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Introduction: Precise lead localization is crucial for an optimal clinical outcome

of subthalamic nucleus (STN) deep brain stimulation (DBS) treatment in patients

with Parkinson’s disease (PD). Currently, anatomical measures, as well as invasive

intraoperative electrophysiological recordings, are used to locate DBS electrodes. The

objective of this study was to find an alternative electrophysiology tool for STN DBS

lead localization.

Methods: Sixty-one postoperative electrophysiology recording sessions were obtained

from 17 DBS-treated patients with PD. An intraoperative physiological method

automatically detected STN borders and subregions. Postoperative EEG cortical activity

was measured, while STN low frequency stimulation (LFS) was applied to different

areas inside and outside the STN. Machine learning models were used to differentiate

stimulation locations, based on EEG analysis of engineered features.

Results: A machine learning algorithm identified the top 25 evoked response potentials

(ERPs), engineered features that can differentiate inside and outside STN stimulation

locations as well as within STN stimulation locations. Evoked responses in the medial

and ipsilateral fronto-central areas were found to be most significant for predicting the

location of STN stimulation. Two-class linear support vector machine (SVM) predicted

the inside (dorso-lateral region, DLR, and ventro-medial region, VMR) vs. outside

[zona incerta, ZI, STN stimulation classification with an accuracy of 0.98 and 0.82

for ZI vs. VMR and ZI vs. DLR, respectively, and an accuracy of 0.77 for the within

STN (DLR vs. VMR)]. Multiclass linear SVM predicted all areas with an accuracy

of 0.82 for the outside and within STN stimulation locations (ZI vs. DLR vs. VMR).
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Conclusions: Electroencephalogram biomarkers can use low-frequency STN

stimulation to localize STN DBS electrodes to ZI, DLR, and VMR STN subregions. These

models can be used for both intraoperative electrode localization and postoperative

stimulation programming sessions, and have a potential to improve STN DBS

clinical outcomes.

Keywords: deep brain stimulation (DBS), Parkinson’s disease, postoperative contact selection, EEG, biomarker,

machine learning, subthalamic nucleus (STN), zona incerta

INTRODUCTION

Subthalamic deep-brain stimulation (DBS) is an effective
treatment for advanced Parkinson’s disease (PD). The therapeutic
effect of DBS correlates with accurate localization of the electrode
contact in the STN target (Buhmann et al., 2017; Obeso
et al., 2017). There are currently two main methods for DBS
electrode localization, which can be used independently or as
supplementary methods. One is anatomic localization by pre- or
intraoperative MRI imaging (and postoperative CT validation).
The other is physiological localization using intraoperative STN
microelectrode recordings (MERs).

Most clinical centers worldwide perform 3-TeslaMRI imaging
for surgical planning and postoperative CT with registration
software for the validation of electrode position. Although
imaging technology has improved, imaging quality remains a
critical factor in the precise localization of DBS electrodes
(Ewert et al., 2018; Husch et al., 2018). Higher resolution 7-
Tesla MRI improves accuracy but is unavailable in most clinical
settings (Verhagen et al., 2016; Bot et al., 2019). Machine
learning methods have been suggested for improving 3-Tesla
MRI accuracy, but their clinical usage has not become common
(Shamir et al., 2019).

Intraoperative MERs enable the physiological localization of
DBS electrodes. Although MER localization is very accurate (0.1-
mm resolution), the procedure may increase the risk of bleeding
or infection (Kimmelman et al., 2011; Ho et al., 2018). MERs
can outline STN borders and define functional areas within the
STN, such as the dorso-lateral (motor) region (DLR) and the
ventral-medial (limbic-cognitive) region (VMR) (Moran et al.,
2006; Zaidel et al., 2010; Rappel et al., 2020). Most recently,
advanced tools have been introduced to enable an automatic
and faster detection of STN borders (Valsky et al., 2016, 2020;
HaGuide, Neuro-OmegaTM). Nevertheless, developing non-
invasive tools to improve the invasive DBS procedure, intra- and
postoperatively, remains of great importance. The objective of
this study was to develop a non-invasive EEG-based physiological
tool for localizing invasive DBS electrodes. While the effect
of DBS stimulation on cortical activity has been studied, few
investigations have demonstrated cortical potentials at 1–400ms
after STN-DBS (Ashby et al., 2001; Baker et al., 2002; Walker
et al., 2012; Irwin et al., 2020). Our study used the postoperative
EEG cortical activity features (DBS-evoked responses) of 17
STN DBS-treated patients with PD. We quantified, for the first
time, cortical activity differences evoked within and without
the STN in order to find biomarkers to differentiate between

these subregions. We also built machine learning (ML) models
that can use EEG cortical activity to identify the exact STN
lead location.

