3B	0.99 (3)	C2—C3	1.381 (3)
N3—H3	0.88 (3)	C2—H2A	0.99 (2)
N4—C15	1.322 (2)	C6—C5	1.390 (3)
N4—C9	1.392 (2)	C13—C12	1.377 (3)
N4—H4A	0.85 (2)	C13—H13	0.97 (2)
N5-C15	1.324 (2)	C23—C24	1.484 (3)
N5-C14	1.386 (2)	C20—C21	1.377 (3)
N5—H5A	0.83 (2)	C20—C19	1.400 (3)
N6-C16	1.462 (3)	C20—H20	0.87 (2)
N6—H6A	0.86 (3)	C21—H21	0.99 (2)
N6—H6B	0.98 (3)	C12—C11	1.399 (3)
N6—H6C	0.79 (3)	C12—H12	0.83 (2)
O3—H3D	0.796 (17)	C5—C4	1.366 (3)
O3—H3E	0.822 (16)	С5—Н5	0.96 (2)
N7—C23	1.328 (2)	C19—H19	0.99 (2)
N7—C17	1.391 (2)	C4—C3	1.397 (3)
N7—H7	0.85 (3)	C4—H4	0.92 (2)
N8—C23	1.332 (2)	C11—H11	0.99 (2)
N8—C22	1.383 (2)	C8—H8A	0.92 (3)
N8—H8	0.80 (2)	C8—H8B	0.93 (3)
N9—C24	1.467 (3)	C16—H16A	0.92 (3)
N9—H9A	0.83 (3)	C16—H16B	0.93 (2)
N9—H9B	0.80 (3)	C3—H3C	0.93 (2)
N9—H9C	0.99 (3)	C24—H24A	0.97 (2)
C14—C13	1.386 (2)	C24—H24B	0.97 (3)
C14—C9	1.395 (2)		
H2C—O2—H2D	104 (2)	C19—C18—C17	116.33 (18)
H1A—O1—H2B	106 (2)	C19—C18—H18	120.3 (14)
C15—N4—C9	108.99 (15)	C17—C18—H18	123.2 (14)
C15—N4—H4A	124.8 (16)	N2—C7—N1	109.33 (16)
C9—N4—H4A	125.4 (16)	N2—C7—C8	123.45 (17)
H3D—O3—H3E	107 (2)	N1—C7—C8	127.11 (16)
C23—N7—C17	108.55 (16)	C3—C2—C1	116.08 (18)

