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ABSTRACT One of the major issues in plant breeding is the occurrence of genotype · environment (GE)
interaction. Several models have been created to understand this phenomenon and explore it. In the
genomic era, several models were employed to improve selection by using markers and account for GE
interaction simultaneously. Some of these models use special genetic covariance matrices. In addition, the
scale of multi-environment trials is getting larger, and this increases the computational challenges. In this
context, we propose an R package that, in general, allows building GE genomic covariance matrices and
fitting linear mixed models, in particular, to a few genomic GE models. Here we propose two functions: one
to prepare the genomic kernels accounting for the genomic GE and another to perform genomic prediction
using a Bayesian linear mixed model. A specific treatment is given for sparse covariance matrices, in
particular, to block diagonal matrices that are present in some GE models in order to decrease the com-
putational demand. In empirical comparisons with Bayesian Genomic Linear Regression (BGLR), accuracies
and the mean squared error were similar; however, the computational time was up to five times lower than
when using the classic approach. Bayesian Genomic Genotype · Environment Interaction (BGGE) is a fast,
efficient option for creating genomic GE kernels and making genomic predictions.
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Genomic selection has the advantage of saving time and resources
when selecting genotypes by employing genomic-enabled prediction
methods for complex traits, alongwith pedigree information,molecular
markers and/or environmental covariates (Crossa et al. 2017). In the

genomic selectionmethod proposed byMeuwissen et al. (2001), Bayes-
ianmodels were introduced in the context of whole-genome regression;
they have become common in genomic prediction (Gianola 2013).
Within this framework, appropriate prior distributions and simulations
via Markov Chain Monte Carlo (MCMC) allow convergence for pre-
dictive posterior distributions that cannot be solved analytically. How-
ever, these methods require thousands of iterations to ensure
convergence, so that if the model is complex, the sampling process
can increase the computational time. In this context, attempts have
been made to reduce the computational time of Bayesian models with
approaches that do not useMCMC, such as variational Bayesian meth-
ods (Montesinos-López et al. 2017) and Integrated Nested Laplace
Approximation (INLA) (Holand et al. 2013; Mathew et al. 2016). These
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methods are faster; however, they have constraints that may lead to
lower prediction accuracy, which is undesired.

Usingmolecular markers (p) in classic parametric regression with n
individuals can lead to the problem of n � p setting, which can be
reduced by using semi-parametric regression such as Reproducing
Kernel Hilbert Spaces (RKHS) (Gianola and Van Kaam 2008; de los
Campos et al. 2010). These approaches assume the contribution of
molecular markers as a random variable in some distributions with a
covariance matrix that consists of a scalar variance component and a
known covariance kernel obtained by markers. This covariance kernel
can model genetic effects as additive, dominance and epistasis, as a
mixture of these effects or even as genetic and non-genetic remaining
effects (Crossa et al. 2010; Technow et al. 2012; Azevedo et al. 2015).
Genomic-enabled predictions are usually done using models that do
not take into account genotype · environment interaction (GE). Nev-
ertheless, the advantage of genomic models that take into account in-
formation from multi-environment trials simultaneously has been
proved (Burgueño et al. 2012). Hence, a family of genomic models
was developed to account for GE interaction; these models also allow
incorporating fixed effects of environments and several genetic and
environmental effects into a variety of linear mixed models (Jarquín
et al. 2014; Lopez-Cruz et al. 2015; Sousa et al. 2017).

In this paper, we describe the Bayesian Genomic Genotype ·
Environment (BGGE) R package that fits genomic linear mixedmodels
to single environments and multi-environments with GE models. The
increase in speed is achieved by reparametrization through orthogo-
nal rotation of the random vectors, allowing the use of univariate
distributions in the sampling process (Cavalier 2008; Cuevas et al.
2014). Also, some special treatments are given for structured dispersed
covariance matrices, in particular, those structured as a block diagonal,
prevalent in some GE models (Sousa et al. 2017). We present statistical
models and algorithms with a generic linear mixed model and its
Bayesian counterpart, which is the base of the BGGE package, as well
as the most representative part of the prediction process and kernel
construction for genomic models. In addition we describe the getK and
BGGE functions, which offer the possibility of fitting six different multi-
environment genomic models with GE based on models proposed by
Jarquín et al. (2014) and Lopez-Cruz et al. (2015),; we also give some
examples of their use, and compare them to other packages that use
Bayesian approaches.

We note that although the getK function is an auxiliary function, it
allows fitting not only the six genomic multi-environment models with
GE, but can also model several other situations. However, the potential
of the package is given by the BGGE function that provides the versa-
tility needed to fit a great number of different genomic data sets.

