
Hindawi Publishing Corporation
Cardiology Research and Practice
Volume 2012, Article ID 630828, 6 pages
doi:10.1155/2012/630828

Review Article

Toward Intelligent Hemodynamic Monitoring:
A Functional Approach

Pierre Squara1 and Carl Waldmann2
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Technology is now available to allow a complete haemodynamic analysis; however this is only used in a small proportion of patients
and seems to occur when the medical staff have the time and inclination. As a result of this, significant delays occur between an
event, its diagnosis and therefore, any treatment required. We can speculate that we should be able to collect enough real time
information to make a complete, real time, haemodynamic diagnosis in all critically ill patients. This article advocates for “intel-
ligent haemodynamic monitoring”. Following the steps of a functional analysis, we answered six basic questions. (1) What is the
actual best theoretical model for describing haemodynamic disorders? (2) What are the needed and necessary input/output data for
describing this model? (3) What are the specific quality criteria and tolerances for collecting each input variable? (4) Based on these
criteria, what are the validated available technologies for monitoring each input variable, continuously, real time, and if possible
non-invasively? (5) How can we integrate all the needed reliably monitored input variables into the same system for continuously
describing the global haemodynamic model? (6) Is it possible to implement this global model into intelligent programs that are
able to differentiate clinically relevant changes as opposed to artificial changes and to display intelligent messages and/or diagnoses?

1. Introduction

Thirty years ago, tracking the heart rate (HR) was the only
means of automatic, continuous, real-time and noninva-
sive, hemodynamic monitoring. A more elaborate level of
monitoring was necessarily invasive and required a central
venous catheter for continuous pressure (CVP) assessment.
A third level was based on the placement of a pulmonary
artery catheter (PAC) and of an arterial line for continuous
pulmonary artery pressure (PAP) and systemic arterial
pressure (SAP) curve recording.

From this traditional data monitoring, a complete hae-
modynamic diagnosis was obtained on demand by the meas-
urement of a set of additional variables, such as cardiac out-
put (CO), pulmonary wedge pressure (PWP), blood lac-
tate, haemoglobin concentration (Hb), arterial haemoglobin
oxygen saturation (SaO2), and mixed venous haemoglobin
oxygen saturation (SvO2). From these elementary data, sev-
eral other variables were derived such as pulmonary and sys-
temic resistance to flow (PVR and SVR), right and left ven-

tricles stoke work (RVSW and LVSW), and tissue oxygena-
tion indices: oxygen arterial and venous content (CaO2 and
CvO2), oxygen delivery (DO2), arteriovenous oxygen differ-
ences (AVD), tissue oxygen extraction (EO2), and oxygen
consumption (VO2).

Therefore a complete haemodynamic analysis was done
only in a small proportion of patients, and when the medical
staff had the time and inclination. This resulted sometimes
in significant delays between an event and its diagnosis and
therefore any treatment required.

Today, more haemodynamic variables are monitored
continuously by less invasive means than before; for instance
using pulse contour CO, as compared to traditional invasive
discontinuous bolus thermodilution. We can speculate that
we are now able to collect enough real-time information con-
tinuously in order to make a complete, real-time, haemody-
namic diagnosis. It implies not only continuous data record-
ing but also continuous analysis using artificial intelligence.
This is what we call “intelligent haemodynamic monitoring”.
In the engineering industry, a functional analysis system
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technique (FAST) is used in the conception and the devel-
opment of a product. It would be helpful to clinicians if they
share with engineers the same fundamental approach. This is
a prerequisite for reinforcing the way industry and clinicians
are collaborating for the benefit of our patients. Basically, we
must answer three questions: when, why, how?

When is easy: continuously, real time.

Why? Because patients are in a severely compromised
state, there is sudden and large variability in their cardio-
vascular status and we speculate that continuous, real-time,
monitoring with appropriate alarm settings will minimize
the delay between an event and its appropriate treatment,
leading to better outcome.

How, is the most difficult question to answer. We suggest
a functional analysis as follows.

(i) What is the actual best theoretical model for describ-
ing haemodynamic disorders?

(ii) What are the needed and necessary input/output
variables for describing this model?

(iii) What are the specific quality criteria and tolerances
for collecting each input variable?

