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Abstract

The gut microbial community structure of adult Thrips tabaci collected from 10 different

agro-climatically diverse locations of India was characterized by using the Illumina MiSeq

platform to amplify the V3 region of the 16S rRNA gene of bacteria present in the sampled

insects. Analyses were performed to study the bacterial communities associated with Thrips

tabaci in India. The complete bacterial metagenome of T. tabaci was comprised of 1662

OTUs of which 62.25% belong to known and 37.7% of unidentified/unknown bacteria.

These OTUs constituted 21 bacterial phyla of 276 identified genera. Phylum Proteobacteria

was predominant, followed by Actinobacteria, Firmicutes, Bacteroidetes and Cyanobacte-

ria. Additionally, the occurrence of the reproductive endosymbiont, Wolbachia was detected

at two locations (0.56%) of the total known OTUs. There is high variation in diversity and

species richness among the different locations. Alpha-diversity metrics indicated the higher

gut bacterial diversity at Bangalore and lowest at Rahuri whereas higher bacterial species

richness at T. tabaci samples from Imphal and lowest at Jhalawar. Beta diversity analyses

comparing bacterial communities between the samples showed distinct differences in bac-

terial community composition of T. tabaci samples from different locations. This paper also

constitutes the first record of detailed bacterial communities associated with T. tabaci. The

location-wise variation in microbial metagenome profile of T. tabaci suggests that bacterial

diversity might be governed by its population genetic structure, environment and habitat.

Introduction

Bacterial communities in insects play an important role in their growth, development, immu-

nological, physiological and morphological functioning. The majority of insects are believed to

harbour heritable bacterial symbionts [1] that can be pathogenic, mutualist, or commensal,

with some required for survival while others are not. Across Insecta, microorganisms have

been reported to positively influence many functions, including the production of essential

amino acids from nutrient poor diets [2], protection against toxic agents [3–5], aide in the
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production of honey [6], protection against parasitoids [7], virus transmission [8], insecticide

resistance [9], degradation of phytotoxins and pesticides [10]. Conversely, some are reported to

negatively impact insects by causing sterility and distorting sex ratios [11,12]. Despite their influ-

ence on important metabolic processes in the host, they have not been accurately profiled due to

the difficulty in isolating and culturing many of the symbionts. Identification of symbionts has

been improved with the availability of next generation sequencing technology, which, bypasses

the need of isolating and culturing, can detect microbes present in very low amounts, and facili-

tates the study of the microbial community in its natural habitat with accurate taxonomic identifi-

cation and their relative abundances [13]. Characterizing the diversity of symbionts is an

important first step towards understanding their importance in the life history of organisms.

There is a growing area of interest regarding the presence and influence of heritable endo-

symbionts on the biology and ecology of economically important insects, and on the pheno-

types that influence pest status. Several studies on endosymbionts have targeted pest species

that damage crops by feeding on plants and transmitting plant pathogens such as aphids [14],

whiteflies [15], and thrips [16]. The studies have identified endosymbionts that influence fit-

ness [17], virus transmission [8], host plant preferences [18], protection from biological con-

trol agents [7], and insecticide resistance [9]. Endosymbionts are also of interest as targets for

future pest control strategies that could be achieved by disturbing the essential symbionts of

insect pests and symbionts which contribute to their pest status [19].

Onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae), is a globally important

polyphagous insect pest. It has been collected from approximately 300 plant species that

includes economically important crops such as leek, garlic, tobacco, cabbage, pea, melon, let-

tuce, potato, tomato, carnation, and cotton [20,21], and causes more than $1 billion losses

worldwide to onion alone [22]. In addition to damaging crops through direct feeding, T. tabaci
is a vector of the Orthotospoviruses Iris yellow spot virus (IYSV) and Tomato spotted wilt virus
(TSWV) [23,24]. Onion thrips exhibits three different reproductive modes (thelytoky, arrhe-

notoky and deuterotoky) [25], host-associated lineages, variation in virus (TSWV) vector com-

petence [26], heteroplasmy ofmtCOI haplotypes [27] and develop resistance to insecticides

quickly. Variation in these phenotypes may be due to selection on standing genetic variation

but could be influenced by their microbiome. Insect bacterial communities may also influence

their reproduction [28,29] and virus transmission efficiency of thrips [30].