STATISTICAL MODELS

Linear mixed model
Consider the followingbasic linearmixedmodels that cover thediversity
of models that can be applied to single or multi-environment trials.
Assume q vectors of random effects:

y ¼ m1þ Xfbþ
Xq
r¼1

ur þ e (1)

where y is the vector combining the genotypic means of observations.
The scalar m is the common intercept or the mean. Matrix Xf re-
presents the design matrix associated with the vector of fixed effects b.
Random vectors ur ðr ¼ 1; 2; :::; qÞ are assumed to be indepen-
dent of other random effects. We expected that ur would follow a
normal distribution with zero mean and a covariance matrix of the

form s2
urK r , where s2

ur is a scalar representing the unknown variance
parameter to be estimated fromur , andK r is a known symmetric positive
semi-definite covariance matrix. Model (1) is very general and it can be
used to model different problems in biology or other areas, particularly
genomic selection areas. It should be pointed out that in this first version
of the BGGE package, the design matrix Xf is limited to being a full rank
matrix with the vectors ur being of the same size as y, and representing in
the most common case, a reparameterization equivalent to Zuu or Zgg
used in mixed models for genomic selection (Crossa et al. 2010, Jarquín
et al. 2014), whereZu orZg are known incidencematrices that relate the
genotypes to the observations, and g or u are the random genetic effects
of the genotypes (a known matrix multiplied by a random vector results
in a random vector of the same size as the response variable vector yÞ.

Finally, random error vector e, of the same length as y, follows a
normal distribution with zero mean and form e � Nð0;ΣÞ; where Σ is
a covariance matrix Σ ¼ Is2

e , and I is an identity matrix. The previous
assumptions allow the BGGE models to be used only with continuous
data assumed to have a multivariate normal distribution with observa-
tions (not independent) that depend on the variance-covariance struc-
ture of the genotypes. The main objective of the BGGE is to focus on
the covariance structure more than on the possible heteroscedasticity/
homoscedasticity of the error.

Linear mixed model parametrization
Themainobjective of the reparameterizationofmodel (1) is to rotate the
dependent observations in the response vector y that follows a multi-
variate normal distribution to an orthogonal space that ensures inde-
pendence. This rotation allows overcoming matrix problems (e.g., not
full rank matrices), thus vectorising matrices that result in much faster
computation and estimation of the model’s parameters. This rotation is
achieved with the decomposition or factorization of matrices such as
singular value decomposition (SVD) or eigen-decomposition that are
commonly used in parametric regression models like principal com-
ponent regression or in genomic-enabled prediction (Cuevas et al.
2014, Meuwissen et al. 2017).

In linear mixed models, the covariance matrix is symmetric and
positive semidefinite and can be factorized by using the eigen-decom-
position of K of order n · n (de los Campos et al. 2010). Hence,
K ¼ USU 0, where S is a diagonal matrix with n non-zero eigenvalues
and U is an orthogonal matrix with eigenvectors associated with n
eigenvalues. To facilitate reading, we use a single kernel model, consid-
ering that y� ¼ y2m12Xfb. Cuevas et al. (2014) proposed an or-
thogonal transformation by multiplying both sides of (1) by U 0:

y� ¼ uþ e

U 0y� ¼ U 0uþ U 0e (2)

such that model (2) becomes:

d ¼ bþ e (3)

where d ¼ U 0y� b ¼ U 0u and e ¼ U 0e. The model assumes that b
comes from a normal distribution such that U 0u �Nð0;U 0KUs2

uÞ ¼
Nð0;U 0USU 0Us2

uÞ ¼ Nð0; Ss2
uÞ, considering that U 0U ¼ I. Similarly,

model (2) assumes that e comes from a normal distribution such
that U 0e � Nð0;U 0Us2

e Þ ¼ Nð0; Is2
e Þ. The rotation causes the ele-

ments of b to be independent with univariate normal distributions.
It is also worth noting that eigenvalues that are very close to zero
(less than 1 · 10210) reflect the noise (and numerical errors) and
their associated eigenvectors can be eliminated, thereby reducing the
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dimension of matricesU and S. Note that the proposed matricesK were
previously scaled in order to reduce their magnitude. In addition, the
BGGE package offers an argument (tol = tolerance) to change the default
value of (1 · 10210) for the eigenvalues considered equal to zero.