METHODS

Patients
Seventeen STN DBS-treated patients with PD (13 males, four
females) were recruited in two medical centers in Israel, the
Hadassah Medical Center (12 subjects) and Sheba Medical
Center (five subjects) (Table 1). All met the clinical inclusion
criteria of the study, and were competent to consent (as
measured by Mini-Mental State Examination [(MMSE) scale
> 26 Roalf et al., 2013] and signed an informed consent.
All EEG recordings were taken at least 3 weeks after DBS
surgery. The study was authorized by the local IRB Committee
of Hadassah Medical Center [no. 0403-13-HMO, NIH clinical
trials registration (no. NCT01590056)] and local IRB committee
at Sheba Medical Center (no. 3496-16-SMC, NIH clinical trials
registration NCT01590056).

Intraoperative Procedure
The surgical and recording techniques used in our study
have been described elsewhere (Zaidel et al., 2009; Marmor
et al., 2017; Rappel et al., 2018; Sand et al., 2021). Briefly,
STN target coordinates were chosen using the Framelink
5 or Cranial software (Medtronic Inc., Minneapolis, MN,
United States). Neurophysiological data were acquired with
the NeuroOmega system (AlphaOmega Engineering, Nazareth,
Israel). The analysis of the neurophysiological intraoperative
recordings has also been described (Marmor et al., 2017; Rappel
et al., 2018; Sand et al., 2021). STN entry and exit were detected
automatically with a Hidden Markov Model (HMM) (Zaidel
et al., 2009; Valsky et al., 2016). STN trajectories included the
DLR and VMR domains of the STN. Each STN recording site
was classified as DLR or VMR according to the HMM algorithm
and real-time tagging by an experienced electrophysiologist (HB
and OM). DLR regions were classified by the beta-oscillatory
activity, and VMR regions by its absence. An example of
the intraoperative STN recordings, shown in Figures 1A,B,
demonstrates the normalized root mean square (RMS) of the
spiking activity (300–9,000Hz) and the power spectral density
(PSD). At the end of intraoperative recording and location
verification, the two recording electrodes were removed, and
the permanent lead was implanted in the preferred trajectory
(Activa PC; Medtronic, Inc., Minneapolis, MN, United States).
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TABLE 1 | Clinical stimulation characteristics of the analyzed patients.

Patient Medical

Center

Sex Age

(years)

Clinical settings Stimulus

frequency

(Hz)

Recording

time/

contact

Total no. of

stimuli/

contact

EGI

recording

system

S1 Hadassah M 76 130Hz, 1.4 V, 60

µs. 1- IPG case+

3 13min 20 s 2,400 EGI 128

channels

S2 Hadassah M 65 130Hz, 1.6 V, 60

µs. 1- IPG case+

3 13.3min 2,400 EGI 128

channels

S3 Hadassah M 61 170Hz, 2.4 V, 90

µs. 1- IPG case+

3 13.3min 2,400 EGI 128

channels

S4 Hadassah M 56 150Hz, 2.9 V, 60

µs. 1- IPG case+

3 13.3min 2,400 EGI 128

channels

S5 Hadassah F 60 125Hz, 1.4 V, 60

µs. 1- IPG case+

5 8min 2,400 EGI 128

channels

S6 Hadassah F 60 125Hz, 1.8 V, 60

µs. 1- 0+

5 8min 2,400 EGI 128

channels

S7 Hadassah M 78 150Hz, 3.2 V, 60

µs. 1- IPG case+

5 8min 2,400 EGI 128

channels

S8 Hadassah M 55 180Hz, 2.1 V, 60

µs. 1- IPG case+

5 8min 2,400 EGI 128

channels

S9 Hadassah F 74 130Hz, 0.8 V, 60

µs. 1- IPG case+

5 8min 2,400 EGI 128

channels

S10 Hadassah M 57 150Hz, 3.4 V, 60

µs. 1- IPG case+

5 8min 2,400 EGI 128

channels

S11 Hadassah M 65 160Hz, 2.4 V, 60

µs. 0- 2- IPG

case+

5 8min 2,400 EGI 128

channels

S12 Hadassah M 67 150Hz, 2.6 V, 60

µs. 0- IPG case+

5 8min 2,400 EGI 128

channels

S13 Sheba M 62 120Hz, 3.1 V, 60

µs. 1- 2- 3+

5 8min 2,400 EGI 64

channels

S14 Sheba M 65 130Hz, 2.8 V, 60

µs. 3- IPG case+

5 8min 2,400 EGI 64

channels

S15 Sheba M 66 130Hz, 2.2 V, 60

µs. 3- IPG case+

5 8min 2,400 EGI 64

channels

S16 Sheba F 72 130Hz, 1.8 V, 60

µs. 2- IPG case+

5 8min 2,400 EGI 64

channels

S17 Sheba M 51 130Hz, 1 V, 60 µs.

2- IPG case+

5 8min 2,400 EGI 64

channels

The lead contains four contacts, numbered from E0 (ventral) to
E3 (dorsal), with a diameter of 1.27mm and a length of 1.5mm,
spaced at 0.5 mm intervals.