To date, limited information is available regarding the endosymbiont profiles of this spe-

cies; there is one study that examined one population using culturing methods [30] or only

one bacteria species was examined25. The objectives of this study were to identify bacterial

microbiota present in T. tabaci from ten distinct locations of India using the Illumina MiSeq

platform to sequence the V3 region of 16s rRNA, and examine patterns of bacterial diversity

within and among these locations.

Materials and methods

Ethics statement

Thrips tabaci has not been notified under any act or laws and rules thereof of the Government

of India as an endangered or threatened species restricting or regulating its collection and

observation. Therefore, permits were not required for collecting T. tabaci for the present study.

Insect sampling

Adult T. tabaci were collected from 10 different states in India during rabi season (December-

June) of the year 2013–2014. The states sampled encompassed different climatic zones in

India, including temperate, tropical, and subtropical zones of the country (Fig 1).
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Approximately 500 thrips were collected from each state (50 thrips from each field, 10 fields

per location), and were sampled within 1–2 days from each other. Adult thrips were dislodged

from onion leaves with a fine brush into a 2 ml Eppendorf tubes containing 95% ethanol. To

make certain offspring from different adults were collected, a distance of 1.5 m was kept

between sampled plants. Voucher specimens are located at plant protection section, ICAR-

Directorate of Onion and Garlic Research, Rajgurunagar, Pune.

Fig 1. Locations, where T. tabaci were sampled, represent different climatic zones of India.

https://doi.org/10.1371/journal.pone.0223281.g001
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DNA extraction

Adult T. tabaci were surface sterilized by rinsing them with 100% ethanol. Genomic DNA was

extracted from pool of 500 adult thrips from each location using a standard phenol-chloroform

and ethanol precipitation method [31].

Bacterial 16S rRNA gene amplification, library preparation and sequencing

16S rRNA gene sequencing was performed at SciGenom Labs Private Limited (Cochin, India)

on an Illumina MiSeq 2 x 151 platform (Illumina, Inc., San Diego, CA, USA). Base quality

score distributions, average base content per read and GC distribution in the reads were used

as quality check parameters for sequences obtained from the sequencer (Illumina MiSeq).

Bioinformatics and statistical analysis

To identify bacteria present in the samples sequence data needed to be filtered for quality,

aligned into contigs, and blasted against existing bacterial sequence databases. An average of

361,241 paired end sequences with a length of 151bp were obtained from sequencing 10 sam-

ples (minimum 218,538; maximum: 499,241). Gut microbiome analysis was performed with

QIIME2 2017.9 framework [32]. Raw sequences were quality filtered and denoised followed by

chimera filtering with DADA2 [33] to obtain amplicon sequence variants (ASV). Low abun-

dant ASVs with a total frequency less than ten were filtered out of the dataset. Taxonomy

assignment was performed with a pre-trained Silva 132 99% OTUs based naïve Bayes classifier

and confidence threshold of 0.7 using q2-feature-classifier plugin [34]. ASVs matching with

chloroplast, mitochondria and eukaryotic sequences were removed from the database for

downstream analysis. A taxonomic summary table was generated for each level of taxonomy

for phylotype abundance.