Bayesian linear mixed models
TheBGGEsolves the linearmixedmodels throughBayesianhierarchical
modeling. The distribution of the transformeddatad, given b ands2

e , is:

f
�
djb;s2

e

� ¼Yn
i¼1

N
�
dijbi;s2

e

�
(4)

The Bayesian linear mixed model assumes that pðujs2
uÞ ¼

Nðuj0;Ks2
uÞ; then the conditional distribution of bi is as follows:

p
�
bijs2

u

� ¼ N
�
bij0;s2

usi
�

(5)

where si are the eigenvalues and s2
u is the unknown scale. This rep-

arameterization allows sampling from univariate normal distribu-
tions, making the convergence process simpler and faster.

The proposed conjugate prior distribution for s2
u is a scaled inverse

chi squared, p(s2
uÞ � x22ðnu; ScuÞ, where nu denotes the degree of

freedom and Scu represents the scale factor. In the BGGE package,
the degrees of freedom are set to a value of 3 with the idea of not
generating infinite values in the samples of s2

u. On the other hand,
the prior distribution used for Scu was previously computed from the
data, as suggested by Pérez and de los Campos (2014) (see details in the
Appendix). The conjugate prior distribution used for s2

e is a scaled
inverse chi squared, p(s2

e Þ � x22ðne; SceÞ, where ne represents the
degrees of freedom and Sce denotes the scale factor.

Hence, the joint posterior distribution of ðb;s2
u;s

2
e Þ; given

d; nu; Scu; ne ; Sce and S, is:

p
�
b;s2

u;s
2
e jd; nu; Scu; ne ; Sce; S

�
}

(Yn
i¼1

N
�
dijbi;s2

e

�
N
�
bij0;s2

usi
�)

·x22�s2
ujnu; nuScu

�
·x22�s2

e jne; ne Sce
�

(6)

From equations (5) and (6), conditional distributions can be con-
structed to generate theMCMCs through aGibbs sampler. Note that u
genetic values can be recovered from u ¼ Ub. Details are presented in
the Appendix.

Sparse matrices
In an attempt to speed up the prediction algorithm, several special
treatments are given for sparse matrices. In several GE models
(Jarquín et al. 2014; Lopez-Cruz et al. 2015), some random u effects
have an associated covariance matrix that can be considered sparse
with submatrices in a known structure. Thus, instead of applying
eigen-decomposition in the complete matrix, we identify, individ-
ualize and apply eigen-decomposition in the submatrices that com-
pose the block diagonal; this speeds up eigen-decomposition and
makes the multiplication of matrices and vectors faster, thus reduc-
ing the iteration time.

Obtaining multi-environment kernels
Differentmulti-environmentmodels are defined based on the construc-
tion of the kernel matrices, using information available on genotypes,

molecularmarkers and the environment (Jarquín et al. 2014; Sousa et al.
2017; Cuevas et al. 2018). The construction of multi-environment ker-
nels depends on two primary processes: the choice of covariance func-
tion and the multi-environment model.

Choice of covariance function
Two covariance or kernel functions are generated internally; to facilitate
the readingwewilluse the samenamesof themethods(GBandGK)used
in Cuevas et al. (2016, 2017). The Genomic Best Linear Unbiased Pre-
dictor (GBLUP orGB) is the standard linear kernel from the properties
of a multivariate normal distribution in linear mixed models and is
usually referred to as the genomic relationship matrix. Thus, GB is
obtained as follows:

GB ¼ XX
0

p

where X is the marker matrix and p is the number of markers. This
matrix was proposed by VanRaden in 2008, and since then, it has
been used successfully in genomic prediction (de los Campos et al.
2009).

Another covariance function is the Gaussian kernel (GK). The GK
appeared as a reproducing kernel (RK) in the semi-parametric model
Reproducing Kernel Hilbert Spaces (RKHS) (González-Camacho et al.
2012) and is defined as follows:

GK ¼ GK
�
xi; xj

� ¼ exp

 
2hd2ij
q

!

where h is the bandwidth parameter that controls the rate of decay of
the covariance between genotypes, and q is the percentile of the
square of the Euclidean distance dij ¼

P
kðxik2xjkÞ2, which is a mea-

sure of the genetic distance between individuals. Results have shown
that GK performs better than GB (Cuevas et al. 2016; Sousa et al.
2017). Note that the BGGE package is not limited to using the above
matrices; other matrices can be used as long as they are symmetric
and positive semidefinite.

Uses of the BGGE
The BGGE package is generic and can be used to fit a great number of
mixed models. For example, in genomic-enabled prediction it can be
used to fit a single environment and/or multi-environments with GE
including pedigree, genomic and environmental information. The
conditions needed to use this first version of BGGE are: (1) must have
continuousobservationswithmultivariatenormaldistribution; (2)must
include as many random effects as necessary, assuming they have
multivariate normal distributionwith variance-covariancematrices that
are symmetric and positive semidefinite; (3) random errors are assumed
to be homoscedastic. Themain objective of this article is to describe and
explain the use of the BGGE package in the context of genomic-enabled
predictions. In addition, the article explains functions to generate
variance-covariances of six GE models. The function used to fit these
six models is considered auxiliary (because it is not the principal
function).