Study Procedure
All the patients were asked to stop dopaminergic treatment the
night before the study. In all the recording sessions, the patients
were seated in a quiet room, awake, and instructed to avoid
body movements and focus their gaze at a fixed object at a 70-
cm distance. The sessions began with a baseline recording after
DBS had been turned OFF for 1min. All the patients then had
a right hemisphere low-frequency stimulation (LFS) for a few
minutes (5Hz for 8min or 3Hz for 13.3 mi, in both instances
2,400 stimulations, voltage at 2V, pulse width at 60 µs), followed
by a 1-minOFFDBS stimulation period. Each stimulation session
was applied to one of the four DBS contacts. The order of

the contact stimulated was determined by a pseudo-random
number generator (Haahr, 2009). Most of the patients (n = 13)
completed the recordings with stimulation of four DBS contacts.
A small number (n = 4) of patients completed the recordings
with one, two, or three DBS contacts (2,1,1, respectively), due to
fatigue or discomfort from a prolonged OFF state due to being
both OFF medications and OFF clinical DBS. The four contacts
of the patients were classified into the three STN subregions
(zona incerta, DLR, and VMR) according to the intraoperative
recordings. Contacts placed partially in two subregions were
classified according to the location of the larger part of the
contact. A total of 61 recording sessions were analyzed, with
contacts located in the ZI (n = 20), DLR (n = 23), and VMR
(n = 18) subregions. At the end of the study procedure, the
patients were restored to their baseline dopaminergic treatment
and DBS parameters.
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FIGURE 1 | Representative example of intra- and postoperative recordings. An example of intraoperative and postoperative recordings for a single subject (no S8)

(left) Microelectrode recording during the DBS implantation in the right STN, the normalized root mean squared [NRMS, (A)], power spectral density [PSD, (B)] in a

contact location of a patient STN. EDT, estimated distance to target (defined as STN center, according to preoperative imaging). (C–F) ERP activity of the average

EEG electrodes in the medial frontal central area (represented by the blue circle on the topoplot) reveals postoperative stimulations by each of the four DBS contacts;

dashed color lines represent the max-peak feature and one of the extracted engineered features. It can also be observed that the signal arises slightly before stimulus

onset. Rather than a detection error, this results from the effect of the filter on the interpolated signal, which replaced the stimulus artifact. DLR, dorso-lateral region;

VMR, ventro-medial region.

EEG Recordings and Cleaning Process
Electroencephalogram recordings were sampled at 1,000Hz with
HydroCel Geodesic Sensor Netfrom 64 (Electrical Geodesic Inc.,
Eugene, OR, United States) (five patients) and 128 (12 patients)
channels, and a Net Amps 400 amplifier (Electrical Geodesic
Inc., Eugene, OR, United States) (Tucker, 1993). Cz was the
reference recording electrode. EEG recordings with the 128
channels system were interpolated to 64 channels to enable a
unified dataset.

Electroencephalogram signal cleaning was performed as
follows. First, the direct current (DC) was subtracted from each
electrode. Second, DBS artifacts were automatically detected,
based on a threshold of 3∗ standard deviations (SD) above
the raw average (Supplementary Figure 1) and replaced with
interpolation using the polynomial curve-fitting of first degree.
Third, the EEG signal was referenced to the average reference of
all channels. Fourth, the signals were filtered with a high-pass
filter of 0.5Hz and a low-pass filter of 40Hz, by two-way least-
squares finite impulse response (FIR) filtering, implemented in
EEGLAB (Delorme and Makeig, 2004).

STN Evoked Response Potentials and
Feature Processing
The STN evoked response potentials (STN ERPs) were acquired
by recording cortical EEG signals, while the DBS lead stimulated

the STN. In this study, the term “STN ERPs” refers to the
EEG cortical activity recorded in response to STN stimulation.
STN low-frequency stimulation (LFS) at 3 and 5Hz enables
the detection of cortical responses in 333 and 200ms windows.
The EEG recordings were separated into trials defined as
time intervals of 50ms before to 150ms after the onset of
STN stimulus; 2,400 trials were averaged for each contact
(Figures 1C–F). The ERP was defined as the average of trials
per contact.

The ERPs of all the patients were averaged, and standard
error was calculated per channel and per region of interest (ROI)
for each area of stimulation. A topoplot was used to visualize
differences in average brain activity over the scalp over time per
stimulation area.

Each ERP was divided into four time windows,
predefined according to a visual inspection of the raw
data: very early components (5–25ms), early components
(45–55ms), middle components (50–100ms), and late
components (100–149 ms).

The ERPs of 64 channels were divided into nine ROIs: left
frontal, medial frontal, right frontal, left fronto-central, medial
fronto-central, right fronto-central, left occipital parietal, medial
occipital parietal, and right occipital parietal. A z-score on the
ERP was calculated for each patient and each of the 64 channels
for all conditions.
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Engineered features were calculated for each time window (n
= 4) per subject in both the individual channels (n= 64) and the
average of each ROI (n = 9). The engineered features calculated
were: max and min peak amplitude, max and min peak latency,
peak to peak (max peak–min peak), area under the curve (AUC),
and energy (squared of the defined window integral).