(iv) Based on these criteria, what are the validated avail-
able technologies for monitoring each input vari-
able, continuously, real time, and if possible non-
invasively?

(v) How can we integrate all the needed reliably mon-
itored input variables into the same system for
continuously describing the global haemodynamic
model?

(vi) Is it possible to implement this reliably described
haemodynamic model into intelligent programs able
to differentiate clinically relevant changes versus
artificial changes and to display intelligent messages
and/or diagnoses?

2. Functional Approach

2.1. What Is the Actual Best Model for Describing Hemody-
namic Disorders. The semantic frames we are using today for
classifying haemodynamic disorders are still derived from the
discontinuous measurements available early in critical care
medicine development. From normal or abnormal ranges of
CVP, PCWP, CO, and SAP, we are still defining diagnostic
terms such as hypovolaemic, cardiogenic, obstructive or
hyperdynamic shock from which we infer specific therapeu-
tic interventions. However, these diagnostic categories are
simplistic, lead to a loss of information, and may not trigger
all necessary treatment. Integrating new continuously mon-
itored variables is an opportunity to update our reasoning
processes, based on more robust models of haemodynamic
disorders. Doing this, we must avoid falling from Charybdis
into Scylla and distorting the haemodynamic reality in
order to fit in with available electronic languages or with
new artificial variables developed by the industry in their
efforts to find complete solutions by the use of one single
technology.

The best theoretical model of shock for monitoring
purposes would be that one giving a complete and com-
prehensive description of all possible pathological processes
observed in clinical practice and for which evidence is
provided. At this level of our analysis, we must only consider
the physiological principles. Practical limitations will be
considered afterwards, in an appropriate step of the func-
tional analysis.

Within this scope, a haemodynamic physiologic and
pathologic model has been developed for a complete com-
puterized haemodynamic diagnosis in the 1990’s [1, 2]. In
this model, all mechanisms of shock are supposed to stem
from tissue oxygen demand outstripping oxygen supply. A
global oxygen consumption (VO2) below the needs ( nVO2)
is consequently the best way to describe a macrocirculation
disorder [3, 4]. This model, established by a panel of experts
[2] from basic physiology, has been validated by the evidence
that modelled variables have the highest prognostic value
as compared to other traditional elementary and derived
variables [1]. In addition, the diagnostic categorizations
based on this model have been shown to be at least equivalent
to that of experienced intensivists [2, 5]. We can also consider
that studies showing an improved outcome when DO2 was
rapidly increased to cover estimated needs is indirect proof
of validity of this model [6]. The principles are as follows.
Practical examples can be found and/or created online
(http://www.hemodyn.com/).

As seen above, shock is defined by

VO2 <
nVO2 or

VO2
nVO2

< 1. (1)

Since VO2 = CO×AVD, we can estimate the required values
of CO and AVD for reaching a given value of nVO2, for each
specific patient, at a specific moment in time. So now, we can
express this as

nVO2 = nCO× nAVD . (2)

Then (1) can be reformulated as

VO2
nVO2

=
{

CO
nCO

}
×
{

AVD
nAVD

}
. (3)

Since DO2 = CO × CaO2 and EO2 = AVD/CaO2, the
formula (3) can also be formulated as

VO2
nVO2

=
{

DO2
nDO2

}
×
{

EO2
nEO2

}
, (2 bis)

where nDO2 and nEO2 are the needed values of DO2 and
EO2 to reach nVO2

From (3) we can see that shock, defined by VO2 <
nVO2,

can be the result of a circulatory disorder (CO < nCO) or
a tissue disorder (AVD < nAVD), or both, or insufficient
compensation of one arm by the other. Since CaO2 is
derived schematically by Hb×1.34×SaO2, it is immediately
clear from (2 bis) that tissue hypoxia may occur due to (1)
excessive demand and/or (2) insufficient CO, (3) insufficient
SaO2, (4) insufficient Hb, and (5) insufficient EO2 (Figure 1).
Therefore, the traditional clinical diagnostic categorisation of
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Figure 1: Root algorithm for representing the global hemodynamic model. The model gives priority to the higher box as compared to the
lower. For example at the first step, the algorithm recommend decreasing excessive needs before looking at improving VO2.

shock that referred mainly to mechanisms 2, 4, and 5, appear
artificial and incomplete.