The models considered in genomic GE were developed by Jarquín
et al. (2014), Lopez-Cruz et al. (2015) and Cuevas et al. (2018). The six
models considered in this study had a general mean m and fixed effects
Xfb (for example, this could refer to the fixed effects of environments).
The first multi-environment model added to m and Xfb a random
vector of main genotypic effects (MM) (Jarquín et al. 2014), assuming

Volume 8 September 2018 | A New Package for Genomic Prediction | 3041



these genetic effects across environments are constant, with a variance-
covariance structure of ZuKZ0

u (Table 1), where Zu is a known
incidence matrix that relates the genotypes to the observations
in the environments (Jarquín et al. 2014). The second model
MMl adds to the MM model a random intercept l (Table 1)
with variance-covariance structure ZuIZ0

u (Cuevas et al. 2018).
The third model is the multi-environment, single variance
genotype · environment deviation model (MDs), which is an
extension of the main genetic effect model (MM), but incorpo-
rates a random deviation effect of GE. Table 1 shows that this
component has a variance-covariance structure ðZuKZ0

uÞ�ZEZ0
E ,

where � is the Hadamard product and ZE is a known matrix of
environmental covariables (Jarquín et al. 2014; Sousa et al. 2017).
When a random intercept is added to model MDs, the fourth model is
MDsl (Table 1). An alternative model is the multi-environment, envi-
ronment-specific, variance genotype · environment deviation model
(MDe) proposed by Lopez-Cruz et al. (2015). In MDe, a vector of
specific environment effects is addedwith a known variance-covariance
structure such that the blocks that correspond to the columns and rows
of environment jth ðj ¼ ð1; :::;mÞ are a matrix Kj with the other
elements equal to zero (Sousa et al. 2017). Again, when a random
intercept component is added, a new model is generated, the MDe
l (Cuevas et al. 2018).

EXPERIMENTAL DATA SET
To show how to use the package, a maize data set is available that
includes phenotypes, SNP markers and two kernels. The data set
consists of 614maize hybrids evaluated at Piracicaba andAnhumas,
São Paulo, Brazil, in 2017. Field trials were carried out using an
augmented block design, with two commercial hybrids as checks.
At each site, two levels of nitrogen (N) fertilization, Ideal N (IN)
and Low N (LN) were applied. The combination site and the N
level formed the four environments (P-IN, P-LN, A-IN, and
A-IN). The field trials carried out under ideal N conditions re-
ceived 100 kg ha-1 of N (30 kg ha-1 at sowing and 70 kg ha-1 in a
coverage application) at the V8 plant stage. The experiments car-
ried out under low N received only 30 kg/ha of N at sowing. For
each field trial, we adjusted phenotypic values by the experimental
design (incomplete block). We fitted a mixed model with the ran-
dom effect of the genotypes (including treatments and checks) and
the random effect of the incomplete block to recover the inter
block information.

The 49 parental lines were genotyped with the Affymetrix
Axiom Maize Genotyping Array of 616 K SNPs (Unterseer et al.
2014). Quality control for call rate and missing marker imputation
was applied in the parental lines. Markers with call rates lower
than 0.9 and with at least one heterozygous locus were removed.
Hybrid genotypes were composed by combining their respective
parental lines. A second quality control was performed after a
hybrid matrix was constructed, in which markers with minor allele
frequency (MAF) lower than 0.05 were removed. After that, we
pruned the hybrids’ SNP matrix by removing markers with a pair-
wise linkage disequilibrium (LD) greater than 0.9. Quality control
was performed using the R package synbreed (Wimmer et al. 2012)
and LD pruning was carried out using the SNPRelate R package
(Zheng et al. 2012). After pre-processing the data set, 34,571 high-
quality SNPs were available.

Data and Software Availability
TheBGGERpackage is available atCRAN(https://cran.r-roject.org/web/
packages/BGGE/BGGE.pdf). The following link hdl:11529/10548107

contains the maize data set comprising 614 maize lines under maizefiles.
RData (from maizefiles.tab); ‘geno’ is the matrix of markers, ‘pheno_
geno’ is the data.frame with the first column indicating the factor
environment, another column corresponding to the entry’s unique ID
(GID); GK denotes the Gaussian kernel matrix and GB represents the
GBLUP matrix.

