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Abstract: Some (E)-3-(3-(4-(benzyloxy)phenyl)-1-phenyl-1H-pyrazol-4-yl)-1-phenylprop-2-en-1-one
conjugates 5a–r were designed; synthesized; characterized by 1H, 13C NMR, and ESI-MS; and evalu-
ated for tubulin polymerization inhibitory activity and in vitro cytotoxicity against breast (MCF-7),
cervical (SiHa), and prostate (PC-3) cancer cell lines, as well as a normal cell line (HEK-293T). The
compounds were also tested to determine their binding modes at the colchicine-binding site of tubulin
protein (PDB ID-3E22), for in silico ADME prediction, for bioactivity study, and for PASS prediction
studies. Among all the synthesized conjugates, compound 5o exhibited excellent cytotoxicity with
an IC50 value of 2.13 ± 0.80 µM (MCF-7), 4.34 ± 0.98 µM (SiHa), and 4.46 ± 0.53 µM (PC-3) against
cancer cell lines. The compound did not exhibit significant toxicity to the HEK cells. Results of the in
silico prediction revealed that the majority of the conjugates possessed drug-like properties.

Keywords: pyrazole conjugate; anticancer; MTT assay; molecular docking; cytotoxicity; tubulin
polymerization inhibitors

1. Introduction

Cancer is significantly the most common health issue worldwide. It is considered the
second most recurrent death-causing factor after cardiovascular disorders [1,2]. It accounts
for nearly 10 million deaths in 2020, with most deaths due to lung cancer, followed by
colon, liver, stomach, and breast cancer [3]. The World Health Organization (WHO) has
projected that by 2030, more than 13 million annual deaths are expected to occur from cancer
globally [4]. Currently available chemotherapeutic agents that target cell division and
angiogenesis, or induce cancer cell death through different signaling pathways comprise
the major treatment options for cancer. While these therapies are effective in treating
early-stage cancers, the efficacy against advanced cancers, especially multidrug-resistant
cancers, is limited. Furthermore, these classes of drug molecules face numerous restrictions
such as greater systemic toxicity and complex synthesis [5].
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The microtubules are a dynamic polymeric network of two closely related 55 kDa
proteins in cells known as α and β-tubulin dimers [6]. It is responsible for the formation of
the mitotic spindle during cell division and the severance of duplicated chromosomes. It
also plays a crucial role as an important target for cancer therapy because of its essential
role in cell proliferation and angiogenesis [7]. Since rapidly dividing cancer cells are
highly dependent on tubulin polymerization/depolymerization, interfering with tubulin
dynamics has become an important approach for the development of mitotic inhibitors [8,9].
The tubulin inhibitors have been classified based on their binding domains to tubulin viz.
microtubule destabilizers (e.g., Combretastatin A-4) [10], colchicine site-binding agents (e.g.,
colchicine and podophyllotoxin) [11,12], and the vinca site-binding agent (e.g., vinblastine
and vincristine) [13]. The microtubule disrupters inhibit tubulin polymerization and
consequently interfere with the formation of the necessary mitotic assembly required for
cell division. On the other hand, microtubule stabilizers, such as taxanes [14], paclitaxel,
docetaxel, and laulimalide, prevent the depolymerization of microtubules [15]. Both
agents, which can disrupt as well as stabilize microtubules, have found clinical success as
anticancer agents, therefore the compounds that can affect tubulin or microtubule stability
may show potential against various cancers. That is why, nowadays, scientists draw
attention to the drug discovery of microtubule-targeting agents/inhibitors for anticancer
therapy. The trimethoxy/dimethoxy phenyl rings of reported ligands are well-defined
pharmacophores that bind to the interface of the α-tubulin and β-tubulin of the colchicine-
binding site, which destabilizes the microtubules [16–19]. In the past few years, several
chalcone derivatives were found as the most effective tubulin polymerization inhibitors
as well as safer anticancer molecules [20]. The three binding sites are present in tubulin
as the colchicine-binding site, vinca-binding site, and taxane-binding site. The tubulin
polymerization inhibitors are docked into the colchicine-binding site of the tubulin protein.
The colchicines always interact and bind with the α-tubulin and β-tubulin interface, which
was also established by molecular docking [21] (Figure 1). The colchicine forms hydrogen,
bonding with the Cys-241 of the β subunit of tubulin.
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Pyrazole is a significant class of heterocyclic compounds in pharmaceutical chem-
istry. Many pyrazole-based lead compounds have been evaluated for their biological
effects, including anti-inflammatory, antimicrobial, antioxidant, anti-depressant, and anti-
influenza activities [22,23]. Several recent reports suggested that pyrazole derivatives
have shown promising anticancer activity, indicating their use in the development of
new anticancer agents [24]. Among the anticancer pyrazole moieties, 1,3-diphenyl pyra-
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zole derivatives have been shown as potent and effective cytotoxic agents [25]. Chalcone
conjugates have shown wide pharmacological efficacy as well as synthetic applications
in pharmaceutical chemistry [26,27]. Presently, colchicine (A), combretastatin A-4 (B)
analogs, pyrazole linker chalcone congeners, and the marketed drug nocodazole (C) are the
most important tubulin-binding agents that inhibit tubulin depolymerization [28]. In the
recently reported literature, Peyrot et al. synthesized (E)-3-(4-(dimethylamino)phenyl)-1-
(2,5-dimethoxyphenyl)-2-methylprop-2-en-1-one (D, MDL-27048) [29] as anti-mitotic agents
with rapid and reversible binding to the colchicine-binding site for inhibiting its assembly
to microtubules. Kamal et al. [30] designed and synthesized a novel scaffold (Z)-3-((3-
phenyl-1H-pyrazol-5-yl)methylene)indolin-2-one (E), which has significant polymerization
inhibitory activity. Moreover, various 1,3,4 thiadiazole ring-based cinnamide derivatives’
tubulin (F) [31] also exhibited significant growth inhibition effects against MCF-7 and A549
cell lines apart from effectively inhibiting tubulin polymerization. Srinivasa and co-workers
synthesized a new class of (Z)-1-(1,3-diphenyl-1H-pyrazol-4-yl)-3-(phenylamino)prop-2-
en-1-one derivatives (G) as an effective anticancer agent with IC50 values ranging from
1.25 to 3.98 µM [32]. In addition, Kamal and co-workers synthesized a series of pyrazole-
linked arylcinnamides (H) as potential antiproliferative agents with significant tubulin
polymerization inhibitory action (Figure 2) [33].
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Figure 2. Structures of some potential cytotoxic agents and tubulin polymerization inhibitors:
colchicine (A), combretastatin-A4 (B), nocodazole (C), MDL-27048 (D), reported pyrazole-linked
conjugates (E), reported chalcone-linked conjugates (F), reported pyrazole-linked chalcone conjugates
(G,H), and novel hybrid compound (5o).

Hybrid chalcone derivatives possess structural similarities to occurring moieties,
such as Combretastatin A-4, obtained from the bark of Combretum caffrum [34]. It has
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exhibited cytotoxicity against a broad range of human cancer cell lines by binding at
the colchicine-binding site on β tubulin with a percentage of inhibition in the range of
28.42–66.40%. Furthermore, hybrid chalcones linked to other heterocyclic moieties have
resulted in enhanced anticancer activity [35]. With this background, the present work was
carried out to design and synthesize novel pyrazole-linked hybrid chalcone conjugates,
and to evaluate their ability to inhibit tubulin polymerization and consequently prevent
cancer growth.

2. Results and Discussion
2.1. Chemistry

The protocol for the synthesis of analog (5a–r) is described in Scheme 1. Compound 1
was prepared by reacting 4-hydroxyacetophenone and benzyl chloride. It was then re-
acted with phenylhydrazine (2) to give compound 3, which was further cyclized in the
presence of POCl3 and DMF (Vilsmeier Haack reaction) to give 3-(4-(Benzyloxy) phenyl)-1-
phenyl-1H-pyrazole-4-carbaldehyde (4). Equimolar quantities of compound 4 and various
substituted acetophenones underwent Claisen–Schmidt condensation to yield the final
pyrazole–chalcone conjugates. All compounds were characterized by FT-IR, 1H NMR,
13C NMR, and mass spectral data. The 1H NMR, 13C NMR, and mass spectra of lead
compounds are presented in Figures S1–S14. The 1H NMR spectra of the aldehydic proton
in compound 4 appeared as a singlet at δ 9.82 ppm. The H-6 and H-7 of compound 5a
appeared as a doublet at δ 7.95 and δ 8.01 ppm, respectively, with the coupling constant
(J = 15.6–15.7 Hz), which agrees with the trans-configuration of α,β-unsaturated ketone
and the disappearance of the signal corresponding to the C-H of aldehyde. Moreover,
in the 13C NMR spectrum, the signal for C-1 was in the range of δ 127.8–139.6 ppm and
the signal for C-7 appeared at δ 113.1–127.7 ppm, while the C=O carbon atom appeared
at δ 186.3–196.1 ppm. The IR spectra showed absorption bands at 1755–1675, 1653–1590,
and 1590–1512 cm−1, corresponding to the C=O, C=N, and C=C functionalities, respec-
tively. Mass spectra showed a molecular ion peak, i.e., (m/z) [M+] with a characteristic
fragmentation pattern involving the loss of the phenyl group in all cases.

2.2. Molecular Docking Study

Molecular docking was performed to establish the binding ability of the newer synthe-
sized compounds to the colchicine-binding site of tubulin (PDB code: 3E22). The docking
scores of the compounds (5a–r) and co-crystal ligand colchicine are given in Table 1. The
protein backbone of tubulin is depicted in purple and yellow colors for α and β chains,
respectively. The favorable hydrogen bonding interactions are shown with yellow dashed
lines and the amino acid residues that interact with the compounds are represented as
purple and yellow tubes. The standard compounds were docked as co-crystal ligands
at the colchicine-binding site of tubulin. Docking studies revealed that eighteen newer
compounds (5a–r) exhibited a higher docking score than that of the co-crystal ligand, sug-
gesting that the synthesized molecules have better interaction and better accommodation
within the binding site. The different binding sites of tubulin protein complexes with 5o viz.
GTP, Mg+2, and GDP are shown in Figure 3. The 3D docked images of compound 5o and
5p complexes with tubulin are represented in Figure 4. The most promising compound 5o
could fit well into the colchicine-binding site of the tubulin, making five hydrogen bond in-
teractions with the most important active site residues ASN 249 (O....H2N, 3.53 Å, β-), ALA
250 (O....H2N, 3.70 Å) and LYS 254 (O....H3N+, 3.30 Å), SER 178 (O....HN, 3.65 Å), and TYR
224 (O....HO, 3.23 Å) pi-cation LYS 352 (pyrazole....H3N+, 6.17 Å, and phenyl....H3N+, 6.26
Å), as depicted in Figure 5a. The methoxy group of the 3,4-dimethoxy aryl moiety exhibited
interaction with the side chain of SER 178 (O....H2N, 1.93 Å) and TYR 224 (O....H2N, 1.93 Å)
in a similar manner as the co-crystal ligand colchicine. Introduction of a methoxy group at
positions two and four of the aromatic ring of compounds leads to a slight decrease in the
inhibitory activity primarily due to the changing of the orientation of the 2,4-dimethoxy
group in the binding site, as observed for compound 5p. The carbonyl group of 5p also
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showed hydrogen bond interaction with the side chain of ASN 249 (O....H2N, 2.87 Å), ALA
250 (O....H2N, 2.91 Å), and LYS 254 (O....H3N+, 3.10 Å).
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Table 1. Docking score and anti-tubulin activity of E-3-(3-(4-(benzyloxy) phenyl)-1-phenyl-1H-
pyrazol-4-yl)-1-phenylprop-2-en-1-one analogs (5a–r).
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pounds (5a–r) exhibited a higher docking score than that of the co-crystal ligand, suggest-
ing that the synthesized molecules have better interaction and better accommodation 
within the binding site. The different binding sites of tubulin protein complexes with 5o 
viz. GTP, Mg+2, and GDP are shown in Figure 3. The 3D docked images of compound 5o 
and 5p complexes with tubulin are represented in Figure 4. The most promising com-
pound 5o could fit well into the colchicine-binding site of the tubulin, making five hydro-
gen bond interactions with the most important active site residues ASN 249 (O....H2N, 3.53 
Å, β-), ALA 250 (O....H2N, 3.70 Å) and LYS 254 (O....H3N+, 3.30 Å), SER 178 (O....HN, 3.65 
Å), and TYR 224 (O....HO, 3.23 Å) pi-cation LYS 352 (pyrazole.... H3N+, 6.17 Å, and phe-
nyl.... H3N+, 6.26 Å), as depicted in Figure 5a. The methoxy group of the 3,4-dimethoxy 
aryl moiety exhibited interaction with the side chain of SER 178 (O....H2N, 1.93 Å) and 
TYR 224 (O....H2N, 1.93 Å) in a similar manner as the co-crystal ligand colchicine. Intro-
duction of a methoxy group at positions two and four of the aromatic ring of compounds 
leads to a slight decrease in the inhibitory activity primarily due to the changing of the 
orientation of the 2,4-dimethoxy group in the binding site, as observed for compound 5p. 
The carbonyl group of 5p also showed hydrogen bond interaction with the side chain of 
ASN 249 (O....H2N, 2.87 Å), ALA 250 (O....H2N, 2.91 Å), and LYS 254 (O....H3N+, 3.10 Å). 