From this initial root, the model may be enriched as seen
in Figure 2, based on the same principles, by comparing an
actual value with a needed or minimum value for reaching
adequate VO2 to cover needs.

In this model, there is no normal or abnormal vari-
able range. An adequate value is that one that allows
compensation for the insufficiency of one or several other
variables. Adequate limits can be eventually introduced into
the model if other pathophysiological processes are involved.
For example, there is no theoretical risk in decreasing EO2

until needed EO2 is reached while increasing CO or Hb up
to very high values may be limited by myocardial ischemia or
rheological impairment.

Following the initial root (Figure 1), the various mech-
anisms of shock may be subsequently analysed. Figure 2
continues the root algorithm when SV < nSV (bottom right
box of the Figure 1). Similarly an algorithm is described for
each box of Figure 1. The basic principles are maintained in
the secondary algorithms.

In Figure 2 we can see that the priority (higher lines) is
still given to metabolic equilibrium at lower cost. First by
restoring the coronary flow if necessary, then by decreasing
the metabolic demand, finally by increasing the cardiac
power first by filling, then if really necessary by inotropic sup-
port.

At each step (boxes in the figures), the best variables for
answering the question and reaching the objective can be
updated according to any recent developments and to the
state of the art. For example, in Figure 1, tissue perfusion
can be analysed from diuresis, brain activity, the StO2, the
local capillary flow, or nay other indicator to be invented.
In Figure 2, right ventricle (RV) filling may be analysed
by monitoring and targeting adequate values of right atrial
pressure (RAP), RV end diastolic volume, pulmonary pulse
pressure variation, or any other validated variable. Therefore,
at each step of the model, we can choose between different
variables assessing the same physiologic concept, according

to the specific monitoring tools used for a given patient.
Nevertheless, this implies knowing exactly which amount of
uncertainty each variable introduces into the model.

This model is limited by two mechanisms. First, con-
formance, a self-limiting oxygen requirement in case of
tissue hypoxia may lead to a perception of an acceptable
VO2 that may in fact be insufficient. Second, this model
investigates only the macrocirculation. An acceptable global
VO2 may hide important tissue heterogeneity. However, a
conformance can be suspected by repeated measurements
which is the purpose of a continuous monitoring and even
though stabilizing the macro circulation is not the last word
in haemodynamics, it is a prerequisite. Microcirculation can-
not be optimized without stabilizing the macro circulation
first. Therefore a model based on global tissue hypoxia is a
sound basis for macrohemodynamic monitoring.

Other decision trees have been suggested that may be
considered as suitable models for haemodynamic monitor-
ing. However, none of them have been clinically validated
and most of them have been developed from one or several
variables proposed by industry to optimise the usefulness
of a specific device [7]. A validated model strictly based
on physiological knowledge, independent of actual technical
issues, like the one we developed, is more likely to highlight
the actual limitations and to help instigate the appropriate
research.

2.2. What Are the Needed and Necessary Input/Output Vari-
ables for Describing This Model and Detecting Deterioration?
Once a global model has been described, the input and
output variables are then clearly identified. Consensus on the
definition of these terms is vital, otherwise, the reproducibil-
ity of the therapeutic actions based on the model would be
poor.

However, due to various reasons, including the choice of
monitoring and/or actual technological limitations, one or
several needed input variables may be unknown, or lacking,
or assessed discontinuously. In these situations, it is impor-
tant to still fit as closely as possible with the model despite
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Figure 2: Subsequent algorithm dedicated to SV analysis. The needed SVR is that specific value of SVR allowing the generation of the
minimum blood pressure (usually set at a mean value of 65 mmHg) with the needed CO. Similarly for needed PVR.