Single-Feature Analysis
A single-feature analysis was performed to select the optimal
model that differentiates between stimulation location based
on the ERP extracted engineered features. The differentiation
between areas of stimulation was both within the STN (that
is, differentiating between the DLR and the VMR), and in and
outside the STN (that is, differentiating between the DLR and ZI
or the VMR and ZI). An independent t-test was conducted to
compare differences in the value of each engineered feature.

The single engineered features were evaluated by 5-fold cross-
validation (CV). In the 5-fold CV, we generated a receiver
operator characteristic (ROC) curve model. We calculated
the cut-off for each feature value and measured whether it
could predict the location of the contact, given a two-location
classification (ZI vs. DLR, ZI vs.VMR, and DLR vs.VMR).

Machine Learning Analysis
We used ML classification models to differentiate between
stimulation locations based on the engineered features. To avoid
overfitting these models, we reduced the number of features as
an input, examining the best 5, 10, 15, 20,25, 30, 40, 60, and 80
engineered features that both displayed the greatest dependence
on the target class (ZI vs. DLR vs. VMR location) and that
were distinct from one another. These features were selected by
the Minimal Redundancy, Maximal Relevance (MRMR) feature
selection algorithm (Peng et al., 2005).

For two-class and multiclass analyses, we used the SVM
algorithm with a linear kernel. In the former, the SVM was
used to differentiate between the binary classification both within
the STN (between the DLR and the VMR) and in and outside
the STN (between the DLR and ZI or the VMR and ZI). In
the latter, we used two types of SVM model (One vs. Restand
One vs. One) to distinguish all three stimulation locations (ZI
vs. DLR vs.VMR). We examined the C parameters of SVM
(a regularization parameter) as one of six values, 0.001, 0.01,
0.1., 0.5, 1, or 2, and performed 5-fold cross-validation (CV) to
evaluate themodels. In each iteration, the trained data were 4- out
of 5-fold, leaving 1-fold for validation. A different fold was chosen
for this validation in each iteration, with the CV result being the

FIGURE 2 | Subthalamic nucleus (STN) evoked response. A representative single subject demonstrates the EEG evoked response in each of the nine regions of

interest to low frequency right STN stimulation for each of the four lead contacts. It can also be observed that the signal arises slightly before stimulus onset. Rather

than a detection error, this results from the effect of the filter on the interpolated signal, which replaced the stimulus artifact. DLR, dorso-lateral region; VMR,

ventro-medial region.
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FIGURE 3 | Differences in cortical activity per condition. The average of group topoplot 40ms before and 150ms after stimulation reveals a different cortical activity in

terms of spatial and time specifics, mostly around 50–100ms, elicited by DBS in three right STN locations [top down: (A) zona incerta (N = 20), (B) DLR (N = 23), (C)

VMR (N = 18)]. The X axis is nonlinear to emphasize the relevant parts. It can also be observed that the signal arises slightly before stimulus onset. Rather than a

detection error, this results from the effect of the filter on the interpolated signal, which replaced the stimulus artifact. DLR, dorso-lateral region; VMR, ventro-medial

region.

average of these five iterations. This technique was used to find
the optimal linear hyperplane classifier to separate between the
defined classes with maximal margin.

All EEG processing procedures, including preprocessing,
engineered features extraction, and MRMR feature selection
algorithm, were performed with Matlab (version 2016b;
MathWorks, Natick, MA, United States). The remaining
procedures used Python 3.6, NumPy, Seaborn, Statsmodels,
Matplotlib, and Skclearn libraries.

De-identified data and relevant analysis code will be
shared with other research groups, upon request, for a
collaborative study.

RESULTS

STN ERP Pattern Is Altered by Stimulation
Location in ZI, DLR, or VMR
The stimulation of each DBS contact located in a specific area
inside and outside the STN (ZI, DLR, and VMR) produces a
unique STN ERP pattern. Figure 2 shows an example of the
STN ERP recordings of one patient in nine ROIs with DBS
stimulation of ZI, DLR, and VMR. Although the ERP pattern is
generally similar to that of ZI, DLR, and VMR stimulation, the
amplitudes and peak times differ for each area of stimulation.
In this example, the highest energy was recorded in the medial-
fronto-central area.

Figure 3 shows topographic plots (topoplots) of the average
amplitude of all the subjects over time (from 40 to 150ms post

stimulation). Changes in the time and location domains can
be observed both within and without the STN (Figure 3A vs.
Figure 3B or Figure 3C), as well as between the DLR and VMR
(Figure 3B vs. Figure 3C).