Table 1. Docking score and anti-tubulin activity of E-3-(3-(4-(benzyloxy) phenyl)-1-phenyl-1H-py-
razol-4-yl)-1-phenylprop-2-en-1-one analogs (5a–r). 

 

Comp. Ar Docking Score 
% Inhibition of Tubulin 

Polymerization at 10 µM b 

Inhibition of Tubulin 
Polymerization 

IC50 (µM) a 
5a  −5.994 Nd Nd 

5b 

 

 
 

−5.934 Nd Nd 

5c 

 

 
 

−5.873 Nd Nd 

5d 

 

 
 

−6.967 49.78 1.65 ± 0.06 

5e  −6.937 48.44 1.58 ± 0.04 

−5.934 Nd Nd

5c
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the colchicine-binding site of tubulin. Docking studies revealed that eighteen newer com-
pounds (5a–r) exhibited a higher docking score than that of the co-crystal ligand, suggest-
ing that the synthesized molecules have better interaction and better accommodation 
within the binding site. The different binding sites of tubulin protein complexes with 5o 
viz. GTP, Mg+2, and GDP are shown in Figure 3. The 3D docked images of compound 5o 
and 5p complexes with tubulin are represented in Figure 4. The most promising com-
pound 5o could fit well into the colchicine-binding site of the tubulin, making five hydro-
gen bond interactions with the most important active site residues ASN 249 (O....H2N, 3.53 
Å, β-), ALA 250 (O....H2N, 3.70 Å) and LYS 254 (O....H3N+, 3.30 Å), SER 178 (O....HN, 3.65 
Å), and TYR 224 (O....HO, 3.23 Å) pi-cation LYS 352 (pyrazole.... H3N+, 6.17 Å, and phe-
nyl.... H3N+, 6.26 Å), as depicted in Figure 5a. The methoxy group of the 3,4-dimethoxy 
aryl moiety exhibited interaction with the side chain of SER 178 (O....H2N, 1.93 Å) and 
TYR 224 (O....H2N, 1.93 Å) in a similar manner as the co-crystal ligand colchicine. Intro-
duction of a methoxy group at positions two and four of the aromatic ring of compounds 
leads to a slight decrease in the inhibitory activity primarily due to the changing of the 
orientation of the 2,4-dimethoxy group in the binding site, as observed for compound 5p. 
The carbonyl group of 5p also showed hydrogen bond interaction with the side chain of 
ASN 249 (O....H2N, 2.87 Å), ALA 250 (O....H2N, 2.91 Å), and LYS 254 (O....H3N+, 3.10 Å). 

Table 1. Docking score and anti-tubulin activity of E-3-(3-(4-(benzyloxy) phenyl)-1-phenyl-1H-py-
razol-4-yl)-1-phenylprop-2-en-1-one analogs (5a–r). 

 

Comp. Ar Docking Score 
% Inhibition of Tubulin 

Polymerization at 10 µM b 

Inhibition of Tubulin 
Polymerization 

IC50 (µM) a 
5a  −5.994 Nd Nd 

5b 

 

 
 

−5.934 Nd Nd 

5c 

 

 
 

−5.873 Nd Nd 

5d 

 

 
 

−6.967 49.78 1.65 ± 0.06 

5e  −6.937 48.44 1.58 ± 0.04 

−5.873 Nd Nd

5d
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the colchicine-binding site of tubulin. Docking studies revealed that eighteen newer com-
pounds (5a–r) exhibited a higher docking score than that of the co-crystal ligand, suggest-
ing that the synthesized molecules have better interaction and better accommodation 
within the binding site. The different binding sites of tubulin protein complexes with 5o 
viz. GTP, Mg+2, and GDP are shown in Figure 3. The 3D docked images of compound 5o 
and 5p complexes with tubulin are represented in Figure 4. The most promising com-
pound 5o could fit well into the colchicine-binding site of the tubulin, making five hydro-
gen bond interactions with the most important active site residues ASN 249 (O....H2N, 3.53 
Å, β-), ALA 250 (O....H2N, 3.70 Å) and LYS 254 (O....H3N+, 3.30 Å), SER 178 (O....HN, 3.65 
Å), and TYR 224 (O....HO, 3.23 Å) pi-cation LYS 352 (pyrazole.... H3N+, 6.17 Å, and phe-
nyl.... H3N+, 6.26 Å), as depicted in Figure 5a. The methoxy group of the 3,4-dimethoxy 
aryl moiety exhibited interaction with the side chain of SER 178 (O....H2N, 1.93 Å) and 
TYR 224 (O....H2N, 1.93 Å) in a similar manner as the co-crystal ligand colchicine. Intro-
duction of a methoxy group at positions two and four of the aromatic ring of compounds 
leads to a slight decrease in the inhibitory activity primarily due to the changing of the 
orientation of the 2,4-dimethoxy group in the binding site, as observed for compound 5p. 
The carbonyl group of 5p also showed hydrogen bond interaction with the side chain of 
ASN 249 (O....H2N, 2.87 Å), ALA 250 (O....H2N, 2.91 Å), and LYS 254 (O....H3N+, 3.10 Å). 

Table 1. Docking score and anti-tubulin activity of E-3-(3-(4-(benzyloxy) phenyl)-1-phenyl-1H-py-
razol-4-yl)-1-phenylprop-2-en-1-one analogs (5a–r). 

 

Comp. Ar Docking Score 
% Inhibition of Tubulin 

Polymerization at 10 µM b 

Inhibition of Tubulin 
Polymerization 

IC50 (µM) a 
5a  −5.994 Nd Nd 

5b 

 

 
 

−5.934 Nd Nd 

5c 

 

 
 

−5.873 Nd Nd 

5d 

 

 
 

−6.967 49.78 1.65 ± 0.06 

5e  −6.937 48.44 1.58 ± 0.04 

−6.967 49.78 1.65 ± 0.06

5e
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the colchicine-binding site of tubulin. Docking studies revealed that eighteen newer com-
pounds (5a–r) exhibited a higher docking score than that of the co-crystal ligand, suggest-
ing that the synthesized molecules have better interaction and better accommodation 
within the binding site. The different binding sites of tubulin protein complexes with 5o 
viz. GTP, Mg+2, and GDP are shown in Figure 3. The 3D docked images of compound 5o 
and 5p complexes with tubulin are represented in Figure 4. The most promising com-
pound 5o could fit well into the colchicine-binding site of the tubulin, making five hydro-
gen bond interactions with the most important active site residues ASN 249 (O....H2N, 3.53 
Å, β-), ALA 250 (O....H2N, 3.70 Å) and LYS 254 (O....H3N+, 3.30 Å), SER 178 (O....HN, 3.65 
Å), and TYR 224 (O....HO, 3.23 Å) pi-cation LYS 352 (pyrazole.... H3N+, 6.17 Å, and phe-
nyl.... H3N+, 6.26 Å), as depicted in Figure 5a. The methoxy group of the 3,4-dimethoxy 
aryl moiety exhibited interaction with the side chain of SER 178 (O....H2N, 1.93 Å) and 
TYR 224 (O....H2N, 1.93 Å) in a similar manner as the co-crystal ligand colchicine. Intro-
duction of a methoxy group at positions two and four of the aromatic ring of compounds 
leads to a slight decrease in the inhibitory activity primarily due to the changing of the 
orientation of the 2,4-dimethoxy group in the binding site, as observed for compound 5p. 
The carbonyl group of 5p also showed hydrogen bond interaction with the side chain of 
ASN 249 (O....H2N, 2.87 Å), ALA 250 (O....H2N, 2.91 Å), and LYS 254 (O....H3N+, 3.10 Å). 

Table 1. Docking score and anti-tubulin activity of E-3-(3-(4-(benzyloxy) phenyl)-1-phenyl-1H-py-
razol-4-yl)-1-phenylprop-2-en-1-one analogs (5a–r). 

 

Comp. Ar Docking Score 
% Inhibition of Tubulin 

Polymerization at 10 µM b 

Inhibition of Tubulin 
Polymerization 

IC50 (µM) a 
5a  −5.994 Nd Nd 

5b 

 

 
 

−5.934 Nd Nd 

5c 

 

 
 

−5.873 Nd Nd 

5d 

 

 
 

−6.967 49.78 1.65 ± 0.06 

5e  −6.937 48.44 1.58 ± 0.04 −6.937 48.44 1.58 ± 0.04

5f
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5f 
 

−6.241 Nd Nd 

5g  −5.531 Nd Nd 

5h  −5.752 Nd Nd 

5i  −6.249 28.42 3.58 ± 0.83 

5j  −5.952 Nd Nd 

5k  −6.432 32.79 3.03 ± 0.44 

5l 
 

−7.072 55.17 1.73 ± 0.04 

5m 
 

−6.664 33.76 2.97 ± 0.03 

5n 
 

−6.751 47.56 2.73 ± 0.07 

5o 
 

−7.002 66.40 1.15 ± 0.06 

5p 
 

−7.277 51.11 1.93 ± 0.03 

5q 
 

−6.111 Nd Nd 

5r  −6.367 31.50 2.34 ± 0.63 

Co-crystal–colchi-
cine ---- −7.059 ---- ---- 

Control ---- --- 0.0 0.0 
Paclitaxel (3 µM) ---- --- −25.73 0.53 ± 0.12 

Combretastatin A-4 
(6 µM) 

---- --- 72.30 1.46 ± 0.05 

Vincristine (3 µM) ---- --- 75.45 1.54 ± 0.54 
a Half-maximal inhibitory concentration: compound concentration required to inhibit tubulin 
polymerization by 50%; data are the mean ± SD of n = 3 independent experiments performed in 
triplicates. b Inhibition of tubulin polymerization at 10 µM (final volume = 10 mL); compounds 
were pre-incubated with tubulin at a final concentration of 10 µΜ. 