Sequence alignment using MAFFT [35] was performed for all ASVs and used for the con-

struction of phylogeny with fasttree2 [36]. Alpha rarefaction plotting was performed with a

minimum and a maximum depth of 100 and 10000 respectively to identify an ideal sampling

depth for further analysis. Three alpha diversity indices namely, Shannon, chao1, and simp-

son_e at ideal sampling depth have been estimated. The similarity of bacterial communities

between samples (beta diversity) was quantified using a metric based on phylotype abun-

dances. The distance matrix was generated using weighted UniFrac approach [37], and a jack-

knife test with 100 iterations was performed to construct a consensus UPGMA (Unweighted

Pair Group Method with Arithmetic Mean) tree. Principal Coordinates Analysis (PCoA) was

performed to generate a 3D PCoA plot in EMPeror [38].

ANCOM compares the log ratio of the abundance of each taxon to the abundance of all the

remaining taxa one at a time [39]. ANCOM (ANalysis of Composition Of Microbiomes) was

performed to identify taxa with differential abundance among sample groups. ANCOM is now

incorporated into the QIIME suite for metagenome analyses. For ANCOM analysis samples

were grouped into four climatic zones according to Köppen classification viz; (Monatne

(MON): Shrinagar; Humid subtropical (HST): Hisar, Imphal, Jabalpur, Samastipur; Tropical

wet and dry (TWD): Pune, Rahuri, Chiplima and Semi-arid (SA): Bangalore and Jhalawar.

Results

Sequencing data

The Illumina MiSeq sequencing of the V3 region of 16S rRNA gene of onion thrips from ten

different locations yielded 218,538–499,241 raw reads per location. Nearly 80% of the total

reads had Phred scores greater than 30 (>Q30; error-probability > = 0.001) indicating good
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quality of data. GC content of the reads ranged from 40 to 60% and after filtering contig length

(~150bp). After quality filtering 39,976–140,603 reads per sample remained. Pre-processed

reads from all samples were pooled for a total of 962,166 reads, and from them, a total of 1662

OTUs were identified (Table 1).

Microbiome profile of T. tabaci
A total of 21 phyla, which constitute 62.25% of the total 16S rRNA gene data set, were detected

from T. tabaci in this study (S1 File). The majority of bacterial contigs were of unknown origin

(33%) while 4.7% were unknown bacteria. The contigs that do not have any alignment against

the taxonomic database were categorized as “Unassigned”. From the identifiable bacterial

sequences, the majority belonged to phylum Proteobacteria, followed by Firmicutes, Actinobac-
teria, Bacteroidetes and Cyanobacteria (Fig 2, Fig 3). Across all locations, these five phyla com-

prised more than 60% of the total microbiome and more than 96% of identified microbiome

of T. tabaci.
At the bacterial class level, the Proteobacteria were comprised of 26 Gamma-, 7.1% Alpha-

proteobacteria. In Firmicutes, classes Bacilli and Clostridia represented 14.1% and 10%, respec-

tively. In the phylum Actinobacteria, classes Actinobacteria and Coriobacteria represented

16.8% and 3.5%, respectively. Class Bacteroidia of phylum Bacteroidetes constituted 10.6% of

total identified microbiome and classes Oxyphotobacteria andMelainabacteria of phylum Cya-
nobacteria represented 3.4%, and 0.2%, respectively. At the genus level, a total 276 genera were

identified from the present study. The highest number of genera are from phylum Proteobac-
teria (69) followed by Firmicutes (61), Actinobacteria (44), Bacteroidetes (29) and Chloroflexi
(13). Among them, the genus Streptococcus (phylum Firmicutes) was most prevalent and com-

prised 8.03% of contigs, followed by Pseudomonas (5.4%) (phylum Proteobacteria), Rosenber-
giella (4.5%) (phylum Proteobacteria), Alistipes (2.7%) (phylum Bacteroidetes) and

Saccharopolyspora (2.05%) (phylum Actinobacteria). In addition, reproductive endosymbiont

Wolbachia was recorded at 0.56% of the total OTUs. A few plant endophytes were also identi-

fied from gut of onion thrips in the present study such as Actinomyces,Microbacterium, and

Burkholderia at very low levels.