DESCRIPTION AND APPLICATION OF THE BGGE
PACKAGE
This section shows how to use the BGGE R package, first by describing
the two main principal functions in detail and then illustrating its use
with a real data set. We then show how to fit models MM, MDs, and
MDe with various kernels including GB, GK, as well as Kernel
Averaging (KA).

Describing functions
In what follows, we present the use and describe themain aspects of the
two functions: getK and BGGE. The getK function creates multi-
environment kernels or known covariance matrices for the MM,
MDs, and MDe models (Sousa et al. 2017) with or without random
intercepts MMl, MDsl, MDel (Cuevas et al. 2018). The objective is to
help the user construct these matrices (Table 1), which will be used as
entries in the BGGE function to be able to fit the model. Note that the
use of the BGGE function does not depend on getK.

Box 1
getK(Y, X, kernel = c(“GK”, “GB”), setKernel = NULL,

bandwidth = 1, model = c(“SM”, “MM”, “MDs”, “MDe”),

intercept.random = FALSE, quantil = 0.5)

The getK function is an auxiliary function for constructing variance-
covariance matrices like those shown in Table 1 using the GB (GBLUP)
or Gaussian kernel (GK) methods. Box 1 (above) contains the main
arguments of the getK function. Y is a data.frame phenotypic data set

n Table 1 - Known variance-covariance matrices for six models of
function getGK

Model

Main genetic
effect of
line across

environments

Genotype ·
environment

interaction (G·E)

Random
intercept of
the lines

MM ZuKZ0
u

MMl ZuKZ0
u ZuIZ0

u

MDs ZuKZ0
u ðZuKZ0

uÞ�ZEZ0
E

MDsl ZuKZ0
u ðZuKZ0

uÞ�ZEZ0
E ZuIZ0

u

MDe ZuKZ0
u

2
66664
0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ K j ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 ⋯ 0

3
77775

for each environment
j ðj ¼ 1; :::;mÞ

MDel ZuKZ0
u

2
66664
0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ K j ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 ⋯ 0

3
77775

for each environment
j ðj ¼ 1; :::;mÞ

ZuIZ0
u
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with three columns; the first column is a factor for environments, the
second column is a factor identifying genotypes, and the third column
contains the trait of interest. X is the marker matrix in which individ-
uals are in rows and markers in columns, and missing markers are not
allowed; the kernel argument is themethod used to construct the GKor
GB kernels. In the case of the Gaussian kernel (GK), the bandwidth
(default is 1) and quantile (default is 0.5) arguments are equivalent to
the bandwidth parameter and the quantile, as previously defined. The
bandwidth parameter can be estimated using a Bayesian approach, as
presented in Pérez-Elizalde et al. (2015).

When choosing a covariance matrix other than GB and GK (for
example, the pedigree relationship -matrixA), these kernels are passed by
the setKernel argument (default is NULL). The argumentmodel allows
us to choose models MM, MDs, and MDe. Additionally, a univariate
single model (SM) can be chosen. The argument intercept.random (de-
fault is FALSE) is an option for adding the random intercept of the
genetic component (Table 1). The output of BGGE is a two-level list
indicating the covariance matrix of the selected model and the type of
matrix, where “D” stands for dense, and “BD” stands for block diagonal.

The main function of the package is the BGGE function that aims to
perform genomic prediction through a linear mixed model for contin-
uous variables.

Box 2
BGGE(y, K, XF = NULL, ne, ite = 1000, burn = 200, thin = 3)

Box 2 presents the arguments for the BGGE function. y is the
response variable (allowing missing values). K is a two-level list
containing the matrix (i.e., K = list(list(Kernel = GK,Type =
”D”))) associated with each random effect vector in the model
and the type of matrix (D = Dense, BD = Block diagonal). XF is
the design matrix used to fit fixed effects, ne is a vector defining the
number of genotypes in each environment, and ite, burn, and thin
define the number of iterations of the sampler, the number of sam-
ples to be discarded, and the thinning used to compute posterior
means, respectively. Further details on K and ne are given in the
examples below.

Example 1: fitting THE MM model
In this example, we show how to fit the main effects genotypic model
(MM) (Jarquín et al. 2014; Sousa et al. 2017) along with the linear
kernel GBLUP. First, we obtain the kernel through getK.