−6.241 Nd Nd

5g
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−6.241 Nd Nd 

5g  −5.531 Nd Nd 

5h  −5.752 Nd Nd 

5i  −6.249 28.42 3.58 ± 0.83 

5j  −5.952 Nd Nd 

5k  −6.432 32.79 3.03 ± 0.44 

5l 
 

−7.072 55.17 1.73 ± 0.04 

5m 
 

−6.664 33.76 2.97 ± 0.03 

5n 
 

−6.751 47.56 2.73 ± 0.07 

5o 
 

−7.002 66.40 1.15 ± 0.06 

5p 
 

−7.277 51.11 1.93 ± 0.03 

5q 
 

−6.111 Nd Nd 

5r  −6.367 31.50 2.34 ± 0.63 

Co-crystal–colchi-
cine ---- −7.059 ---- ---- 

Control ---- --- 0.0 0.0 
Paclitaxel (3 µM) ---- --- −25.73 0.53 ± 0.12 

Combretastatin A-4 
(6 µM) 

---- --- 72.30 1.46 ± 0.05 

Vincristine (3 µM) ---- --- 75.45 1.54 ± 0.54 
a Half-maximal inhibitory concentration: compound concentration required to inhibit tubulin 
polymerization by 50%; data are the mean ± SD of n = 3 independent experiments performed in 
triplicates. b Inhibition of tubulin polymerization at 10 µM (final volume = 10 mL); compounds 
were pre-incubated with tubulin at a final concentration of 10 µΜ. 

−5.531 Nd Nd

5h
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5g  −5.531 Nd Nd 

5h  −5.752 Nd Nd 

5i  −6.249 28.42 3.58 ± 0.83 

5j  −5.952 Nd Nd 

5k  −6.432 32.79 3.03 ± 0.44 

5l 
 

−7.072 55.17 1.73 ± 0.04 

5m 
 

−6.664 33.76 2.97 ± 0.03 

5n 
 

−6.751 47.56 2.73 ± 0.07 

5o 
 

−7.002 66.40 1.15 ± 0.06 

5p 
 

−7.277 51.11 1.93 ± 0.03 

5q 
 

−6.111 Nd Nd 

5r  −6.367 31.50 2.34 ± 0.63 

Co-crystal–colchi-
cine ---- −7.059 ---- ---- 

Control ---- --- 0.0 0.0 
Paclitaxel (3 µM) ---- --- −25.73 0.53 ± 0.12 

Combretastatin A-4 
(6 µM) 

---- --- 72.30 1.46 ± 0.05 

Vincristine (3 µM) ---- --- 75.45 1.54 ± 0.54 
a Half-maximal inhibitory concentration: compound concentration required to inhibit tubulin 
polymerization by 50%; data are the mean ± SD of n = 3 independent experiments performed in 
triplicates. b Inhibition of tubulin polymerization at 10 µM (final volume = 10 mL); compounds 
were pre-incubated with tubulin at a final concentration of 10 µΜ. 

−5.752 Nd Nd

5i
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−6.241 Nd Nd 

5g  −5.531 Nd Nd 

5h  −5.752 Nd Nd 

5i  −6.249 28.42 3.58 ± 0.83 

5j  −5.952 Nd Nd 

5k  −6.432 32.79 3.03 ± 0.44 

5l 
 

−7.072 55.17 1.73 ± 0.04 

5m 
 

−6.664 33.76 2.97 ± 0.03 

5n 
 

−6.751 47.56 2.73 ± 0.07 

5o 
 

−7.002 66.40 1.15 ± 0.06 

5p 
 

−7.277 51.11 1.93 ± 0.03 

5q 
 

−6.111 Nd Nd 

5r  −6.367 31.50 2.34 ± 0.63 

Co-crystal–colchi-
cine ---- −7.059 ---- ---- 

Control ---- --- 0.0 0.0 
Paclitaxel (3 µM) ---- --- −25.73 0.53 ± 0.12 

Combretastatin A-4 
(6 µM) 

---- --- 72.30 1.46 ± 0.05 

Vincristine (3 µM) ---- --- 75.45 1.54 ± 0.54 
a Half-maximal inhibitory concentration: compound concentration required to inhibit tubulin 
polymerization by 50%; data are the mean ± SD of n = 3 independent experiments performed in 
triplicates. b Inhibition of tubulin polymerization at 10 µM (final volume = 10 mL); compounds 
were pre-incubated with tubulin at a final concentration of 10 µΜ. 

−6.249 28.42 3.58 ± 0.83

5j
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5g  −5.531 Nd Nd 

5h  −5.752 Nd Nd 

5i  −6.249 28.42 3.58 ± 0.83 

5j  −5.952 Nd Nd 

5k  −6.432 32.79 3.03 ± 0.44 
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−7.072 55.17 1.73 ± 0.04 

5m 
 

−6.664 33.76 2.97 ± 0.03 

5n 
 

−6.751 47.56 2.73 ± 0.07 

5o 
 

−7.002 66.40 1.15 ± 0.06 

5p 
 

−7.277 51.11 1.93 ± 0.03 

5q 
 

−6.111 Nd Nd 

5r  −6.367 31.50 2.34 ± 0.63 

Co-crystal–colchi-
cine ---- −7.059 ---- ---- 

Control ---- --- 0.0 0.0 
Paclitaxel (3 µM) ---- --- −25.73 0.53 ± 0.12 

Combretastatin A-4 
(6 µM) 

---- --- 72.30 1.46 ± 0.05 

Vincristine (3 µM) ---- --- 75.45 1.54 ± 0.54 
a Half-maximal inhibitory concentration: compound concentration required to inhibit tubulin 
polymerization by 50%; data are the mean ± SD of n = 3 independent experiments performed in 
triplicates. b Inhibition of tubulin polymerization at 10 µM (final volume = 10 mL); compounds 
were pre-incubated with tubulin at a final concentration of 10 µΜ. 

−5.952 Nd Nd

5k
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−6.664 33.76 2.97 ± 0.03 

5n 
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−7.002 66.40 1.15 ± 0.06 
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−7.277 51.11 1.93 ± 0.03 
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−6.111 Nd Nd 

5r  −6.367 31.50 2.34 ± 0.63 

Co-crystal–colchi-
cine ---- −7.059 ---- ---- 

Control ---- --- 0.0 0.0 
Paclitaxel (3 µM) ---- --- −25.73 0.53 ± 0.12 

Combretastatin A-4 
(6 µM) 

---- --- 72.30 1.46 ± 0.05 

Vincristine (3 µM) ---- --- 75.45 1.54 ± 0.54 
a Half-maximal inhibitory concentration: compound concentration required to inhibit tubulin 
polymerization by 50%; data are the mean ± SD of n = 3 independent experiments performed in 
triplicates. b Inhibition of tubulin polymerization at 10 µM (final volume = 10 mL); compounds 
were pre-incubated with tubulin at a final concentration of 10 µΜ. 

−6.432 32.79 3.03 ± 0.44

5l
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Co-crystal–colchi-
cine ---- −7.059 ---- ---- 

Control ---- --- 0.0 0.0 
Paclitaxel (3 µM) ---- --- −25.73 0.53 ± 0.12 

Combretastatin A-4 
(6 µM) 

---- --- 72.30 1.46 ± 0.05 

Vincristine (3 µM) ---- --- 75.45 1.54 ± 0.54 
a Half-maximal inhibitory concentration: compound concentration required to inhibit tubulin 
polymerization by 50%; data are the mean ± SD of n = 3 independent experiments performed in 
triplicates. b Inhibition of tubulin polymerization at 10 µM (final volume = 10 mL); compounds 
were pre-incubated with tubulin at a final concentration of 10 µΜ. 

−7.072 55.17 1.73 ± 0.04
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cine ---- −7.059 ---- ---- 

Control ---- --- 0.0 0.0 
Paclitaxel (3 µM) ---- --- −25.73 0.53 ± 0.12 

Combretastatin A-4 
(6 µM) 

---- --- 72.30 1.46 ± 0.05 

Vincristine (3 µM) ---- --- 75.45 1.54 ± 0.54 
a Half-maximal inhibitory concentration: compound concentration required to inhibit tubulin 
polymerization by 50%; data are the mean ± SD of n = 3 independent experiments performed in 
triplicates. b Inhibition of tubulin polymerization at 10 µM (final volume = 10 mL); compounds 
were pre-incubated with tubulin at a final concentration of 10 µΜ. 

−6.664 33.76 2.97 ± 0.03
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Co-crystal–colchi-
cine ---- −7.059 ---- ---- 

Control ---- --- 0.0 0.0 
Paclitaxel (3 µM) ---- --- −25.73 0.53 ± 0.12 

Combretastatin A-4 
(6 µM) 

---- --- 72.30 1.46 ± 0.05 

Vincristine (3 µM) ---- --- 75.45 1.54 ± 0.54 
a Half-maximal inhibitory concentration: compound concentration required to inhibit tubulin 
polymerization by 50%; data are the mean ± SD of n = 3 independent experiments performed in 
triplicates. b Inhibition of tubulin polymerization at 10 µM (final volume = 10 mL); compounds 
were pre-incubated with tubulin at a final concentration of 10 µΜ. 

−6.751 47.56 2.73 ± 0.07



Pharmaceuticals 2022, 15, 280 7 of 22

Table 1. Cont.

Comp. Ar Docking Score % Inhibition of Tubulin
Polymerization at 10 µM b

Inhibition of Tubulin
Polymerization

IC50 (µM) a

5o
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5f 
 

−6.241 Nd Nd 

5g  −5.531 Nd Nd 

5h  −5.752 Nd Nd 

5i  −6.249 28.42 3.58 ± 0.83 

5j  −5.952 Nd Nd 

5k  −6.432 32.79 3.03 ± 0.44 

5l 
 

−7.072 55.17 1.73 ± 0.04 

5m 
 

−6.664 33.76 2.97 ± 0.03 

5n 
 

−6.751 47.56 2.73 ± 0.07 

5o 
 

−7.002 66.40 1.15 ± 0.06 

5p 
 

−7.277 51.11 1.93 ± 0.03 

5q 
 

−6.111 Nd Nd 

5r  −6.367 31.50 2.34 ± 0.63 

Co-crystal–colchi-
cine ---- −7.059 ---- ---- 

Control ---- --- 0.0 0.0 
Paclitaxel (3 µM) ---- --- −25.73 0.53 ± 0.12 

Combretastatin A-4 
(6 µM) 

---- --- 72.30 1.46 ± 0.05 

Vincristine (3 µM) ---- --- 75.45 1.54 ± 0.54 
a Half-maximal inhibitory concentration: compound concentration required to inhibit tubulin 
polymerization by 50%; data are the mean ± SD of n = 3 independent experiments performed in 
triplicates. b Inhibition of tubulin polymerization at 10 µM (final volume = 10 mL); compounds 
were pre-incubated with tubulin at a final concentration of 10 µΜ. 