Single-Feature Analysis of STN ERP
Differentiates Inside Vs. Outside STN and
Within STN Stimulation Location
A single-feature analysis of STN ERP, selecting one ROI or
one electrode, specific time window and electrophysiological
feature, can potentially differentiate areas of STN stimulation
and reveal which electrophysiological features influence the ML
model most. Figure 4 and Table 2 show examples of single-
feature analysis in four recording areas: three ROIs and one
single electrode. For each recording area, one time of interest
for analysis (gray shadows in left column) and two features
(latency and amplitude of the maximal or minimal peak) were
selected. These show that single-feature analysis of STN ERP
can differentiate between areas of stimulation both within the
STN (DLR vs. VMR) and inside and outside the STN (DLR
vs. ZI or VMR vs. ZI). The medial fronto-central area in the
50–100ms post stimulus time window, for example, reveals a
significant change in latency between ZI and VMR (with a
median latency of 77 and 67ms, respectively, t-value = −4, p
< 0.0005, see Figure 4A). An ROC curve prediction analysis
shows the differentiation between the ZI and VMR, with AUC
of 0.86 for the training set and 0.85 for the CV test set (Table 2,
column I). Similarly, the right fronto-central area (ipsilateral
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FIGURE 4 | Single feature distinguishes between two STN locations in all the patients. A group analysis of region of interest (ROI) and single electrode in different

scalp areas: (A) medial fronto-central, (B) right fronto-central, (C) left fronto-central, (D) electrode Oz (at the occipital lobe) reveals a different cortical activity elicited by

the DBS in the three STN locations (zona incerta N = 20, DLR, N = 23, VMR, N = 18) represented by the three colors, purple, red, and light blue, respectively. Left

column:group ERP average (black line) with standard error (SE) for each STN location; gray rectangle represents the time of interest. Middle and right columns:

respectively, group distribution of latency and amplitude at the time of interest. Each distribution is plotted with box and whisker, the ends of each box are the upper

and lower quartiles, with the box spanning the interquartile range. The median is marked by a vertical line inside the box, and the whiskers are the two lines outside the

box that extend to the highest and lowest observations. Independent t-test compared the differences between each two areas. Y-axis is not the same for each row

because of differences in amplitude peak between the scalp areas. However, the three STN locations (blue, red, and purple) in each feature are on the same scale,

and they are the relevant comparison. Independent t-test compared the differences between each two areas (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).

to stimulation) in the 50–100ms post stimulus time window
reveals a significant change in latency between ZI and DLR
(with a median latency of 73.5 and 62ms, respectively; t-value

= −2.3; p < 0.02; see Figure 4B). An ROC curve prediction
analysis demonstrates the differentiation between the ZI and
DLR, with AUC of 0.69 for the training set and 0.65 for the
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TABLE 2 | Single-feature classification.

Analysis type ROC curve

I II III

STN area VMR vs. ZI DLR vs. ZI DLR vs. VMR

Number of features 1 1 1

Feature name Latency max peak Latency max peak Latency max peak

Feature area Medial fronto-central Right fronto-central E35

Feature time of interest 50–100ms 50–100ms 50–100 ms

Precision training set-mean (std) 0.84 (±0.03) 0.78 (±0.02) 0.64 (±0.03)

Recall training set-mean (std) 0.89 (±0.06) 0.68 (±0.06) 0.88 (±0.03)

Accuracy training set-mean (std) 0.87 (±0.04) 0.73 (±0.03) 0.73 (±0.02)

AUC training set-mean (std) 0.86 (±0.03) 0.69 (±0.04) 0.75 (±0.02)

Precision CV test set-mean (std) 0.81 (±0.19) 0.71 (±0.2) 0.68 (±0.17)

Recall CV test set-mean (std) 0.90 (±0.2) 0.61 (±0.3) 0.81 (±0.2)

Accuracy CV test set-mean (std) 0.84 (±0.18) 0.65 (±0.1) 0.73 (±0.1)

AUC CV test set-mean (std) 0.85 (±0.18) 0.65 (±0.1) 0.73 (±0.09)

ROC curve analysis shows one feature can differentiate between two STN areas using training and test sets based on CV 5-folds.

CV, cross validation.

CV test set (Table 2, column II). Interestingly, not only ROIs
but also single electrodes can differentiate stimulation location.
Examining electrode-Oz (occipital lobe) between 50 and 100ms
of post stimulus time window, for example, reveals a significant
change in latency between DLR and VMR (median latency of 71
and 92ms, respectively; t-value = 2.9; p < 0.01; see Figure 4D).
An ROC curve prediction analysis shows the differentiation
between the DLR and VMR, with AUC of 0.75 for the training
set and 0.73 for the CV test set (Table 2, column III).