the bias introduced by the missing input data. There are
theoretically three solutions. First, it is sometimes possible to
find a surrogate of a given input variable assuming that the
information provided is close. This is the case for example
replacing SvO2 by the central venous O2 saturation (ScVO2)
or SaO2 by the pulse oximetry (SpO2) or total peripheral
resistance instead of SVR when right aerial pressure is
missing. Second, it is possible to give a fixed value to a given
variable. For example, we may enter in the model directly at
the level shown in Figure 2, assuming that the needed SV is
the normal SV as a function of age and gender since the adap-
tative mechanisms of CO to needs are mostly resulting from
a regulation of the heart rate. Third, it is possible to estimate
a continuous variable from discontinuous clinical or para-
clinical analysis. For example, VO2 is often not monitored
and VO2 needs unknown. Consequently VO2/

nVO2 ratio <1
is suspected by the presence of clinical signs of shock or by
an increase in blood lactate over time. Alternatively, a change
in VO2 needs (therefore translated to CO and EO2 needs)
can, be estimated by age, gender, body size, body temperature
and/or empiric estimation of the change in metabolic needs
due to underlying or associated pathologies. In any case,
if we restrict our analysis to a part of the global model,
we must assume that the blind part is fixed and given an
approximate value. The reliability of the model is therefore
reduced.

2.3. What Are the Specific Quality Criteria and Tolerance for
Each Input Variable? The quality criteria and tolerance for
the CO monitoring have been reviewed recently. [8, 9] The
same effort must be done for each input variable of the
model. Basically these criteria are very similar for all quan-
titative variables.

(1) The accuracy is how close the value is to a gold
standard. It is estimated by the mean difference (bias)
with the true value given by the gold standard.

(2) The linearity is the capability of maintaining constant
the ratio between the physiologic signal and the
electric output signal. Therefore the bias is constant.
It can be verified by comparing the regression curve
of the bias with the identity line.

(3) The precision is the ability to indicate the same
value when the physiologic signal is stable. In other
words, it is the variation due to random error in
the signal processing. It can be estimated by the
standard deviation/mean value when the physiologic
signal is stable. The least minimum significant change
(smallest change indicating a real change) is a direct
consequence of precision.

(4) The resolution is the smallest change that the device
can detect.

(5) The stability is the capability of maintaining the
preceding quality criteria unchanged during time
(without drift).

(6) The measuring range is the boundaries of value
where the preceding quality criteria are found accept-
able

(7) The responsiveness is the delay between a real change
in the physiologic signal and a change greater than
the least minimum significant change in the observed
value. Coupled with the linearity, it determines the
accuracy of the amplitude response.
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The six first quality criteria are common to all measure-
ment and monitoring tools. The seventh, time-dependent
quality criteria, is specific to monitoring devices.

For each quality criteria, it is important to determine the
tolerance, that is, what is the allowed amount of variation
from the exact value. Ideally, tolerance must be determined
from clinical requirements, dependent on the way the
variable is implemented in the model. However, we are
obliged to consider the actual technological issues. Thus a
20% tolerance is seen as actually acceptable for CO while
it is 4% for the haemoglobin concentration and 2% for the
haemoglobin saturation. However, the accumulated effect
of different tolerances may lead to poor performance. For
example, a tolerance of 20% in accuracy for CO monitoring
plus a tolerance of 5 minutes in time response, plus a
tolerance of 10% in the linearity plus a tolerance of 10% in
stability may result in the absence of detection of a transient
30% CO decrease. To study the impact of cumulated
tolerances on a monitored variable, it can be useful to
determine what is a clinically relevant change of this variable
and to measure the sensitivity and the specificity of a given
device to detect these clinically relevant changes.

2.4. Based on These Criteria, What Are the Validated Available
Technologies for Monitoring Each Input Variable, Continu-
ously, Real time, and If Possible NonInvasively? Full validation
of quality criteria below entails several considerations.

Choice of the Patient Population. A validation study must be
applicable to all ICU patients. The haemodynamic profiles
of sepsis and cardiac surgery are very different A useful
device must provide accurate and precise data in all of
these circumstances or extremes and this must be taken
into account during the design of the validation studies.
A monitoring device is also designed to detect and track
changes in a variable over time. This can best be performed
by building into the protocol an intervention that should on
its own change the monitored variable.

Choice of the Reference Method. A monitoring system is
typically a real-time, automatic, and continuous analyzer. An
ideal device should provide good data from both snapshot
measurements and continuous monitoring. Any validation
study therefore needs to incorporate both of these factors
into its design, especially with respect to its choice of a gold
standard. A gold standard is most often lacking in clinical
practice and we are obliged to consider simply a reference
technology. However, few technologies even when they are
considered as a reference method have fulfilled all the quality
criteria listed above. Therefore, It may be necessary to choose
a different reference method for studying separately each
quality criteria.