−7.002 66.40 1.15 ± 0.06

5p
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cine ---- −7.059 ---- ---- 

Control ---- --- 0.0 0.0 
Paclitaxel (3 µM) ---- --- −25.73 0.53 ± 0.12 

Combretastatin A-4 
(6 µM) 

---- --- 72.30 1.46 ± 0.05 

Vincristine (3 µM) ---- --- 75.45 1.54 ± 0.54 
a Half-maximal inhibitory concentration: compound concentration required to inhibit tubulin 
polymerization by 50%; data are the mean ± SD of n = 3 independent experiments performed in 
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Figure 3. Different binding sites of tubulin protein complexes with 5o (turquoise-color stick model),
GTP, Mg+2, and GDP. The α-chain is represented in purple color and the β-chain is represented in
yellow color.
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The present study showed that the presence of methoxy groups at positions three and
four of the aromatic ring of the ligand has a significant inhibitory effect on the tubulin
polymerization at positions two and four. The positions of the methoxy (OCH3) groups
in these two (5o and 5p) compounds showed slight differences in the in silico as well as
in vitro studies. This could be due to the difference in the position of the substituents
present in the aryl rings. These observations also provide a possible explanation as to why
the 3,4-dimethoxy derivative 5o is the only compound from the series which shows high
affinity as well as a high docking score. The docked compound 5o was superimposed
with co-crystal ligand colchicine and its binding pattern was then compared (Figure 5a).
The co-crystal ligand colchicine formed four hydrogen bond interactions with the most
important active site residues ASN 249 (O....H2N, 1.76 Å), ALA 250 (O....H2N, 1.95 Å), LYS
254 (O....H3N+, 3.61 Å), and CYS 241 (O....HS, 2.40 Å and 2.61 Å). The receptor surface of
the docked conformer 5o complex with tubulin is presented in Figure 5b. The dG binding
energy of the compounds was found in the range of −48.34 to −91.43 Kcal/mol for the
receptor sites (Table 1). All compounds displayed a higher binding free energy (dG bond)
for tubulin, which indicates that the compounds may have higher affinity and stability for
the tubulin protein. To validate the molecular docking results, the synthesized compounds
with higher dock scores were screened by the in vitro tubulin inhibitory assay. The outcome
of molecular docking studies, along with the biological activity, revealed that compound
5o was the most potent inhibitor.

2.3. Pharmacological Activities
2.3.1. In Vitro Cytotoxicity Activity

The resultant compounds were tested for their in vitro cytotoxic activity by MTT
assay against breast (MCF-7), cervical (SiHa), and prostate (PC-3) cancer cell lines, and
the human embryonic kidney cell line (HEK) [36]. The relative absorbance of the treated
versus control (untreated) cells was used in determining the percentage viability and the
IC50 value of Combretastatin A4 (CA4), which was used as the standard. IC50 values of
various compounds in the MTT assay are presented in Table 2. Almost all synthesized
conjugates were selectively cytotoxic against breast MCF-7 cancerous cells. Moreover,
compounds 5d, 5o, and 5p displayed pronounced growth inhibition on MCF-7 cells with
IC50 values in the range of 2.13–4.10 µM, which were equivalent or better than the standard
CA-4 (4.12–5.23 µM). The effective growth inhibitory activity was exhibited by compound
5o (IC50 −2.13 ± 0.80 µM), followed by the compounds 5p (IC50 3.45 ± 1.28 µM) and 5d
(IC50 4.10 ± 1.12 µM) against MCF-7 cancer cells. The other two cancer cell lines, SiHa
and PC-3, also showed maximum sensitivity towards these two compounds with IC50
values of less than 6.52 µM. Moreover, compound 5n showed higher potency against
SiHa cells with an IC50 value of 3.60 ± 0.45 µM, while compound 5d revealed selective
potency against PC-3 cells with an IC50 value of 2.97 ± 0.88 µM. All compounds were
further tested on non-cancerous HEK cells, where most compounds did not show any
significant cytotoxicity (IC50 > 50 µM). The compounds 5r and 5i displayed moderate
growth inhibition on HEK cells with IC50 values of 38.30 and 45.23 µM, respectively.
These results expressed the selectivity of 1,3-diphenyl-1H pyrazole hybrids towards cancer
cells compared to normal HEK cells. Therefore, the high cytotoxicity of the synthesized
anticancer agents and their selectivity towards cancer cells were found to be characteristic
factors. Subsequently, SAR studies were done by investigating the effect of substituents
on cytotoxic activity. It has been shown that compounds with strong electron-donating
groups on the aromatic ring (OH > OCH3) exhibited potent cytotoxic activity. Furthermore,
the compounds with electron-donating groups such as 3,4-dimethoxy substitution and
2,4-dimethoxy (5o and 5p) exhibited higher potency than para-Methoxy substitutions (5k).
Furthermore, compounds with electron-withdrawing groups such as para-chloro, para-
nitro, 3,4-dichloro, and trifluoromethyl substitutions (5e, 5i, 5l, and 5r) on the phenyl rings
displayed good cytotoxic strength (Cl > NO2 > CF3) on cancerous cells (Figure 6). The
majority of the compounds in this scheme exhibited moderate selectivity index values.
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Moreover, the pharmacological efficacy of the synthesized entities 5d, 5n, 5o, and 5p has
created a scope to explore their profound efficacy at the cellular level and particularly using
the mechanism proposed for cytotoxic effects.

Table 2. In vitro cytotoxic effect (IC50, µM) of the E-3-(3-(4-(benzyloxy) phenyl)-1-phenyl-1H-pyrazol-
4-yl)-1-phenylprop-2-en-1-one against a panel of human cancer and normal cell lines.

Comp.
Cell Line (IC50) a

MCF-7 b SiHa c PC3 d HEK-293 e

5d 4.10 ± 1.12 4.85 ± 0.89 2.97 ± 0.88 >50
5e 11.50 ± 1.62 12.3 ± 1.32 9.68 ± 1.42 >50
5i 42.70 ± 0.34 34.53 ± 0.90 13.14 ± 1.6 45.23 ± 2.60
5k 7.23 ± 0.74 5.65 ± 0.71 5.45 ± 0.94 >50
5l 8.23 ± 1.45 11.70 ± 2.83 5.84 ± 1.65 >50

5m 17.14 ± 2.25 6.46 ± 1.52 11.22 ± 1.44 >50
5n 6.98 ±1.12 3.60 ± 0.45 3.56 ± 0.63 >50
5o 2.13 ± 0.80 4.34 ± 0.98 4.46 ± 0.53 >50
5p 3.45 ± 1.28 4.98 ± 0.54 6.52 ± 1.23 >50
5r 14.82 ± 2.76 >50 >50 38.3 ± 1.72

CA-4 4.12 ± 0.38 5.23 ± 0.85 3.86 ± 0.39 19.25 ± 1.65
Cell lines were treated with different concentrations of compounds for 48 h as described under experimental
protocol. Cell viability was measured by employing MTT assay. a IC50 values are the concentrations causing 50%
inhibition of cancer cell growth (µM). Data represent the mean values ± standard deviation of three independent
experiments performed in triplicates. b Breast cancer, c cervical cancer, d prostate cancer cell line, and e human
normal cell line CA-4: Combretastatin A-4.

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 11 of 23 
 

 

 
Figure 6. SAR of titled compounds. 

2.3.2. Tubulin Polymerization Assay 
The α and β tubulin subunits are recognized by heterodimers and self-assemble into 

a stable microtubule in a time-dependent manner. Assessment of the inhibitory effect of 
new pyrazolic chalcone conjugates on tubulin polymerization was also carried out. The 
progression of tubulin polymerization was thus examined by monitoring the increase in 
the fluorescence intensity at 450 nm (excitation wavelength of 360 nm) in a 384-plate for 1 
h at 37 °C with and without the conjugate at 10 µM concentration. CA-4 (6 µM) and Vin-
cristine (3 µM) were used as the positive control, whereas paclitaxel (3 µM) was used as 
the negative control. The effect of lead conjugates on tubulin polymerization is presented 
in Figure 5. The compounds 5d, 5e, 5i, 5k, 5l, 5m, 5n, 5o, 5p, and 5r exhibited 28.42–66.40% 
inhibition on tubulin polymerization (Figure 7). Among these compounds, 5o, 5l, and 5p 
showed significant inhibition of tubulin polymerization with IC50 values of 1.15, 1.65, and 
1.95 µM, respectively, as compared with 1.46 µM for Combretastatin A-4, as shown in 
Table 1. In general, these outcomes imply that the lead molecules 5o, 5l, and 5p possess a 
potent inhibitory effect on microtubule assembly in vitro. 

Effect of Electron releasing group (ERG)

> > >

Increasing order of anticancer and tubulin polymerization inhibition potential

Decreasing order of anticancer and tubulin polymerization inhibition potential

> > >

Effect of Electron withdrawing group (EWG)

>

>

Ar =

Ar =

5d
5k5n5o

5p

N
N

Ar

O

O

5e 5i
5l

5m 5r

Cl

Cl

Cl Cl NO2

Cl

F
F

F

OHO

O

O

O

OH
HO

O

Order of Potency
ERG > EWG

Figure 6. SAR of titled compounds.



Pharmaceuticals 2022, 15, 280 11 of 22

2.3.2. Tubulin Polymerization Assay

The α and β tubulin subunits are recognized by heterodimers and self-assemble into
a stable microtubule in a time-dependent manner. Assessment of the inhibitory effect of
new pyrazolic chalcone conjugates on tubulin polymerization was also carried out. The
progression of tubulin polymerization was thus examined by monitoring the increase in
the fluorescence intensity at 450 nm (excitation wavelength of 360 nm) in a 384-plate for
1 h at 37 ◦C with and without the conjugate at 10 µM concentration. CA-4 (6 µM) and
Vincristine (3 µM) were used as the positive control, whereas paclitaxel (3 µM) was used as
the negative control. The effect of lead conjugates on tubulin polymerization is presented
in Figure 5. The compounds 5d, 5e, 5i, 5k, 5l, 5m, 5n, 5o, 5p, and 5r exhibited 28.42–66.40%
inhibition on tubulin polymerization (Figure 7). Among these compounds, 5o, 5l, and
5p showed significant inhibition of tubulin polymerization with IC50 values of 1.15, 1.65,
and 1.95 µM, respectively, as compared with 1.46 µM for Combretastatin A-4, as shown in
Table 1. In general, these outcomes imply that the lead molecules 5o, 5l, and 5p possess a
potent inhibitory effect on microtubule assembly in vitro.

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 12 of 23 
 

 

 
Figure 7. Effect of conjugates on in vitro tubulin polymerization. Values indicated are the mean ± 
SD of two different experiments performed in triplicates. 

2.4. In Silico Computational Studies 
Physicochemical properties of lead compounds are important for their development 

as anticancer agents with an inhibitory effect on tubulin polymerization agents. Improved 
lipophilicity with reduced water solubility is an essential factor. Different online software 
are available for the computation of these factors, such as the Molinspiration property 
calculation toolkit, Osiris Property explorer, PASS prediction, etc. The drug-like charac-
ters, such as water solubility (clogS), the number of rotatable bonds (NROTB), hydropho-
bicity (clogP), molecular weight (MW), and the drug-like score of Lipinski’s rule of five 
[37–39], calculated for the lead compounds (5a–r) are represented in Table 3. Most of the 
synthesized compounds showed an acceptable range of solubility (clogS), which is less 
than (−4.6). The synthesized lead with a clogP-value < 5 is regarded as the compound with 
a better drug-likeness profile [40,41]. Most of the compounds were found to have a clogP-
value of <5, which indicated their potential for oral administration. Parameters such as the 
TPSA (topological polar surface area) of new pyrazole derivatives (5a–r) were found to be 
within the acceptable range of 39.08–108.08 A°. The Molinspiration property calculation 
toolkit used for calculating the drug-likeness properties recommends that derivatives 
with negative or zero values should not be regarded as a drug-like candidates. However, 
all synthesized compounds, except 5c and 5i, were found to have scores > 0, as shown in 
Table 3. The predicted toxicity risks of all the synthesized derivatives were envisaged by 
Osiris Property Explorer and are given in Table 3. The compounds, except for 5c, 5i, and 
5j, were found to be non-mutagenic and non-carcinogenic. PASS prediction was per-
formed for the synthesized compounds to omit the compounds with a probability of ac-
tivity (Pa) < 0.400 [42,43]. The remaining compounds were selected for evaluation based 
on the net probability of activity over inactivity (Pa-Pi), being more than 0.400 (Table 3). 