C23—N7—H7	126.6 (17)	С3—С2—Н2А	121.8 (12)
C17—N7—H7	124.0 (17)	C1—C2—H2A	122.0 (12)
C15—N5—C14	109.14 (15)	N2—C6—C5	132.85 (18)
C15—N5—H5A	124.9 (15)	N2—C6—C1	106.35 (15)
C14—N5—H5A	125.6 (15)	C5—C6—C1	120.80 (18)
C7—N1—C1	109.27 (15)	C12—C13—C14	116.35 (17)
C7—N1—H1	125.7 (17)	C12—C13—H13	124.6 (12)
C1—N1—H1	124.5 (17)	C14—C13—H13	119.1 (12)
C7—N2—C6	109.38 (16)	N7—C23—N8	109.72 (16)
C7—N2—H2	126.4 (17)	N7—C23—C24	127.55 (18)
C6—N2—H2	123.7 (17)	N8-C23-C24	122.63 (17)
C23—N8—C22	108.85 (15)	C21—C20—C19	122.08 (18)
C23—N8—H8	123.7 (15)	C21—C20—H20	117.6 (16)
C22—N8—H8	127.0 (15)	C19—C20—H20	120.3(15)
C16-N6-H6A	111.4 (17)	C_{20} C_{21} C_{22}	116.12 (18)
C16 - N6 - H6B	115.5 (14)	C_{20} C_{21} H_{21}	124.1(13)
H6A—N6—H6B	104 (2)	$C_{22} = C_{21} = H_{21}$	12.11(13) 119.7(13)
C16 - N6 - H6C	109(2)	C_{13} C_{12} C_{11}	122 09 (18)
H6A—N6—H6C	109(2) 110(3)	C13 - C12 - H12	122.09(10)
H6B_N6_H6C	107(2)	C11_C12_H12	121.3 (16)
C_{24} N9 H9A	107(2) 1104(18)	C4-C5-C6	121.3(10) 116.97(18)
$C_{24} = N_{9} = H_{9}R$	106.7 (18)	C4-C5-H5	124.2(14)
$H_{0} = H_{0} = H_{0} = H_{0}$	100.7(10)	C6-C5-H5	124.2(14) 1188(14)
C_{24} No Hoc	109(2) 1136(17)	$C_{18} C_{19} C_{20}$	121 68 (18)
H_{0} NO HOC	108(2)	$C_{18} = C_{19} = C_{20}$	121.00(10) 116.2(12)
HOR NO HOC	108(2) 100(2)	$C_{10} = C_{10} = H_{10}$	110.2(12) 122.1(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109(2) 108(2)	$C_{20} = C_{19} = 1119$	122.1(12) 121.04(10)
$C_8 N_2 H_2 P$	100(2) 114.2(14)	$C_{5} = C_{4} = C_{5}$	121.94(19) 1184(13)
$C_0 - N_3 - H_3 D$	114.2(14)	$C_3 = C_4 = H_4$	110.4(13)
$H_{\text{DA}} = H_{\text{DA}} = H_{\text{DA}}$	111(2) 1110(16)	C_{3} C_{4} C_{11} C_{12}	119.0(13)
	111.0(10) 106(2)	$C_{10} = C_{11} = C_{12}$	121.71(19)
$\Pi SA - NS - \Pi S$	100(3) 107(2)		113.9(12)
$\Pi 3D - \Pi 3 - \Pi 3$	107(2) 122 44 (17)	$\begin{array}{c} C12 - C11 - H11 \\ C2 - C2 - C7 \\ C7 - C$	122.3(12)
C13 - C14 - N3	132.44(17)	$N_{2} = C_{2} = U_{2} A$	112.34 (10)
C13 - C14 - C9	121.40(17) 106.11(15)	$N3 - C\delta - H\delta A$	110.4(10)
$N_{3} - C_{14} - C_{9}$	100.11(13) 106.45(15)	C = C = C = C = C = C = C = C = C = C =	110.8(10) 100.5(16)
$N_{0} = C_{22} = C_{11}$	100.43(13) 121.74(17)	$N_{3} = C_{0} = H_{0} D$	109.3(10) 100.2(16)
$N_0 = C_{22} = C_{21}$	131.74(17)		109.5 (10)
$C_{1} = C_{22} = C_{21}$	121.81(17) 121.77(16)	$H\delta A - C\delta - H\delta B$	104(2)
C10 - C9 - IN4	131.77(10)	$N_{0} = C_{10} = C_{13}$	112.13(17)
C10 - C9 - C14	122.19 (16)	$N_0 - C_{10} - H_{10}A$	113.4 (18)
N4-C15-N5	106.02(15) 100.72(16)		108.1(18)
N4-C15-N5	109.73 (16)		108.5 (14)
N4-U15-U16	127.44 (16)		109.5 (15)
$N_{2} = C_{1} = C_{1} = C_{1}$	122.72 (16)	H10A - U10 - H10B	105 (2)
C2—C1—NI	131.96 (16)	$C_2 = C_3 = C_4$	121.8 (2)
$C_2 - C_1 - C_6$	122.37 (17)	C2—C3—H3C	118.8 (14)
NI-CI-C6	105.66 (16)	C4—C3—H3C	119.4 (14)
C18—C17—C22	121.97 (16)	N9—C24—C23	112.39 (17)