For the AUC ROC curve results described above, recall and
precision measurements were calculated for the training and CV
test sets (Table 2). It should be noted that single-feature analysis
can only use a few EEG electrodes recording (such as the medial
fronto-central, right fronto-central, and one electrode in the Oz)
to differentiate stimulation location accurately, with most of the
single features unable to differentiate stimulation location. No
differentiation was found, for example, in the left frontal area
(contralateral to stimulation) in any time window or any feature
(Figure 4C). In addition, while we used 2,400 trials in this study
to improve signal to noise ratio, stability tests show that <500
trials are needed for stable results (Supplementary Figure 3).

Machine Learning Algorithm Better
Differentiates STN Stimulation Location
The SVM algorithm of the STN ERP can better differentiate
inside vs. outside and within STN stimulation locations. We
used two SVM algorithms: a two-class analysis that differentiates
between two regions of stimulation and easily interprets the most
important engineered features, and a multiclass analysis that
differentiates between all the (three) regions of stimulation. For
both, we chose the 25 best engineered features as input.

A two-class linear SVM revealed high classification Inside vs.
Outside STN, superior to the single-feature analysis values. Both
the DLR vs. ZI classification and VMR vs. ZI classification have
shown accuracy, precision, and recall probability of 1 for the

training set and similar CV test set values, accuracy, precision,
and recall of 0.98, 1, and 1, respectively, in the VMR vs. ZI
classification, and 0.82, 0.9, and 0.87, respectively, in the DLR
vs. ZI classification (Table 3, columns I-II). The classification
of subregion within the STN (DLR vs. VMR classification) also
yielded better performance than the single-feature analysis, with
accuracy, precision, and recall probability of 0.94, 0.95, and
0.88, respectively, for the training set, and 0.77, 0.9, and 0.83,
respectively, for the CV test set (Table 3, column III). In the
two-class analysis, we calculated the top five most important
electrophysiological features, as demonstrated in Supplementary

Figure 2.
The multiclass analysis yielded high accuracy and very high

precision and recall results. We used two SVMmulticlass analysis
models: One vs. Rest (OvR) and One vs. One (OvO). The SVM
OvR analysis showed accuracy, precision, and recall probability
of 1 for the training set, and accuracy of 0.82, precision of 0.94,
and recall of 0.91 for the CV test set (Table 3, column IV).
Similarly, the SVM OvO showed accuracy, precision, and recall
of 1 for the training set, and accuracy of 0.81, precision of 0.93,
and recall of 0.92 for the CV test set (Table 3, column V).

DISCUSSION

Our results demonstrate that monopolar STN stimulation evokes
a distinct EEG cortical activity that can predict the location
of stimulation outside and within the STN. The latency of the
DBS evoked response was found to be the best single biomarker
for predicting the location of STN stimulation. The medial
fronto-central and right-fronto-central areas of the DBS evoked
responses were found to be most significant, and most significant
for predicting the location of STN stimulation. A novel ML
algorithm that used the top 25 engineered features revealed
a reliable classification of the ZI, VMR, and DLR areas with
precision, recall, and accuracy of 0.94, 0.91, and 0.82, respectively,
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TABLE 3 | Two- and multiclass classifier results.

Analysis type Two-class analysis Multiclass analysis

I II III IV V

STN area ZI vs. VMR ZI vs. DLR DLR vs. VMR ZI vs. DLR vs. VMR ZI vs. DLR vs. VMR

Model Linear SVM Linear SVM Linear SVM Linear SVM One-vs.-Rest Linear SVM One-vs.-One

Number of features 25 25 25 25 25

C parameter 0.01 0.1 0.01 0.5 0.5

Precision training set 1 (±0.00) 1 (±0.00) 0.95 (±0.06) 1 (±0.00) 1 (±0.00)

Recall training set 1 (±0.00) 1 (±0.00) 0.88 (±0.08) 1 (±0.00) 1 (±0.00)

Accuracy training set 1 (±0.00) 1 (±0.00) 0.94 (±0.05) 1 (±0.00) 1 (±0.00)

Precision CV test set 1 (±0.00) 0.9 (±0.2) 0.9 (±0.1) 0.94 (±0.1) 0.93 (±0.2)

Recall CV test set 1 (±0.00) 0.875 (±0.3) 0.833 (±0.2) 0.91 (±0.1) 0.92 (±0.2)

Accuracy CV test set 0.98 (±0.05) 0.82 (±0.2) 0.77 (±0.2) 0.82 (±0.3) 0.81 (±0.2)

for the CV test set. These findings imply that an ML model
of noninvasive EEG biomarkers can be used to localize DBS
contacts in the ZI, VMR, and DLR STN subregions.