  

Figure 7. Effect of conjugates on in vitro tubulin polymerization. Values indicated are the mean ± SD
of two different experiments performed in triplicates.

2.4. In Silico Computational Studies

Physicochemical properties of lead compounds are important for their development
as anticancer agents with an inhibitory effect on tubulin polymerization agents. Improved
lipophilicity with reduced water solubility is an essential factor. Different online software
are available for the computation of these factors, such as the Molinspiration property
calculation toolkit, Osiris Property explorer, PASS prediction, etc. The drug-like characters,
such as water solubility (clogS), the number of rotatable bonds (NROTB), hydrophobicity
(clogP), molecular weight (MW), and the drug-like score of Lipinski’s rule of five [37–39],
calculated for the lead compounds (5a–r) are represented in Table 3. Most of the synthesized
compounds showed an acceptable range of solubility (clogS), which is less than (−4.6).
The synthesized lead with a clogP-value < 5 is regarded as the compound with a better
drug-likeness profile [40,41]. Most of the compounds were found to have a clogP-value
of <5, which indicated their potential for oral administration. Parameters such as the
TPSA (topological polar surface area) of new pyrazole derivatives (5a–r) were found to be
within the acceptable range of 39.08–108.08 A◦. The Molinspiration property calculation
toolkit used for calculating the drug-likeness properties recommends that derivatives with
negative or zero values should not be regarded as a drug-like candidates. However, all
synthesized compounds, except 5c and 5i, were found to have scores > 0, as shown in
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Table 3. The predicted toxicity risks of all the synthesized derivatives were envisaged
by Osiris Property Explorer and are given in Table 3. The compounds, except for 5c, 5i,
and 5j, were found to be non-mutagenic and non-carcinogenic. PASS prediction was
performed for the synthesized compounds to omit the compounds with a probability of
activity (Pa) < 0.400 [42,43]. The remaining compounds were selected for evaluation based
on the net probability of activity over inactivity (Pa-Pi), being more than 0.400 (Table 3).

Table 3. In silico physicochemical properties for oral bioavailability and bioactivity of the test
compounds using computational predictive software.

Comp.
Cancer

Treatment cLogP cLogS n OHNH n ON MW Rotatable
Bonds

Drug
Likeness

Drug
Score TPSA Toxicity

Pa Pa-Pi

5a 0.65 0.64 4.59 −4.60 0 4 456.18 8 0.97 0.34 61.80 NM, NC
5b 0.40 0.30 3.20 −2.23 1 4 491.88 8 1.23 0.24 63.08 NM. NC
5c 0.25 0.08 4.20 −3.42 1 4 501.17 8 −2.34 0.26 39.08 SR
5d 0.43 0.34 4.34 −3.36 0 4 472.18 8 3.45 0.35 65.08 NM, NC
5e 0.40 0.29 4.80 −2.07 1 4 491.88 8 4.62 0.05 68.08 NM, NC
5f 0.37 0.25 3.40 −4.34 0 4 477.70 8 2.82 0.36 63.60 NM, NC
5g 0.47 0.46 3.60 −3.45 0 4 535.09 8 1.24 0.32 70.08 NM, NC
5h 0.43 0.42 4.56 −2.67 1 4 472.18 8 2.87 0.23 62.07 NM, NC
5i 0.35 0.23 4.90 −3.60 1 4 501.17 8 −2.24 0.25 80.08 SM
5j 0.49 0.493 4.90 −3.78 1 4 471.20 8 1.37 0.11 102.30 SM
5k 0.44 0.36 2.34 −3.56 0 10 487.19 10 −1.92 0.34 87.00 NM, NC
5l 0.43 0.42 2.23 −4.02 1 7 524.11 9 3.45 0.25 62.90 NM, NC

5m 0.23 0.22 4.25 −3.35 2 5 524.11 8 2.64 0.15 59.31 NM, NC
5n 0.49 0.41 3.60 −2.54 1 5 488.17 9 −1.56 0.56 63.31 NM, NC
5o 0.47 0.40 3.45 −2.63 1 6 516.20 10 1.67 0.34 63.56 NM, NC
5p 0.48 0.41 2.50 −2.67 1 4 516.20 8 2.12 0.27 63.34 NM, NC
5q 0.29 0.13 5.20 −3.24 3 7 525.17 9 3.44 0.48 80.20 NM, NC
5r 0.31 0.16 4.50 −3.48 3 7 554.17 9 2.65 0.65 75.23 NM, NC

Pa: probability of being active; Pi: the probability of being inactive; cLogP: lipophilicity; cLogS: water solubility; n
OHNH: number of hydrogen bond donors; n ON: number of hydrogen bond acceptors; MW: molecular weight;
TPSA; topological polar surface area; NM: non-mutagenic; NC: non-carcinogenic; SM: slightly mutagenic; and SR:
slightly reproducible.

3. Materials and Methods
3.1. General Chemistry

The chemicals and reagents employed were of LR grade and procured from Sigma
Aldrich (Mumbai, India), E. Merck (Mumbai, India), S.D. Fine Chemicals Ltd. (Mumbai,
India), and Qualigens (New Delhi, India). Thin-layer chromatography (TLC) was carried
out to observe the advancement of the reactions using benzene and acetone (80:20, v/v), as
well as toluene/ethyl acetate/formic acid (50:40:10, v/v/v) as a solvent system, and spots
were traced using iodine vapor or UV-light (254 nm). Melting points of the synthesized
molecules were calculated using an electrical melting point apparatus (open capillary
method) and are uncorrected. The infrared spectra were noted in the region from the 4000
to 400 cm−1 range on the Shimadzu FT-IR spectrometer, while 1H and 13C-NMR spectra
were recorded on the Bruker Advance-500 MHz and 125 MHz spectrometer using DMSO-
d6 or CDCl3 as an NMR solvent. Synapt-mass spectrometric detection was performed
on UPLC-MS (Q-TOF-ESI; Waters Corp., Milford, MA, USA) using the ESI technique.
Elemental analysis was executed on the CHNOS-Elemental analyzer (Vario EL III) and
found to be ±0.4%, i.e., within the theoretical values.

3.1.1. Synthesis of Substituted (E)-1-(1-(4-(Benzyloxy)phenyl)ethylidene)-2-phenylhydrazine (3)

A solution of 1 (10 mmol) and 2 (15 mmol) in absolute ethanol (30 mL) was refluxed
for 6–8 h in the presence of glacial acetic acid (0.3 mL). The reaction advancement was
determined by the TLC method using a mixture of ethyl acetate: hexane (8:2). The product
obtained was then washed, dried in shade, and recrystallized from ethanol [44]; white solid,
yield: 78%; m.p.: 123–125 ◦C.
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3.1.2. Synthesis of Substituted
(E)-3-(4-(Benzyloxy)phenyl)-1-phenyl-1H-pyrazole-4-carbaldehyde (4)

Compound 3 in dry dimethylformamide at a temperature of 0–5 ◦C in a 100 mL RBF
was reacted with POCl3 (drop-wise addition) for a time interval of 15–20 min and then
heated in a steam bath for a period of 2 h; allowed to cool down to room temperature;
poured in crushed ice; and then basified with a saturated solution of NaHCO3. The product
obtained was then filtered, washed 2–3 times with water, dried, and recrystallized from
ethanol to get yellow crystals (needle-like) [45].

White solid, yield: 72%; m.p.: 127–129 ◦C, IR (KBr, cm−1): 3093 (CH aromatic),
1710 (C=O), 1633 (C=N), and 1626 (C=C), 1255 (C-O). 1H NMR (CDCl3, 500 MHz) δ (ppm):
5.13 (s, 2H,-CH2-benzyloxy), 6.57 (d, 2H, Ar-H, J = 8.0 Hz), 7.05 (d, 2H, Ar-H, J = 8.4 Hz), 7.21
(d, 1H, Ar-H, J = 8.2 Hz), 7.30–7.59 (m, 4H, Ar-H), 7.67 (d, 2H, Ar-H, J = 8.8 Hz), 7.75–7.99
(m, 3H, Ar-H), 8.45 (s, 1H, pyrazole-CH), and 9.82 (s, 1H, CHO). Analysis calculated for
C23H18N2O2: C, 77.93; H, 5.11; and N, 7.90. Found: C, 77.81; H, 5.16; and N, 7.81.

3.1.3. Synthesis of
(E)-3-(3-(4-(Benzyloxy)phenyl)-1-phenyl-1H-pyrazol-4-yl)-1-phenylprop-2-en-1-one
derivatives (5a–r)

A mixture of 3-(4-(benzyloxy)phenyl)-1-phenyl-1H-pyrazole-4-carbaldehyde (4; 10 mmol)
and different substituted acetophenones (10 mmol) were dissolved in 20 mL ethanol. To this
mixture, sodium hydroxide (40%, 2 mL) was added at 0–5 ◦C and then stirred at room
temperature for 24 h. Then, this reaction mixture was poured over crushed ice and acidified
with dilute HCl (10%) until pH = 5. The light-yellow solid thus obtained was filtered, washed
with water, dried, and recrystallized from ethanol to obtain the final product, i.e., (E)-3-(3-(4-
(benzyloxy)phenyl)-1-phenyl-1H-pyrazol-4-yl)-1-phenylprop-2-en-1-one (5a–r) [46].

(E)-3-(3-(4-(benzyloxy)phenyl)-1-phenyl-1H-pyrazol-4-yl)-1-phenylprop-2-en-1-one (5a):
White solid, yield: 74%; m.p.: 190–194 ◦C; IR (KBr, cm−1): 3045 (CH aromatic), 2930

(CH aliphatic), 1710 (C=O), 1643 (C=C), 1627 (C=N), and 1245 (C-O); 1H NMR (CDCl3,
500 MHz); δ (ppm): 5.15 (s, 2H, CH2-benzyloxy), 7.12 (d, 2H, Ar-H, J = 8.4 Hz), 7.05 (d, 2H
Ar-H, J = 8.4 Hz), 7.36 (t, 1H, Ar-H, J = 7.5 Hz), 7.54–7.62 (m, 5H, Ar-H), 7.64 (d, 2H, Ar-H,
J = 8.8 Hz), 7.67 (d, 2H, Ar-H, J = 8.8 Hz), 7.74–7.85 (m, 3H, Ar-H), 7.89 (d, 2H, J = 7.7 Hz),
7.95 (d, 1H, chalcone H-7, J = 15.6 Hz), 8.01 (d, 1H, chalcone-H-6, J = 15.7 Hz), and 8.42
(s, 1H, pyrazole-H); 13C NMR (CDCl3, 125 MHz): δ (ppm) 71.1 (benzyloxy CH2), 113.1,
114.8, 119.4, 125.2, 126.7, 127.1, 127.7 (chalcone-C-7), 127.8, 128.4, 128.6, 129.1, 129.8, 130.2
(pyrazole-C-5), 134.5, 136.8, 137.9, 139.6 (pyrazole phenyl-C-1), 145.1 (chalcone-C-6), 150.7
(pyrazole-C-3), 159.1, and 189.8 (C=O); ESI-MS (m/z): 456.18 (M+). Analysis calculated for
C31H24N2O2: C, 81.54; H, 5.29; N, 6.13; and O, 7.01. Found: C, 81.61; H, 5.22; and N, 6.17.