Box 3
rm(list = ls())

library(BGGE)

### Load the maize dataset from supplementary material

load(“maizefiles.Rdata”)

head (geno) # the marker matrix

head(pheno_geno) # the phenotypic data

K1,- getK(Y = pheno_geno, X = geno, kernel = “GB”, model = “MM”)

The phenotypic file must be provided as a data frame with three
columns that identify the environments, the individuals or genotypes,
and the phenotypic observations. When in the presence of the marker
matrix, it is necessary to choose the covariance function to create the
kernel. The getK returns a two-level list with the kernels for the re-
spective model and a definition of the type of matrix. The MM model
produces only one covariance matrix (K1) considered as dense.

Box 4
##Continue from Box 3

ne ,- as.vector(table(pheno_geno$env))

fit ,- BGGE(y = pheno_geno$GY, K = K1, ne = ne, verbose = T)

## K1 from Box 3

fit$yHat[pheno_geno$env==“AN_IN”]#predictedvaluesfor

##environment 1

fit$K$G$varu #genetic variance

fit$varE #residual variance

plot(fit$yHat, pheno_geno$GY)

Box 4 presents the basic syntax for the BGGE function. The input
for K is the two-level list returned by the getK function. The BGGE
function fits a multi-environment main genotypic model (MM), with a
total of 1000 cycles of a Gibbs sampler (the default value for the number
of iterations), and the first 200 samples are discarded (the default
burn-in value). Also, samples are collected at a thinning interval of
three. The BGGE function returns a list with estimated posterior means
for each random term in the linear model and the predicted genetic
values. To assess convergence and estimate the Monte Carlo error,
samples of the intercept and random effect variances are stored and
returned in the same output list.

Example 2: fitting THE MDe model
In this example, we show how to fit the environment-specific variance
genotype · environment deviation model (MDe) (Lopez-Cruz et al.
2015; Cuevas et al. 2016) along with the non-linear Gaussian kernel
(GK).

Box 5
rm(list = ls())

library(BGGE)

### Load the maize dataset from supplementary material

load(“maizefiles.Rdata”)

ne ,- as.vector(table(pheno_geno$env))

K2,- getK(Y = pheno_geno, X = geno, kernel = “GK”, bandwidth

= 1, model = “MDe”)

fit ,- BGGE(y = pheno_geno$GY, K = K2, ne = ne)

fit$yHat[pheno_geno$env==“AN_LN”]#predictedvaluesfor

environment 2

fit$K$G$varu #main genetic variance

fit$varE #residual variance

fit$K$AN_LN$varu #specific genetic variance

fit$varE #residual variance

plot(fit$yHat, pheno_geno$GY)

In Box 5, the getK function uses the Gaussian kernel and a band-
width parameter of one and a quantile of 0.5 (default value). However,
this can be modified by the bandwidth and quantile arguments. In the
MDe model, the getK function returns, in the K2 list, the variance-
covariance matrix for the main genotypic effect (ZuGKZ0

uÞ (Table 1)

and the kernel

2
66664
0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ GK j ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 ⋯ 0

3
77775 for each environment. This

model is characterized by structured matrices for specific
environments.
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TheMDemodel uses the ne argument to extract the sub-matrices for
each environment instead of decomposing the big sparse matrix into
singularvalues.TheBGGEreturns thepredictedposteriormeanofgenetic
effects (main effect + environment-specific effects) and the estimated
compound variances. Box 5 shows some elements of the output list ‘fit’,
such as predictive values y in environment 2, the variance component of
the main effects and the variance component specific to environment 1.

Example 3: fitting multi-kernel
multi-environment models
When using the Gaussian kernel (GK), the problem of selecting the best
bandwidth parameter arises. As pointed by de los Campos et al. (2010),
with extreme bandwidth values, the information of the markers is
practically lost, making it necessary to optimize the best parameter.
Endelman (2011) and Pérez-Elizalde et al. (2015) proposed two differ-
ent approaches for optimizing this parameter via REML and the Bayes-
ian framework, respectively. However, de los Campos et al. (2010)
addressed the problem by proposing a multi-kernel average approach
in which a sequence of kernels is obtained from a grid of bandwidth
parameters, called kernel averaging (KA).

Box 6
rm(list = ls())

library(BGGE)

### Load the maize dataset from supplementary material

load(“maizefiles.Rdata”)

ne ,- as.vector(table(pheno_geno$env))

K3 ,- getK(Y = pheno_geno, X = X, kernel = “GK”, bandwidth =

c(0.25,1,2.5), model = “MDs”)

fit ,- BGGE(y = pheno_geno$GY, K = K3, ne = ne)

fit$yHat #predicted values

fit$K$G_1$varu #main genetic variance for kernel1(bandwidth=

0.25)

fit$K$GE_1$varu #G x E variance for kernel 1 (bandwidth =

0.25)

fit$varE #residual variance

plot(fit$yHat, pheno_geno$GY)

We use the MDs model as an example. Since the bandwidth
argument accepts a vector as input, it can be used as a solution to
create multi-kernels using a range of bandwidth values. For the present
models, getKwill create n · v kernels, in which n is the number of basic
kernels for each model and v is the number of bandwidth parameters.