DBS Evoked Responses Can
Non-invasively Locate DBS Lead Within the
STN
The first level of STN DBS electrode localization is defining
the area inside and outside the STN. The second level is
defining the STN subregions. The STN can be divided into
two subareas, the DLR motor region and the VMR associative-
limbic region. The dorso-lateral STN is characterized by a high
beta oscillatory activity and is functionally related to the motor
cortex and supplementary motor area. The ventro-medial STN
is characterized by an alpha-theta oscillatory activity region and
a non-beta oscillatory region, and is related to the associative-
limbic regions and prefrontal cortex (Zaidel et al., 2010; Horn
et al., 2017; Rappel et al., 2020). It is, therefore, important
to accurately localize the DBS electrode in the motor area of
the STN (DLR) for treatment of movement disorders, and in
the associative-limbic area of the STN (VMR) for treatment
of emotional and cognitive disorders. Although anatomy-based
imaging tools can differentiate the STN inside and outside areas,
functional physiology tools are needed to differentiate further
the STN subregions. Today, invasive intraoperative physiological
microelectrode recordings can accurately localize DBS electrodes
within the STN. We argue here that noninvasive physiological
EEG ML tools can do so as well.

Ashby et al. (2001) and Baker et al. (2002) were the first
to report cortical evoked responses to STN stimulation. Some
years later, Mackinnon et al. (2005) showed that the evoked
response of the “therapeutic contacts” (first and second DBS
contacts) is of lower amplitude than that of the “non-therapeutic
contacts” (third and fourth DBS contacts). Eusebio et al. (2009)
determined that cortical evoked responses to STN stimulation
represent the STN-cortical circuit. They described the cortical
evoked activity as consisting of a series of diminishing waves with
a natural frequency of around 20Hz. Miocinovic et al. (2018)

have shown a correlation between cortical activity and location
within the STN. They recorded cortical STN evoked responses by
invasive Electrocorticography (EcoG) array, and demonstrated
that ventral STN DBS contacts produce shorter evoked response
latencies than dorsal STN DBS contacts. The findings of these
studies are in line with our results (Figure 4A). Methodologically,
we enlarged our database by recording a relatively long period of
time from each contact (8min), thus, collecting 2,400 trials for
each contact and 9,600 trials for each patient. This enabled the
improvement of the signal-to-noise ratio and a more accurate
study on the cortical activity, suggesting that a non-invasive
EEG tool can differentiate subregions within the STN. Stability
tests show that <500 trials are needed for stable results, that is,
future intraoperative recordings of <2min (per contact) may be
sufficient for our suggested method for noninvasive EEG that can
differentiate subregions within the STN.

Monopolar STN Stimulation Can Produce
Distinct Cortical Signals
The majority of rodent and human DBS cortical evoked response
studies have performed bipolar stimulation configurations
(Ashby et al., 2001; Baker et al., 2002; Mackinnon et al., 2005;
Walker et al., 2012; Kelley et al., 2018; Kibleur and David, 2018;
Kumaravelu et al., 2018; Miocinovic et al., 2018; Iacono et al.,
2019; Romeo et al., 2019). Bipolar stimulation can potentially
differentiate between the stimulus artifact and cortical activity
(Baker et al., 2002; Walker et al., 2012). Our study performed
mono-polar stimulation and found significant cortical evoked
responses. It has been recently shown that both monopolar and
bipolar STN stimulation can evoke comparable cortical responses
(Miocinovic et al., 2018). These cortical responses represent the
STN-cortical activity with similar amplitude and latency for the
components after the stimulus artifact >1ms.

We suggest that the later evoked response components
(>5ms) are not affected by the stimulus artifact (<1ms)
in either bi- or monopolar stimulations. In addition, our
results demonstrate that the cortical evoked response does not
necessarily correlate with the distance between stimulating lead
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and cortex. As shown in Figure 1C, for example, the most ventral
contact, furthest from the cortex (E0), demonstrates a higher
cortical activity than the adjacent E1 lead, closer to the cortex.
In addition, in the medial fronto-central ROI (Figure 4A), the
DLR peak latency is significantly longer than the VMR peak
latency (69 and 67ms, respectively), although DLR is closer to
the cortex. Similarly, in the right fronto-central ROI (Figure 4B),
the ZI peak latency is significantly longer than the VNR and DLR
peak latencies (73.5 vs. 62 and 64, respectively), although the ZI
is closer to the cortex. We, therefore, conclude that EEG cortical
activity in response to monopolar STN stimulation is not simply
a stimulus artifact but represents a genuine cortical activity.

Another advantage of monopolar stimulation is the lower
stimulation energy (amplitude) needed to show a cortical
evoked response. Previous EEG studies have suggested that
the comparison of bi- and mono-polar stimulations requires
a 30% increase in bipolar amplitude to achieve similar results
(Mackinnon et al., 2005). Similarly, Zumsteg et al. (2006) showed
that the cortical response amplitude of thalamic stimulation
in patients with epilepsy is four times higher with monopolar
than bipolar stimulation. One ECoG study has reported that an
amplitude increase of up to 280% is needed for bipolar STN
stimulation to achieve the same volume of cortex component
activation as monopolar STN stimulation in terms of latency
and amplitude (Miocinovic et al., 2018). This study also
indicates that the polarity of the bipolar stimulation may affect
the cortical components. Opposite polarity bipolar stimulation
changed the cortical activity amplitude by more than 25%
(Miocinovic et al., 2018). Previous EEG studies performing
bipolar stimulation with inadequate stimulation energy may,
thus, have missed the cortical activity we report here. Previous
EEG studies performing bipolar simulation with inadequate
stimulation energy may, thus, have missed the cortical activity we
report here.