(E)-3-(3-(4-(benzyloxy)phenyl)-1-phenyl-1H-pyrazol-4-yl)-1-(2-chlorophenyl)prop-2-en-
1-one (5b):

Off white solid, yield: 70%; m.p.: 182–184 ◦C; IR (KBr, cm−1): 3050 (CH aromatic),
2935 (CH aliphatic), 1715 (C=O), 1640 (C=N), 1597 (C=C), and 1255 (C-O), 745 (C-Cl); 1H
NMR (CDCl3, 500 MHz); δ (ppm): 5.19 (s, 2H, CH2-benzyloxy), 6.97 (t, 2H, Ar-H, J = 8.7
Hz), 7.08 (d, 2H, Ar-H, J = 8.2 Hz), 7.31 (d, 2H, Ar-H, J = 9.6 Hz), 7.35 (t, 1H, Ar-H, J = 8.2
Hz), 7.57 (d, 2H, Ar-H, J = 8.3 Hz), 7.50–7.68 (m, 3H, Ar-H), 7.74 (d, 2H, Ar-H, J = 8.4 Hz),
7.96 (d, 2H, Ar-H, J = 7.6 Hz), 7.98 (d, 2H, Ar-H, J = 8.7 Hz), 7.93 (d, 1H, chalcone-H-7, J =
15.6 Hz), 8.06 (d, 1H, chalcone-H-6, J = 15.7 Hz), and 8.52 (s, 1H, pyrazole-H); and 13C NMR
(CDCl3, 125 MHz): δ (ppm): 71.4 (benzyloxy-CH2), 113.8, 114.7, 119.5, 125.6, 126.4, 127.2,
127.8 (chalcone-C-7), 127.9, 128.4, 128.8, 129.5, 130.4 (pyrazole-C-5), 130.6, 131.8 (C-Cl),
136.2, 137.9, 139.4 (pyrazole-phenyl-C-1), 144.7 (Chalcone-C-6), 150.5 (pyrazole-C-3), 159.4,
and 189.4 (C=O). ESI-MS (m/z): 491.88 (M++1) and 492.75 (M++2). Analysis calculated for
C31H23ClN2O2: C, 75.82; H, 4.71; and N, 5.70. Found: C, 75.91; H, 4.62; and N, 5.75.

(E)-3-(3-(4-(benzyloxy)phenyl)-1-phenyl-1H-pyrazol-4-yl)-1-(3-nitrophenyl)prop-2-en-
1-one (5c):

Orange red solid, yield: 78%; m.p.: 203–205 ◦C; IR (KBr, cm−1): 3046 (CH aromatic),
2940 (CH aliphatic), 1690 (C=O), 1625 (C=N), 1612 (C=C), 1510 and 1350 (NO2), and 1245
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(C-O); 1H NMR (CDCl3, 500 MHz); δ (ppm): 5.11 (s, 2H, CH2-benzyloxy), 7.35 (d, 2H, Ar-H,
J = 7.8 Hz), 7.44 (d, 2H, Ar-H, J = 7.8 Hz), 7.58 (t, 1H, Ar-H, J = 8.0 Hz), 7.63 (d, 2H, Ar-H,
J = 8.8 Hz), 7.66–7.78 (m, 5H, Ar-H), 7.80 (d, 1H, chalcone-H-7, J = 15.5 Hz), 7.88 (d, 2H,
Ar-H, J = 7.6 Hz), 8.00 (d, 1H, chalcone-H-6, J = 15.7 Hz), 8.02 (t, 1H, Ar-H, J = 8.8 Hz), 8.42
(s, 1H, Ar-H), 8.56 (d, 2H, Ar-H, J = 9.4 Hz), and 8.48 (s, 1H, pyrazole-H); 13C NMR (CDCl3,
125 MHz): δ (ppm) 71.2 (benzyloxy-CH2), 113.3, 114.5, 119.2, 123.7, 125.6, 126.6, 127.1, 127.6
(chalcone-C-7), 128.3, 128.8, 129.2, 129.4, 130.2 (pyrazole-C-5), 130.6, 134.9, 136.8, 138.5,
139.6 (pyrazole-phenyl-C-1), 143.3 (chalcone-C-6), 148.6 (Ar-C-NO2), 150.6 (pyrazole-C-3),
159.1, and 189.9 (C=O); ESI-MS (m/z): 501.17 (M+). Analysis calculated for C31H23N3O4: C,
74.21; H, 4.61; and N, 8.31. Found: C, 74.26; H, 4.55; and N, 8.42.

(E)-3-(3-(4-(benzyloxy)phenyl)-1-phenyl-1H-pyrazol-4-yl)-1-(3-hydroxyphenyl)prop-2-
en-1-one (5d):

White buff solid, yield: 64%; m.p.: 184–186 ◦C; IR (KBr, cm−1): 3445 (OH), 3055 (CH
aromatic), 2958 (CH aliphatic), 1705 (C=O), 1620 (C=N), 1597 (C=C), and 1245 (C-O); 1H
NMR (CDCl3, 500 MHz); δ (ppm): 5.22 (s, 2H, CH2-benzyloxy), 5.42 (s, 1H, OH), 6.72 (d,
2H, Ar-H, J = 7.6 Hz), 6.94 (d, 2H, Ar-H, J = 7.8 Hz), 7.14 (s, 1H, Ar-H), 7.24 (t, 2H, Ar-H,
J = 6.8 Hz), 7.31 (d, 2H, Ar-H, J = 6.4 Hz), 7.42–7.53 (m, 3H, Ar-H), 7.74 (d, 1H, chalcone-
H-7, J = 15.8 Hz), 7.58–7.76 (m, 4H, Ar-pyrazole), 7.94 (d, 1H, chalcone-H-6, J = 16.0 Hz),
7.98 (d, 2H, Ar-H, J = 7.8 Hz), and 8.03 (s, 1H. pyrazole-H); 13C NMR (CDCl3, 125 MHz):
δ (ppm) 70.8 (benzyloxy-CH2), 113.6, 114.7, 117.3, 119.4, 121.6, 123.2, 125.3, 126.3, 127.1,
127.4 (chalcone-C-7), 127.9, 128.3, 129.4, 130.5 (pyrazole-C-5), 131.4, 136.9, 137.3, 139.3
(pyrazole-phenyl-C-1), 146.4 (chalcone-C-6), 150.2 (pyrazole-C-3), 159.1, 164.8 (C-OH), and
196.1 (C=O); ESI-MS (m/z): 472.18 (M+). Analysis calculated for C31H24N2O3: C, 78.80; H,
5.13; and N, 5.94. Found: C, 78.85; H, 5.17; and N, 5.89

(E)-3-(3-(4-(benzyloxy)phenyl)-1-phenyl-1H-pyrazol-4-yl)-1-(4-chlorophenyl)prop-2-en-
1-one (5e):

White buff solid, yield: 76%; m.p.: 212–214 ◦C; IR (KBr, cm−1): 3080 (CH aromatic),
2960 (CH aliphatic), 1720 (C=O), 1657 (C=C), 1610 (C=N), 1235 (C-O), and 790 (C-Cl);
1H NMR (CDCl3, 500 MHz); δ (ppm): 5.17 (s, 2H, CH2-benzyloxy), 7.15 (d, 2H, Ar-H,
J = 8.7 Hz), 7.28 (d, 2H, Ar-H, J = 7.8 Hz), 7.31–7.43 (m, 3H, Ar-H), 7.46–7.55 (m, 4H, Ar-H),
7.59 (d, 2H, Ar-H, J = 8.4 Hz), 7.64 (d, 2H, Ar-H, J = 8.4 Hz), 7.83 (t, 3H, Ar-H, J = 7.8 Hz), 7.95
(d, 1H, chalcone-H-7, J = 15.6 Hz), 8.05 (d, 1H, chalcone-H-6), and 8.38 (s, 1H, pyrazole-H);
13C NMR (CDCl3, 125 MHz): δ (ppm) 69.7 (benzyloxy-CH2), 112.8, 115.9, 118.9, 119.2, 124.7,
126.1, 126.5, 128.5, 128.8 (chalcone-C-7), 128.9, 129.2, 129.9, 130.3 (pyrazole-C-5), 137.4, 139.9
(pyrazole-phenyl-C-1), 146.8 (chalcone-C-6), 150.7 (pyrazole-C-3), 158.6, and 189.7 (C=O);
ESI-MS (m/z): 491.88 (M++1) and 492.75 (M++2). Analysis calculated for C31H23 ClN2O2:
C, 75.82; H, 4.73, and N, 5.70. Found: C, 75.88; H, 4.69; and N, 5.75.

(E)-3-(3-(4-(benzyloxy)phenyl)-1-phenyl-1H-pyrazol-4-yl)-1-(4-fluorophenyl)prop-2-en-
1-one (5f):

Off white solid, yield: 66%; m.p.: 168–170 ◦C; IR (KBr, cm−1): 3105 (CH aromatic), 2950
(CH aliphatic), 1708 (C=O), 1605 (C=N), 1593 (C=C), 1210 (C-O), and 755 (C-F); 1H NMR
(CDCl3, 500 MHz); δ (ppm): 5.18 (s, 2H, CH2-benzyloxy), 7.16 (d, 2H, Ar-H, J = 8.7 Hz), 7.33
(t, 1H, Ar-H, J = 8.2 Hz), 7.43 (d, 2H Ar-H, J = 8.8 Hz), 7.54 (d, 2H, Ar-H, J = 8.2 Hz), 7.52–7.72
(m, 5H, Ar-H), 7.74 (d, 2H, Ar-H, J = 8.4 Hz), 7.76 (d, 1H, chalcone-H-7, J = 15.3 Hz), 7.96 (d,
2H, Ar-H, J = 7.6 Hz), 7.98 (d, 2H, Ar-H, J = 8.7 Hz), 8.06 (d, 1H, chalcone-H-6, J = 15.7 Hz),
and 8.54 (s, 1H, pyrazole-H); 13C NMR (CDCl3, 125 MHz): δ (ppm) 70.7 (benzyloxy-CH2),
113.2, 114.5, 116.0, 119.6, 125.3, 126.4, 127.2, 127.4 (chalcone-C-7), 127.8, 128.6, 129.4, 130.4
(pyrazole-C-5), 131.8, 133.6, 136.1, 136.6, 139.7 (pyrazole-phenyl-C-1), 145.3 (chalcone-C-6),
150.8 (C-3-pyrazole), 159.6, 164.8 (C-F), and 189.5 (C=O); ESI-MS (m/z): 477.70 (M++1).
Analysis calculated for C31H23 FN2O2: C, 78.48; H, 4.90; and N, 5.92. Found: C, 78.55; H,
4.95; and N, 5.86.

(E)-3-(3-(4-(benzyloxy)phenyl)-1-phenyl-1H-pyrazol-4-yl)-1-(4-bromophenyl)prop-2-en-
1-one (5g):
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Off white solid, yield: 62%; m.p.: 178–180 ◦C; IR (KBr, cm−1): 3095 (CH aromatic),
2965 (CH aliphatic), 1708 (C=O), 1610 (C=N), 1585 (C=C), 1210 (C-O), and 665 (C-Br); 1H
NMR (CDCl3, 500 MHz); δ (ppm): 5.14 (s, 2H, CH2-benzyloxy), 7.10–7.97 (m, 20H, aromatic
H), 7.90 (d, 1H, CH=CH, Cis, J = 15.5 Hz), 7.83 (d, 1H, CH=CH, J = 9 Hz), and 8.33 (s,
1H, CH of pyrazole); 13C NMR (CDCl3, 125 MHz): δ (ppm) 70.1 (benzyloxy-CH2), 115.24,
118.01, 119.36, 120.56, 124.96, 125.86, 127.28, 127.52, 127.76, 128.10, 128.68 (chalcone-C-7),
129.61 (pyrazole-C-5), 129.92, 130.10 (pyrazole-phenyl-C-1), 131.90, 136.19 (chalcone-C-6),
136.79 (pyrazole-C-3), 139.40, 153.78 (C-Br), 159.36, and 188.92 (C=O); ESI-MS (m/z): 537.09
(M++1). Analysis calculated for C31H23 BrN2O2: C, 69.55; H, 4.31; and N, 5.24. Found: C,
69.62; H, 4.36; and N, 5.20.