Example 4: fitting additive + dominance models
Several kernels were proposed as t (Tusell et al. 2014) and exponential
(Endelman 2011), as well as other estimators of the genomic

relationship between subjects (Astle and Balding 2009; Yang et al.
2010;Wang andDa 2014) and the combination of non-additive kernels
(Nishio and Satoh 2014) in an attempt to improve prediction. Hence, it
is possible to use kernels other than GB and GK, as well as to combine
them to create multi-environment kernels. In this example, we show
how to apply external kernels to fit genome prediction to model MDs
(Jarquín et al. 2014). For instance, using an SNPmatrix, it is possible to
compute additive and dominance relationship matrices (Azevedo et al.
2015) and combine them to build multi-environment kernels.

Box 7
rm(list = ls())

library(BGGE)

### Load the maize dataset from supplementary material

load(“My directory/maizefiles.Rdata”)

ne ,- as.vector(table(pheno_geno$env))

ne ,- as.vector(table(pheno_geno$env))

Xd ,- geno

Xd[Xd == 2] ,- 0

W ,- (geno) #SNP matrix geno coded as 0, 1 and 2

S ,- (Xd) #SNP matrix Xd coded as 0(homozygous) and

1 (heterozygous)

GBa ,-tcrossprod(W)/ncol(W)#Kernel GBLUP for additive

GBd,-tcrossprod(S)/ncol(S)#Kernel GBLUP for dominance

Ker ,- list(Ga = GBa, Gd = GBd)

K5 ,- getK(Y = pheno_geno, setKernel = Ker, model = “MDs”)

fit ,- BGGE(y = pheno_geno$GY, K = K5, ne = ne)

fit$yHat # predicted values

fit$K$G_Ga$varu #main genetic additive variance

fit$K$G_Gd$varu #main genetic dominance variance

fit$varE #residual variance

plot(fit$yHat, pheno_geno$GY)

In the initial call for getK, we introduce the setKernel argument that
allows passing a list of kernels other than those computed internally.

n Table 2 - HEL data set. Estimates of variance components obtained by the BGGE and BGLR functions for the multi-environment models,
main genotypic effect model (MM), single variance G3E deviation model (MDs) and the environment-specific variance G3E deviation
model (MDe) with a G-BLUP kernel

Factor

BGGE BGLR

MM MDs MDe MM MDs MDe

s2 0.749 (0.02) 0.737 (0.02) 0.733 (0.02) 0.75 (0.02) 0.736 (0.02) 0.739 (0.02)
s2
u 0.335 (0.08) 0.331 (0.08) 0.335 (0.08) 0.278 (0.06) 0.271 (0.06) 0.273 (0.06)

s2
uE — 0.019 (0.009) — — 0.021 (0.007) —

s2
PI LN — — 0.028 (0.02) — — 0.015 (0.01)

s2
PI IN — — 0.022 (0.02) — — 0.014 (0.008)

s2
AN LN — — 0.029 (0.02) — — 0.014 (0.008)

s2
AN IN — — 0.052 (0.03) — — 0.021 (0.01)

n Table 3 - Total time (in seconds) to execute the BGGE and BGLR
functions for the multi-environment models, main genotypic effect
model (MM), single variance G3E deviation model (MDs) and
environment-specific variance G3E deviation model (MDe) with
the G-BLUP kernel

Model BGGE BGLR

MM 103.16 249.06
MDs 183.43 709.74
MDe 219.03 1142.73
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Thus, it creates n· k kernels, where n is the number of basic kernels for
each model and k is the number of kernels introduced by the user.

Example 5: fitting GENOMIC + PEDIGREE models
Genomic predictions can be improved by combining genomic relation-
ship matrices and pedigree information. Legarra et al. (2009) proposed
combining the G matrix and the pedigree into the H matrix. In con-
trast, Crossa et al. (2010) proposed that the genomic relationship and
the pedigree be modeled as the sum of the two components. Hence, in
this example, we show how to make predictions using genomic rela-
tionships along with pedigree information. We used the wheat data set
available in BGLR (Pérez and de los Campos 2014).