In our study, -polar stimulation evoked cortical
activity with a spatial resolution that supports the known
anatomic STN-cortical networks. STN stimulation mainly
evokes sensorimotor areas, such as the medial fronto-
central and right fronto-central areas, ipsilateral to
stimulation (Chen et al., 2020; Gunalan and McIntyre,
2020; Johnson et al., 2020). No muscle contraction was
observed in response to stimulation. We did not observe
any stimulation effect on speech or gaze either. We can,
therefore, rule out any current spread of STN stimulation to
surrounding structures.

The origin of STN-evoked responses likely results from both
antidromic and orthodromic responses. The short responses (5–
10ms) may indicate an antidromic direct activation of the cortex.
The middle and late latency (>10ms) cortical evoked responses
may indicate an orthodromic activation of polysynaptic synapses
at the basal ganglia and thalamocortical pathways. It is possible
that the differences in evoked responses between ZI, DLR, and
VMR reflect a difference in input and output connectivity (Smith
et al., 1994; Hashimoto et al., 2003; Miocinovic et al., 2006;
Sanders and Jaeger, 2016; Gunalan et al., 2017). Our results reveal
that the main differences between locations are seen in the time
frame of 50–100ms and are likely the result of an orthodromic

pathway. Similarly, an ECoG study by Miocinovic et al. (2018)
showed that a cortical activity 10–100ms after STN stimulation
is related to the orthodromic pathway.

Toward a Tailored ML Tool for DBS
Localization and Programming
Our suggested ML model of noninvasive EEG biomarkers to
localize DBS contacts in STN subregions may assist in both
intraoperative electrode localization and postoperative contact
selection. In our study, we used awake postoperative EEG
recordings. Most recently, Irwin et al. (2020) have reported a
similar cortical evoked response to STN stimulation in both
awake patients and those under general anesthesia.We, therefore,
suggest that future studies on our ML model with intraoperative
EEG recordings in awake and anesthetized patients will be
clinically useful for intraoperative patient-specific electrode
localization. Similarly, ourMLmodel can be used postoperatively
for contact selection in patients and contribute information to
future closed-loop DBS models (Ramirez-Zamora et al., 2018;
Vissani et al., 2020; Sand et al., 2021).

As indicated, we performed both single-feature and ML
analyses. The single-feature analysis enabled a good classification
of two STN subregions, ZI-DLR and ZI-VMR. The top single
features found are in line with our current physiologic and
anatomic knowledge of the subthalamic-cortical networks. The
ZI-DLR and ZI-VMR localization, for example, was based on
the latency of the evoked response and on sensorimotor cortical
areas. The ML analysis enabled us to localize more accurately
all the three tested STN locations (ZI, DLR, and VMR). The
advantage of theMLmodel is finding the best features of the EEG
signals and calculating the relative contribution and importance
of each to predicting STN localization. It is not surprising
that our ML model increased prediction accuracy in our study:
representations learned byML in various areas (computer vision,
speech recognition, natural language understanding, and more)
as well as EEG analysis in epilepsy are significantly superior to
manually tuned features constructed by experts during years of
research (Shalev-Shwartz and Ben-David, 2014; Qaraqe et al.,
2015; Zhang et al., 2016; Dirodi et al., 2019; Jang and Cho, 2019;
Kramer et al., 2019). Our suggested algorithm automatically
standardizes the data and minimizes noise artifacts without the
need for manually reviewing or visually inspecting the data. Our
ML model is, thus, easy to apply clinically, since it requires no
special electrophysiological or medical expertise.

It should be noted that, like other ML studies, ours is limited
by the size of the database. Although we recruited a relatively
large patient sample and recorded it for long periods of time, a
larger dataset will yield higher prediction values. We validated
our results in more than one medical center, recruiting patients
from two hospitals where their DBS procedures were performed
by two independent neurosurgery teams, and their STN electrode
localization was evaluated by independent electrophysiology
experts. Future studies should include more patients and more
medical centers.

Frontiers in Systems Neuroscience | www.frontiersin.org 10 October 2021 | Volume 15 | Article 747681

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Sand et al. Non-invasive Tool Can Localize DBS-STN

CONCLUSIONS

We show here that an MLmodel of noninvasive EEG biomarkers
can differentiate STN subregions. DBS contact localization is
crucial for the clinical outcome of STN DBS procedure (Israel
and Bergman, 2016). In addition, postoperative DBS contact
identification is important for postoperative contact selection.
Future studies are needed to implement this novel noninvasive
tool in the operating room, while patients are awake and while
under anesthesia. EEG recordings should also be considered as
an important element in future closed-loop DBS tools.
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