Microbiome diversity of T. tabaci at different location

Alpha-diversity indices (Shannon, Simpson-e) describe the diversity of the microbial commu-

nity at each sampling location and showed that bacterial diversity is higher in Bangalore, fol-

lowed by Jabalpur and that the lowest bacterial diversity is observed in Rahuri. Another alpha

Table 1. Sequencing analysis of V3 region of 16S rRNA gene of T. tabaci.

Sample Latitude/Longitude No. of Reads OTUs

Bangalore 13.135/77.496 112995 317

Chiplima 21.345/83.91 70134 122

Hisar 29.1491/75.7216 89733 185

Imphal 24.8170/93.9368 140603 234

Jabalpur 23.2072/79.9539 102781 221

Jhalawar 24.5399/76.1430 39976 39

Pune 18.8430/73.8848 139747 146

Rahuri 19.3490/74.6460 73581 45

Samastipur 25.9844/85.6744 101007 225

Srinagar 33.9842/74.7990 91609 128

https://doi.org/10.1371/journal.pone.0223281.t001
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diversity index (Chao1) describes the species richness at each sampling location. Among ten

locations, bacterial richness is found to be highest in Bangalore and lowest in the Jhalawar

(Table 2). Beta diversity considers the variations in bacterial community composition for dif-

ferent environments. Bacterial diversity among locations was assessed using both the weighted

and unweighted UniFrac approach. UniFrac distances are based on the fraction of branch

length of the 16S rRNA phylogenetic tree shared between two communities. The UPGMA tree

and PCoA plots were constructed using the weighted UniFrac distance matrix. Locations were

clustered based on the bacterial community structure. From PCoA plot it has been seen that

there is high diversity among the bacterial communities of T. tabaci from different geographi-

cal location (Fig 4). PC-1 and PC-2 explain 61.87% and 22.1% cumulative variance in the

microbiome of the T. tabaci, respectively. ANCOM analyses reveals two genera in Montane

zone Chryseobacterium and Exiguobacterium found to be higher in Shrinagar location (S2 File,

S3 File).

Fig 2. The relative abundance of dominant bacterial Phyla represented in T. tabaci samples collected from all ten

locations across India.

https://doi.org/10.1371/journal.pone.0223281.g002

Fig 3. The abundance of different phyla of bacterial community of T. tabaci from ten different locations of India.

https://doi.org/10.1371/journal.pone.0223281.g003
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Discussion

Microorganisms exhibit a variety of interactions with their hosts and most of the time these inter-

actions are beneficial to the insect [40]. Despite being an economically important pest, the infor-

mation on insect-microbe interactions of T. tabaci is very limited. Recently, NGS has become the

method of choice for insect microbiome analyses due to the ability to detect both culturable and

non-culturable bacteria. The present study constitutes the first detailed examination of bacterial

communities in T. tabaci using sequencing methods. In this study phyla Proteobacteria, Actino-
bacteria, Firmicutes and Bacteroidetes together constituted more than 90% of the total T. tabaci
identified microbiome. These phyla are also reported to be the predominant in the microbiomes

of other thrips species [16,41,42], several insects [43,44,45], and amphibians [46].

Phylum Proteobacteria was predominant at four of the ten reported locations. Proteobac-
teria plays an important role in carbohydrate degradation in Wood Borer, Saperda vestita [47],

vitamins synthesis [48] and detoxification of pesticides fruit fly Bactrocera dorsalis [49,10]. The

phylum Actinobacteria, was abundant at two locations and is reported to increase metabolic

versatility and the ability to exploit the wide range of nutritional resources e.g. polysaccharides

like cellulose [50] and hemicelluloses in termites [51] and production of secondary metabolites

with antibiotic properties [52]. The third most prevalent phylum was Firmicutes, which pre-

dominated at three locations. Bacteria in Firmicutes were also abundant in guts of termites and

honeybees [53,54]. Several studies in insects and animals have shown that Firmicutes increased