(E)-3-(3-(4-(benzyloxy)phenyl)-1-phenyl-1H-pyrazol-4-yl)-1-(4-hydroxyphenyl)prop-2-
en-1-one (5h):

White buff solid, yield: 65%; m.p.: 167–169 ◦C; IR (KBr, cm−1): 3415 (OH), 3065 (CH
aromatic), 2934 (CH aliphatic), 1695 (C=O), 1618 (C=N), 1605 (C=C), and 1248 (C-O); 1H
NMR (CDCl3, 500 MHz); δ (ppm): 5.20 (s, 2H, CH2-benzyloxy), 5.68 (s, 1H, OH), 6.56 (d,
2H, Ar-H, J = 7.2 Hz), 6.80 (d, 2H, Ar-H, J = 7.6 Hz), 7.27 (t, 2H, Ar-H, J = 7.3 Hz), 7.31 (d, 2H,
Ar-H, J = 6.4 Hz), 7.38–7.48 (m, 3H, Ar-H), 7.66 (d, 1H, chalcone-H-7, J = 15.5 Hz), 7.69–780
(m, 4H, Ar-pyrazole), 7.82 (d, 1H, chalcone-H-6, J = 15.5 Hz), 7.92 (d, 2H, Ar-H, J = 7.4 Hz),
and 8.01 (s, 1H. pyrzole-H); 13C NMR (CDCl3, 125 MHz): δ (ppm) 71.8 (benzyloxy-CH2),
113.2, 114.5, 119.8, 125.8, 126.4, 127.2, 127.5 (chalcone-C-7), 127.9, 128.4, 128.8, 129.7, 130.5
(pyrazole-C-5), 130.8, 131.5, 136.8, 139.9 (pyrazole-phenyl-C-1), 146.4 (chalcone-C-6), 150.7
(pyrazole-C-3), 159.6, 164.5 (C-OH), and 189.8 (C=O); ESI-MS (m/z): 472.18 (M+). Analysis
calculated for C31H24N2O3: C, 78.79; H, 5.12; and N, 5.93. Found: C, 78.84; H, 5.16; and
N, 5.88.

(E)-3-(3-(4-(benzyloxy)phenyl)-1-phenyl-1H-pyrazol-4-yl)-1-(4-nitrophenyl)prop-2-en-
1-one (5i):

Orange red solid, yield: 82%; m.p.: 223–225 ◦C IR (KBr, cm−1): 3035 (CH aromatic),
2956 (CH aliphatic), 1675 (C=O), 1630 (C=N), 1576 (C=C), 1505 and 1363 (NO2), and 1238 (C-
O); 1H NMR (CDCl3, 500 MHz); δ (ppm): 5.12 (s, 2H, CH2-benzyloxy), 7.13 (d, 2H, Ar-H, J
= 7.8 Hz), 7.42 (d, 2H, Ar-H, J = 8.6 Hz), 7.54 (t, 1H, Ar-H, J = 7.4 Hz), 7.62 (d, 2H, Ar-H,
J = 8.8 Hz), 7.66–7.76 (m, 5H, Ar-H), 7.82 (d, 1H, chalcone-H-7, J = 15.6 Hz), 7.86 (d, 2H,
Ar-H, J = 7.6 Hz), 8.08 (d, 1H, chalcone-H-6, J = 15.8 Hz), 8.16 (d, 2H, Ar-H, J = 8.6 Hz),
8.30 (d, 2H, Ar-H, J = 8.8 Hz), and 8.38 (s, 1H, pyrazole-H); 13C NMR (CDCl3, 125 MHz):
δ (ppm) 69.5 (benzyloxy-CH2), 113.3 (pyrazole-C-4), 115.2, 119.6, 122.4, 125.6, 126.6, 127.5,
127.4 (chalcone-C-7), 127.8, 128.1, 128.6, 129.2, 130.8 (pyrazole-C-5), 130.6, 136.5, 139.6
(pyrazole-phenyl-C-1), 142.5 (chalcone-C-6), 150.5 (pyrazole-C-3), 153.6 (C-NO2), and 159.2,
189.3 (C=O); ESI-MS (m/z): 501.17 (M+). Analysis calculated for C31H23N3O4: C, 74.27; H,
4.64; and N, 8.41. Found: C, 74.32; H, 4.58; and N, 8.46.

(E)-3-(3-(4-(benzyloxy)phenyl)-1-phenyl-1H-pyrazol-4-yl)-1-(p-tolyl)prop-2-en-1-one (5j):
Off white solid, yield: 78%; m.p.: 205–207 ◦C; IR (KBr cm−1): 3028 (CH aromatic),

2960 (C-H str in CH3), 2968 (CH aliphatic), 1724 (C=O), 1645 (C=N), 1618 (C=C), and 1205
(C-O); 1H NMR (CDCl3, 500 MHz); δ (ppm): 3.75 (s, 3H, CH3), 5.16 (s, 2H, CH2-benzyloxy),
7.14 (d, 2H, Ar-H, J = 7.1 Hz), 7.29 (d, 2H, Ar-H, J = 5.1 Hz), 7.54 (t, 3H, Ar-H, J = 8.1
Hz), 7.62 (d, 2H, Ar-H, J = 8.4 Hz), 7.64–7.72 (m, 3H, Ar-H), 7.74 (d, 1H, chalcone-H-7,
J = 15.4 Hz), 7.76–7.81 (m, 4H, Ar-H), 7.86 (d, 1H, chalcone-H-6, J = 15.1 Hz), 7.95 (d, 2H,
Ar-H, J = 7.5 Hz), and 8.52 (s, 1H. pyrazole-H); 13C NMR (CDCl3, 125 MHz): δ (ppm)20.5
(Ar-CH3), 70.8 (benzyloxy-CH2), 11.9 (pyrazole-C-4), 115.3, 118.3, 119.2, 124.9, 126.1, 126.4,
128.2 (chalcone-C-7), 128.3, 128.9, 129.1, 129.7, 130.0 (pyrazole-C-5), 139.4 (pyrazol-phenyl-
C-1), 146.8 (chalcone-C-6), 150.7 (pyrazole-C-3), 158.6, and 189.7 (C=O); ESI-MS (m/z):
471.20 (M++1). Analysis calculated for C32H26N2O2: C, 81.67; H, 5.59; and N, 5.96. Found:
C, 81.73; H, 5.53; and N, 6.02.

(E)-3-(3-(4-(benzyloxy)phenyl)-1-phenyl-1H-pyrazol-4-yl)-1-(4-methoxyphenyl)prop-
2-en-1-one (5k):
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Greenish solid, yield: 68%; m.p.: 187–189 ◦C; IR (KBr, cm−1): 3090 (CH aromatic), 2970
(CH aliphatic), 1745 (C=O), 1655 (C=N), 1633 (C=C), and 1267 (OCH3), 1220 (C-O); 1H NMR
(CDCl3, 500 MHz); δ (ppm): 3.86 (s, 3H, OCH3), 5.14 (s, 2H, CH2-benzyloxy), 7.10–7.97
(m, 20H, aromatic H), 7.90 (d, 1H, CH=CH Cis, J = 8.5 Hz), 7.83 (d, 1H, CH=CH, J = 8 Hz),
and 8.53 (s, 1H, CH of pyrazole); 13C NMR (CDCl3, 125 MHz): δ (ppm) 70.1 (Ar-OCH3),
70.5 (benzyloxy-CH2), 115.15 (pyrazole-C-4), 119.34, 119.74, 122.36 (chalcone-C-7), 124.10,
127.53, 127.93, 128.13, 128.68 (pyrazole-C-5), 129.70, 130.70, 131.20 (phenyl-pyrazole-C-1),
136.70 (chalcone-C-6), 139.06 (pyrazole-C-3), 154.51, 159.75, and 185.24 (C=O); ESI-MS
(m/z): 487.22 (M++1). Analysis calculated for C32H26N2O3: C, 78.97; H, 5.40; and N, 5.78.
Found: C, 78.94; H, 5.34; and N, 5.84.

(E)-3-(3-(4-(benzyloxy)phenyl)-1-phenyl-1H-pyrazol-4-yl)-1-(3,4-dichlorophenyl)prop-
2-en-1-one (5l):

Off white solid, yield: 76%; m.p.: 243–245 ◦C; IR (KBr, cm−1): 3030 (CH aromatic), 2980
(CH aliphatic), 1745 (C=O), 1653 (C=N), 1637 (C=C), 1225 (C-O), and 785 (C-Cl); 1H NMR
(CDCl3, 500 MHz); δ (ppm): 5.17 (s, 2H, CH2-benzyloxy), 7.16 (d, 2H, Ar-H, J = 8.4 Hz),
7.25 (s, 1H Ar-H), 7.36 (d, 2H, Ar-H, J = 7.6 Hz), 7.48–7.51 (d, 2x 2H, Ar-H, J = 8.4 Hz), 7.55
(s, 1H, Ar-H), 7.56 (s, 1H, Ar-H), 7.58 (s, 1H, Ar-H), 7.67 (d, 2H, Ar-H, J = 8.4 Hz), 7.79–7.83
(m, 3H, Ar-H), 7.95 (d, 1H, chalcone-H, J = 15.6 Hz), 8.05 (d, 1H, chalcone-H, J = 16.2 Hz),
and 8.37 (s, 1H, pyrazole-H); 13C NMR (CDCl3, 125 MHz): δ (ppm) 70.2 (benzyloxy-CH2),
113.4, 114.4, 119.6, 125.5, 126.2, 127.2, 127.4 (chalcone-C-7), 127.7, 128.3, 128.6, 128.8, 129.5,
130.2 (pyrazole-C-5), 130.6, 131.4, 133.6, 136.6, 137.3, 139.3 (C-Cl), 139.8 (phenyl-C-1), 145.2
(chalcone-C-6), 150.3 (pyrazole-C-3), 159.1, and 189.5 (C=O); ESI-MS (m/z): 524.11 (M++1),
525.08 (M++2), and 526.06 (M++4). Analysis calculated for C31H22 Cl2N2O2: C, 70.85; H,
4.23; and N, 5.31. Found: C, 70.92; H, 4.18; and N, 5.41.

(E)-3-(3-(4-(benzyloxy)phenyl)-1-phenyl-1H-pyrazol-4-yl)-1-(2,4dichlorophenyl)prop-
2-en-1-one (5m):

Off white solid, yield: 67%; m.p.: 192–194 ◦C; IR (KBr, cm−1): 3065 (CH aromatic), 2985
(CH aliphatic), 1753 (C=O), 1620 (C=N), 1598 (C=C), 1275 (C-O), and 785 (C-Cl); 1H NMR
(CDCl3, 500 MHz); δ (ppm): 5.12 (s, 2H, CH2-benzyloxy), 7.14 (d, 2H, Ar-H, J = 8.4 Hz),
7.53 (d, 2H, Ar-H, J = 8.4 Hz), 7.46–7.52 (d, 2x 2H, Ar-H, J = 8.4 Hz), 7.57 (s, 1H, Ar-H), 7.55
(s, 1H, Ar-H), 7.59 (d, 2H, Ar-H, J = 7.8 Hz), 7.72 (d, 2H, Ar-H, J = 8.4 Hz), 7.75–7.80 (m,
3H, Ar-H), 7.62 (d, 1H, chalcone-H, J = 15.5 Hz), 7.69 (d, 1H, chalcone-H, 15.3 Hz), and 8.47
(s, 1H, pyrazole-H); 13C NMR (CDCl3, 125 MHz): δ (ppm) 70.6 (benzyloxy-CH2), 113.3,
114.6, 119.7, 125.4, 126.5, 127.2, 127.3 (chalcone-C-7), 127.6, 128.7, 129.2, 129.3, 129.7, 130.3
(pyrazole-C-5), 131.7 (C-Cl), 133.3, 135.4, 136.9, 139.7 (phenyl-C-1), 145.3 (chalcone-C-6),
146.3, 150.2 (pyrazole-C-7), 159.2, and 189.1 (C=O); ESI-MS (m/z): 524.11 (M++1), 525.08
(M++2), and 526.06 (M++4). Analysis calculated for C31H22 Cl2N2O2: C, 70.85; H, 4.21; and
N, 5.32. Found: C, 70.92; H, 4.18; and N, 5.41.