C18—C17—N7	131.61 (17)	N9—C24—H24A	108.5 (15)
C22—C17—N7	106.41 (15)	C23—C24—H24A	109.0 (14)
C11—C10—C9	116.19 (17)	N9—C24—H24B	105 (2)
C11—C10—H10	120.6 (12)	C23—C24—H24B	112 (2)
С9—С10—Н10	123.2 (12)	H24A—C24—H24B	110 (2)
C15—N5—C14—C13	-179.30 (18)	C7—N2—C6—C5	178.55 (18)
C15—N5—C14—C9	0.93 (19)	C7—N2—C6—C1	-1.15 (19)
C23—N8—C22—C17	1.03 (19)	C2-C1-C6-N2	179.60 (15)
C23—N8—C22—C21	-179.49 (17)	N1-C1-C6-N2	0.52 (18)
C15—N4—C9—C10	178.27 (18)	C2-C1-C6-C5	-0.1 (3)
C15—N4—C9—C14	-0.41 (18)	N1-C1-C6-C5	-179.23 (15)
C13—C14—C9—C10	1.1 (3)	N5-C14-C13-C12	179.48 (17)
N5-C14-C9-C10	-179.15 (15)	C9-C14-C13-C12	-0.8 (2)
C13—C14—C9—N4	179.89 (15)	C17—N7—C23—N8	1.29 (19)
N5-C14-C9-N4	-0.31 (18)	C17—N7—C23—C24	-175.17 (18)
C9—N4—C15—N5	1.02 (19)	C22—N8—C23—N7	-1.5 (2)
C9—N4—C15—C16	-175.38 (18)	C22—N8—C23—C24	175.21 (16)
C14—N5—C15—N4	-1.22 (19)	C19—C20—C21—C22	0.5 (3)
C14—N5—C15—C16	175.38 (16)	N8-C22-C21-C20	179.87 (17)
C7—N1—C1—C2	-178.68 (18)	C17—C22—C21—C20	-0.7 (2)
C7—N1—C1—C6	0.28 (18)	C14—C13—C12—C11	0.2 (3)
N8—C22—C17—C18	179.76 (15)	N2C6C4	-179.37 (18)
C21—C22—C17—C18	0.2 (2)	C1—C6—C5—C4	0.3 (3)
N8—C22—C17—N7	-0.25 (17)	C17-C18-C19-C20	-0.8 (3)
C21—C22—C17—N7	-179.79 (15)	C21-C20-C19-C18	0.3 (3)
C23—N7—C17—C18	179.37 (18)	C6—C5—C4—C3	-0.3 (3)
C23—N7—C17—C22	-0.62 (18)	C9—C10—C11—C12	0.0 (3)
N4—C9—C10—C11	-179.14 (17)	C13-C12-C11-C10	0.2 (3)
C14—C9—C10—C11	-0.6 (2)	N2-C7-C8-N3	-178.27 (17)
C22-C17-C18-C19	0.5 (2)	N1—C7—C8—N3	6.0 (3)
N7—C17—C18—C19	-179.44 (17)	N4-C15-C16-N6	-6.7 (3)
C6—N2—C7—N1	1.4 (2)	N5-C15-C16-N6	177.37 (17)
C6—N2—C7—C8	-175.02 (16)	C1—C2—C3—C4	0.1 (3)
C1—N1—C7—N2	-1.02 (19)	C5—C4—C3—C2	0.1 (3)
C1—N1—C7—C8	175.20 (17)	N7—C23—C24—N9	-8.3 (3)
N1—C1—C2—C3	178.75 (17)	N8—C23—C24—N9	175.69 (17)
C6—C1—C2—C3	-0.1 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D··· A	D—H···A
O1—H1A····Cl4 ⁱ	0.82 (2)	2.63 (2)	3.4431 (15)	168 (3)
O1—H2 <i>B</i> ···Cl2	0.81 (2)	2.36 (2)	3.1598 (18)	169 (3)
O2—H2 <i>C</i> ···Cl3	0.82 (2)	2.33 (2)	3.1244 (17)	165 (2)
O2—H2D…Cl1	0.81 (1)	2.64 (1)	3.4492 (15)	171 (3)
O3—H3D····Cl5 ⁱⁱ	0.80 (2)	2.69 (2)	3.4586 (15)	164 (3)
O3—H3 <i>E</i> ···Cl6 ⁱⁱ	0.82 (2)	2.32 (2)	3.1364 (18)	173 (3)

supporting information

N1—H1…O1	0.83 (2)	1.92 (2)	2.746 (2)	174 (2)
N2—H2···Cl1 ⁱⁱⁱ	0.71 (2)	2.44 (2)	3.1519 (17)	175 (2)
N3—H3…Cl3	0.88 (3)	2.30 (3)	3.105 (2)	153 (2)
N3—H3A…Cl1	0.86 (4)	2.26 (3)	3.119 (2)	173 (3)
N3—H3 <i>B</i> ···Cl4 ^{iv}	0.99 (3)	2.33 (2)	3.267 (2)	156.8 (19)
N4—H4 <i>A</i> …O2	0.85 (2)	1.91 (2)	2.754 (2)	171 (2)
N5—H5A…C15	0.83 (2)	2.31 (2)	3.1205 (17)	165 (2)
N6—H6A···Cl2	0.87 (3)	2.33 (3)	3.107 (2)	150 (2)
N6—H6 <i>B</i> ···Cl1 ^v	0.98 (3)	2.36 (2)	3.287 (2)	158.2 (18)
N6—H6C···Cl4 ⁱ	0.79 (3)	2.35 (4)	3.1347 (19)	176 (3)
N7—H7…O3	0.85 (3)	1.89 (3)	2.742 (2)	175 (3)
N8—H8…Cl4	0.81 (2)	2.31 (2)	3.1049 (17)	172 (2)
N9—H9A…Cl6	0.83 (3)	2.35 (3)	3.100 (2)	151 (2)
N9—H9 <i>B</i> ···C15	0.80 (3)	2.32 (2)	3.120 (2)	176 (2)
N9—H9 <i>C</i> ···Cl5 ^{vi}	0.99 (3)	2.34 (3)	3.270 (2)	157 (2)
C4—H4···Cl1 ⁱ	0.92 (2)	2.81 (2)	3.535 (2)	136.7 (16)
C8—H8 <i>B</i> ····Cl3 ^{vii}	0.93 (3)	2.65 (3)	3.544 (2)	162 (2)

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) -*x*, -*y*+1, -*z*+1; (iii) -*x*+3, -*y*, -*z*+2; (iv) *x*+1, *y*-1, *z*; (v) *x*-1, *y*, *z*; (vi) -*x*+1, -*y*+1, -*z*+1; (vii) -*x*+2, -*y*, -*z*+2.