Data Acquisition Method. A completely automatic continu-
ous data recording technique should be preferably utilized
for both the reference method and the studied technology
in order to avoid errors when collecting large numbers of
data points and also to limit any interobserver variability. It is

preferable to collect raw data that has not been time-averaged
by the device, in order to minimize the smart averaging and
the smoothing effect used in many modern technologies. The
rationale behind this is that the better the raw signal, the
better the result will be after final averaging. As mathemati-
cally predicted, averaging more data decreases the variability
but not the accuracy [10]. It must not be forgotten, however,
that the devices will be ultimately used according to the data
that they display, which quite often will be different to the
raw numbers. How it affects the validation in the subsequent
analysis must be explained and described in detail.

Data Acceptability. Before analysing the data collected in the
fashion described above, it is important to validate the data.
This requires an independent assessor who is blind to the
choice of monitoring technology assessing the data. Periods
of time when the patients are agitated, when one or both
systems became disconnected, or periods of time where there
is clear evidence of a situation leading to artefact can be
deleted. This is a critical step of the validation that can be
altered by subjective choices.

Data Segmentation. The monitoring trend line of a given
variable can be schematically divided into periods of
unchanged, increasing, or decreasing value. Fulfilling the
criteria of quality determined above requires studying these
different periods of time separately in order to minimize the
physiological variability. Easy database segmentation can be
performed using the trend line slope of the monitored vari-
able. The inflexion point between two consecutive slopes may
be automatically determined using the minimum sum of
residuals for the two segments proposed by John-Alder [11].

Few technologies have been extensively studied using
the quality criteria listed above [12]. We can consider that
this has been achieved satisfactorily only for temperature
and HR monitoring and for Hb, SaO2, SvO2, fand lactate
measurements. Blood pressure monitoring (RAP, PAP, SAP)
with actual transducers, appropriate lines, and filtering
may be considered acceptable if properly maintained and
positioned. SvO2 and ScvO2 monitoring using infrared
spectroscopy may also be considered acceptable if properly
positioned, flushed, and recalibrated.

All other monitoring variables have various degrees of
limitations regarding the listed quality criteria, especially CO,
SaO2, Hb, lactate, ventricle filling and contractility indices,
tissue perfusion indices. However, a complete analysis of
these imitations is a prerequisite before using these variables
in intelligent hemodynamic monitoring. The cumulative
effects of these limitations may lead to poor results.

2.5. How Can We Integrate All of the Needed Reliably Mon-
itored Input Variables on the Same System for Continuously
Describing the Hemodynamic Model? Different companies
currently develop integrating systems. But the reliability
of the different variables provided by the same company
may not be optimal. The best chance would be given by
integrating a maximum number of reliable variables coming
from different devices manufactured by different companies.



6 Cardiology Research and Practice

It is a challenge for scientific societies such as the ESICM to
encourage such developments.

2.6. Is It Possible to Implement This Reliably Described Haemo-
dynamic Model into Intelligent Programs Able to Differentiate
Significant Changes versus Artifactual Changes and to Display
Intelligent Messages and/or Diagnosis? This still requires a
proper solution. An available intelligent program developed
for analysing snapshot measurements [1, 2, 5] can be a
basis for comparing trends. Including automatic trend lines
in a reasoning process instead of validated measurements
requires that artefacts be filtered out. It is also necessary to
determine the time sampling to avoid continuous instanta-
neous diagnostic changes with no practical use. Once this
will have been done, we will be ready to check if this type
of monitoring is likely to increase the speed and appropriate-
ness of therapeutic interventions and to improve outcome.

3. Conclusion

No matter how sophisticated and advanced the integrated
monitoring system is in an intensive care unit, its ability to
detect that a patient is deteriorating will still depend on the
quality of the staff in the critical care unit and their ability to
work as a team. More sophisticated monitoring should not be
used at the expense of reducing staff/patient ratios but rather
to enhance the ability of the staff to manage patients. The
procurement of an appropriate clinical information system
where there is none should also be high on the wish list to
help collect the many direct and indirect variables of patient
data and allow clinical decision support analysis. It is the
task of industry to maximise the information provided by
their technology. It is the task of the medical community to
describe the ideal tool they need.
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