the ability to metabolize food resources to increase energy conversion from diet [55], and assist

in the digestion of cellulose and hemicelluloses [56]. Bacteroidetes were the fourth predomi-

nant phylum in present16S rDNA data set. The members of this phyla are known for their role

in the production of enzymes such as glucanase, mannanase and xylanase that aid in complex

carbohydrate metabolism [57,58]. Phylum Cyanobacteria was prevalent in one location, and

these bacteria are associated with high levels of protein, vitamins, and microelements. They are

known to release toxins during their life that lead to concentration dependent, and species-

specific negative effects on animal feeders [59]. These five phyla were also found to be predom-

inant in the microbiome of the other thrips species Scirtothrips dorsalis andHoplothrips car-

pathicus [16,42].

We detected the genusWolbachia, in two out of ten locations.Wolbachia infects over 40%

of all arthropods [60] and is known to manipulate sex determination mechanisms and sex

ratio by cytoplasmic factors, cytoplasmic incompatibility [61,62]. This is the first report of

Wolbachia in T. tabaci. Studies have looked presence ofWolbachia in different thrips species

Table 2. Diversity indices calculated for microbial communities associated with T. tabaci from ten different loca-

tions of India.

Sample/Locations Shannon Chao1 Simpson_e

Bangalore 7.82 319.49 0.59

Chiplima 5.01 123.39 0.08

Hisar 6.49 189.44 0.20

Imphal 6.82 237.65 0.21

Jabalpur 7.17 227.70 0.49

Jhalawar 4.00 39.00 0.28

Pune 5.74 146.45 0.13

Rahuri 2.88 46.10 0.11

Samastipur 7.00 234.14 0.33

Shrinagar 5.56 131.25 0.14

https://doi.org/10.1371/journal.pone.0223281.t002
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but did not find it in T. tabaci [25,29].Wolbachia has been reported in other thrips species

such as Echinothrips americanus, Gynaikothrips ficorum, Suocerathrips linguis [29], Thrips
palmi [63] andHoplothrips carpathicus [42] but their role in T. tabaci is unclear.

Fig 4. UPGMA tree (A) and PCoA plot (B) showing relationships between the gut bacterial communities from T. tabaci
collected from 10 different geographic locations and based on β-diversity metrics calculated using UniFrac.

https://doi.org/10.1371/journal.pone.0223281.g004
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Few plant origin endophytes such as Actinomyces,Microbacterium, and Burkholderia were

recorded in the microbiome of T. tabaci. Theses endophytes might have been acquired by the

insect during feeding on plants. Their occurrence in insects gut has been well documented in

previous studies [64,65].

Streptococcus, Saccharopolyspora, Phormidium, Pseudomonas, Prevotella, Serratia, Erwinia
and Propionibacterium were the most predominant genera in the microbiome of T. tabaci, and

were also reported to be predominant in the microbiome of several other thrips species

[16,66,67,30,68,42].

This study marks the first attempt to document the endosymbiont diversity associated with

T. tabaci in India. Diversity indices showed that T. tabaci from Bangalore has the highest bac-

terial diversity and Imphal has the highest species richness. Further UPGMA and PCoA analy-

ses showed bacterial communities structured by location. This spatial variation in the

microbiome T. tabacimight be due to geographical location, climatic conditions and host phy-

logeny. In several insects, variation in the microbiome with respect to climatic conditions, the

geography of habitat, and phylogeny of the insect have been documented [69,42,14].

Conclusion

This paper described the microbiome of T. tabaci collected from the different geographical

locations of India using NGS approach. Findings of the present study increased understanding

of microbiome of T. tabaci as well as its variation with respect to geography and climatic con-

ditions. Though it is first report of its kind in T. tabaci, for more in depth study of T. tabaci
microbiome needs to be done at different developmental stages for better understanding of its

role in development and growth of T. tabaci.
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