Box 8
rm(list = ls())

library(BGLR)

data(wheat)

wheat.X ,- scale(wheat.X)

env ,- ncol(wheat.Y)

gen ,- nrow(wheat.Y)

rownames(wheat.X) ,- 1:gen

whe.Y ,- data.frame(env = gl(n = env, k = gen),

GID = gl(n = gen, k = 1, length = gen�env),

Y = as.vector(wheat.Y))

GB ,- tcrossprod(wheat.X)/ncol(wheat.X) #genomic relationship

Kga ,- list(G = list(Kernel = GB, Type = “D”),

A = list(Kernel = wheat.A, Type = ”D”))

y ,- whe.Y[whe.Y$env == 1, 3]

fit ,- BGGE(y = y, K = Kga, ne = 599)

fit$yHat # predicted values

fit$K$G$varu #genetic additive variance (markers)

fit$K$A$varu #genetic additive variance (pedigree)

fit$varE #residual variance

plot(fit$yHat, y)

In Box 8, we fit the genomic + pedigreemodel for environment 1. To
do this,we combined the genomicmatrix and thepedigree ina list. In the
list used as input for BGGE, the type ofmatrices is assigned as dense. For
the BGGE function, since there is only one environment, ne is the
number of genotypes evaluated in environment 1.

Empirical comparisons
The method applied in BGGE using different features was compared to
the standard Bayesian kernel regression proposed by de los Campos
et al. (2010) (BGLR). The comparison of the performance of methods
BGGE and BGLR was based on: (i) comparing their variance compo-
nents, and (ii) comparing the computing time to the time it takes to fit
three different genotype · environment models. The posterior variance
components were estimated using full data. The computational time
was also included in the comparison. The genomic GE models were
fitted using BGLR (Pérez and de los Campos 2014) through the RKHS
model and BGGE packages, using a Gibbs sampler with 60,000 itera-
tions, a burn-in of 10,000 and a thinning interval of 10, with 5,000
samples for inference at the end. Kernels for GE models were built into
the getK function.

The approach used for prediction includes an orthogonal trans-
formation of the model. Despite the expected theoretical difference
between these two approaches, the observed difference was not signif-
icant. For the twodata sets, the residual variancewas slightly lowerwhen
using the BGGE approach (Table 2). In contrast, the genetic variance

components were high for BGGE. Despite this, there is no clear advan-
tage in using one package instead of the other. However, computational
time of the BGGE was up to five times faster than that of the BGLR
approach (Table 3). The BGLR package uses approaches to fit gener-
alized linear models and thus fits a wide range of Bayesian regression
models like Bayesian LASSO, Bayes A, and Bayes B, among others. The
BGGE package specializes in linear mixed models with some features
for GE kernels.

The main mechanisms that increase the speed of the process for
fitting the models are: the reparameterization of the model and the way
sparse block diagonal matrices are handled. In the context of genomic
parametric regression, Cuevas et al. (2014) showed that the new pa-
rameterization allows reducing the dimensionality; moreover, it gives a
computational advantage because it allows simulations with univariate
distributions for a smaller number of parameters. The extra features of
the sparse structure matrix assumed in the BGGE algorithm reduce
dimensionality by decreasing the computational time.

Conclusions
The proposed package was built to make genomic predictions for
continuousvariables focusedongenomicGEmodels.Using information
from multi-environment trials can improve prediction, and several
models have been created (Sousa et al. 2017; Cuevas et al. 2018). How-
ever, each GE model has its own properties and, therefore, specific
kernels must be created in the BGGE.

The purpose of the getK is to generate kernels for six genomic
GE models. Hence, multi-environment kernels are produced using
covariance functions created internally (GB or GK). Also, there is
an extra argument that allows other kernels to be passed, which
opens the possibility of combining different kernels, such as addi-
tive with dominance or pedigree, for multi-environment models.
For the Gaussian kernel, different values of bandwidth parameters
can be introduced to create several kernels, as defined in kernel
averaging (de los Campos et al. 2010). The output produced by
getK is in the proper format to be used in the BGGE prediction
function.

The BGGE function uses a reparametrization (Cuevas et al. 2014) of
the linear mixed model regression in the Bayesian context. These fea-
tures allow simulations with univariate distributions. We also explored
the properties of structured sparsity in some GE kernels to decrease the
computational time. Therefore, the package is a fast and efficient option
for predicting genetic values. The BGGEwas programmed entirely in R
and does not have dependencies.
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APPENDIX

The conditional posterior distribution of b:
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e . Assuming that b ¼ U 0u, the genetic effects u can be recovered by u ¼ Ub.
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Sce ¼ varðyÞðne þ 2Þð12R2Þ

Scu ¼ varðyÞðne þ 2ÞðR2Þ=meanðdiagðKrÞÞ

where R2 is the proportion of variance that one expects, a priori, to be explained by the regression, with a default value of 0.5.
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