(E)-3-(3-(4-(benzyloxy)phenyl)-1-phenyl-1H-pyrazol-4-yl)-1-(2,4-dihydroxyphenyl)prop-
2-en-1-one (5n):

White buff solid, yield: 72%; m.p.: 176–178 ◦C; IR (KBr, cm−1): 3435 (OH), 3086 (CH
aromatic), 2950 (CH aliphatic), 1782 (C=O), 1620 (C=N), 1603 (C=C), and 1250 (C-O); 1H
NMR (CDCl3, 500 MHz); δ (ppm): 5.18 (s, 2H, CH2-benzyloxy), 5.60 (s, 2H, 2x OH), 6.42 (s,
1H, Ar-H), 7.10 (t, 3H, Ar-H, J = 6.8 Hz), 7.38 (d, 2H, Ar-H, J = 6.4 Hz), 7.46–7.64 (m, 3H,
Ar-H), 7.72 (d, 1H, chalcone-H-7, J = 15.2 Hz), 7.62–7.76 (m, 4H, Ar-pyrazole), 7.80 (d, 1H,
chalcone-H-6, J = 15.8 Hz), 7.86 (d, 2H, Ar-H, J = 8.8 Hz), 7.90 (d, 2H, Ar-H, J = 7.6 Hz), and
8.05 (s, 1H. pyrazole-H); 13C NMR (CDCl3, 125 MHz): δ (ppm) 71.2 (benzyloxy-CH2), 104.6,
113.2, 113.5, 114.3, 114.7, 119.6, 125.4, 126.4, 127.8, 127.4 (chalcone-C-7), 127.5, 128.5, 128.6,
129.4, 130.4 (pyrazole-C-5), 133.5, 136.4, 139.8 (pyrazole-phenyl-C-1), 145.2 (chalcone-C-6),
150.6 (pyrazole-C-3), 159.2, 165.4 (C’-4-OH), 166.8 (C’-2-OH), and 192.2 (C=O); ESI-MS
(m/z): 488.17 (M+). Analysis calculated for C31H24N2O4: C, 76.21; H, 4.95; and N, 5.73.
Found: C, 76.28; H, 4.88; and N, 5.76.

(E)-3-(3-(4-(benzyloxy)phenyl)-1-phenyl-1H-pyrazol-4-yl)-1-(3,4-dimethoxyphenyl)prop-
2-en-1-one (5o):
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Green solid, yield: 79%; m.p.: 206–208 ◦C; IR (KBr, cm−1): 3085 (CH aromatic), 2955
(CH aliphatic), 1730 (C=O), 1610 (C=N), 1596 (C=C), 1225 (OCH3), and 1265 (C-O); 1H
NMR (CDCl3, 500 MHz); δ (ppm): 3.96 (s, 6H, OCH3), 5.12 (s, 2H, CH2-benzyloxy), 6.91–
7.97 (m, 19H, aromatic H), 7.90 (d, 1H, CH=CH, Cis, J = 13 Hz), 7.7 (d, 1H, CH=CH,
J = 9 Hz), and 8.32 (s, 1H, CH of pyrazole); 13C NMR (CDCl3, 125 MHz): δ (ppm) 56.1
(C’-4-OCH3), 70.1 (benzyloxy-CH2), 109.9 (Pyrazole-C-4), 110.7, 115.2, 118.27, 119.33, 120.93,
122.79, 125.21, 126.83, 127.15, 127.52, 128.09, 128.68, 129.59 (Chalcone-C-7), 130.13, 131.36,
134.75 (pyrazole-C-5), 136.80, 139.50 (pyrazole-phenyl-C-1), 149.18 (chalcone-C-6), 151.15
(pyrazole-C-3), 153.51, 159.28 (C-4′-OCH3), and 188.25 (C=O); ESI-MS (m/z): 517.19 (M+).
Analysis calculated for C33H28N2O4: C, 76.73; H, 5.46; and N, 5.42. Found: C, 76.78; H, 5.40;
and N, 5.48.

(E)-3-(3-(4-(benzyloxy)phenyl)-1-phenyl-1H-pyrazol-4-yl)-1-(2,4-dimethoxyphenyl)prop-
2-en-1-one (5p):

Green solid, yield: 76%; m.p.: 226–228 ◦C; IR (KBr, cm-1): 3096 (CH aromatic), 2967
(CH aliphatic), 1738 (C=O), 1625 (C=N), 1563 (C=C), 1245 (OCH3), and 1272 (C-O); 1H
NMR (CDCl3, 500 MHz); δ (ppm): 3.73–3.75 (s, 6H, 2xOCH3), 5.17 (s, 2H, CH2-benzyloxy),
7.14 (d, 2H, Ar-H, J = 8.6 Hz), 7.35 (d, 2H, Ar-H, J = 8.1 Hz), 7.38 (s, 1H, Ar-H), 7.39–7.60
(m, 10H, Ar-H), 7.67 (d, 2H, Ar-H, J = 8.7 Hz), 7.99 (d, 1H, chalcone-H-7, J = 15.3 Hz), 8.36
(s, 1H, chalcone-H-6), and 8.54 (s, 1H. pyrazole-H); 13C NMR (CDCl3, 125 MHz): δ (ppm)
56.3 (C’-4-OCH3), 69.5 (benzyloxy-CH2), 113.4 (pyrazole-C-4), 113.7, 114.2, 119.6, 119.1,
125.6, 126.3, 127.3, 127.65 (chalcone-C-7), 127.2, 128.3, 128.5, 129.4, 130.4 (pyrazole-C-5),
130.8, 133.7, 136.4, 139.3 (pyrazole-phenyl-C-1), 145.5 (chalcone-C-6), 150.7 (pyrazole-C-3),
151.2 (C-3′-OCH3), 156.2 (C-4′-OCH3), 159.5, and 189.5 (C=O); ESI-MS (m/z): 516.20 (M+).
Analysis calculated for C33H28N2O4: C, 76.73; H, 5.46; and N, 5.42. Found: C, 76.75; H, 5.38;
and N, 5.45.

(E)-3-(3-(4-(benzyloxy)phenyl)-1-phenyl-1H-pyrazol-4-yl)-1-(2-bromo-4-methoxyphenyl)
prop-2-en-1-one (5q):

Off white solid, yield: 56%; m.p.: 174–176 ◦C; IR (KBr, cm−1): 3070 (CH aromatic),
2938 (CH aliphatic), 1765 (C=O), 1647 (C=N), 1588 (C=C), 1229 (C-OCH3), 1260 (C-O),
and 630 (C-Br); 1H NMR (CDCl3, 500 MHz); δ (ppm): 3.82 (s, 3H, OCH3), 5.13 (s, 2H,
CH2-benzyloxy), 7.14 (d, 2H, Ar-H, J = 7.1 Hz), 7.21 (s, 1H, Ar-H), 7.38 (d, 2H, Ar-H,
J = 6.4 Hz), 7.32–7.44 (m, 5H, Ar-H), 7.48 (s, 1H, Ar-H), 7.62 (d, 2H, Ar-pyrazole, J = 7.6 Hz),
7.64 (d, 2H, Ar-H, J = 7.6 Hz), 7.86 (d, 1H, chalcone-H-7, J = 15.5 Hz), 7.90 (d, 2H, Ar-H,
J = 7.6 Hz), 8.32 (d, 1H, chalcone-H-6, J = 16.4 Hz), and 8.43 (s, 1H. pyrazole-H); 13C NMR
(CDCl3, 125 MHz): δ (ppm) 56.3 (C’-4-OCH3), 69.5 (benzyloxy-CH2), 113.4 (pyrazole-C-4),
113.7, 114.2, 119.6, 119.1, 125.6, 126.3, 127.3, 127.65 (chalcone-C-7), 127.2, 128.3, 128.5, 129.4,
130.4 (pyrazole-C-5), 130.8, 133.7, 136.4, 139.3 (pyrazole-phenyl-C-1), 145.5 (chalcone-C-6),
150.7 (pyrazole-C-3), 151.2 (C-3′-OCH3), 156.2 (C-4′-OCH3), 159.5, and 189.5 (C=O); ESI-MS
(m/z): 525.17 (M+). Analysis calculated for C32H25 BrN2O3: C, 67.97; H, 4.46; amd N, 4.95.
Found: C, 68.02; H, 4.42; and N, 4.98.

(E)-3-(3-(4-(benzyloxy)phenyl)-1-phenyl-1H-pyrazol-4-yl)-1-(4-(trifluoromethyl)Phenyl)
prop-2-en-1-one (5r):

White buff solid, yield: 68%; m.p.: 186–188 ◦C; IR (KBr, cm−1): 3075 (CH aromatic),
2985 (CH aliphatic), 1760 (C=O), 1650 (C=N), 1520 (C=C), and 1265 (C-O), 780 (C-F);
1H NMR (CDCl3, 500 MHz); δ (ppm): 5.14 (s, 2H, CH2-benzyloxy), 7.17 (d, 2H, Ar-H,
J = 7.2 Hz), 7.36 (t, 1H, Ar-H, J = 7.3 Hz), 7.44–7.52 (m, 5H, Ar-H), 7.58 (d, 2H, Ar-H,
J = 7.5 Hz), 7.69 (d, 2H Ar-H, J = 8.4 Hz), 7.74 (d, 2H, Ar-H, J = 8.4 Hz), 7.80 (d, 2H, Ar-H,
J = 8.7 Hz), 7.88 (d, 1H, chalcone-H-7, J = 15.6 Hz), 7.92 (d, 2H, Ar-H, J = 8.6 Hz), 8.06
(d, 1H, chalcone-H-6, J = 15.76 Hz), and 8.34 (s, 1H, pyrazole-H); 13C NMR (CDCl3, 125
MHz): δ (ppm) 70.6 (benzyloxy-CH2), 113.1, 114.9, 119.8, 124.5 (C-F3), 125.4, 125.7, 126.2,
127.1, 127.4 (chalcone-C-7), 127.9, 128.5, 128.8, 129.4, 130.2 (C-2′), 130.3 (pyrazole-C-5), 136.4,
136.93 (C-4′), 139.8 (pyrazole-phenyl-C-1), 141.4, 145.7 (chalcone-C-6), 150.6 (pyrazole-C-3),
159.1, and 189.6 (C=O); ESI-MS (m/z): 554.17 (M++1). Analysis calculated for C32H23
F3N2O2: C, 73.27; H, 4.42; and N, 5.34. Found: C, 73.36; H, 4.36; and N, 5.42.
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3.2. Molecular Docking Simulation

The molecular docking study of the designed molecules was carried out to assess their
interaction and binding modes with the target receptors using Glide Extra precision (XP)
Maestro 10.1 Schrodinger running on the Linux 64 operating system [47]. The 2D structure
of the synthesized compounds was generated and then converted to their respective 3D
structures using Ligprep. The PDB file of the X-ray crystal structure of the tubulin domain
bound to colchicine (PDB ID:3E22) was downloaded from the RCSB Protein Data Bank. The
protein preparation wizard was used to prepare the protein and the grid was generated for
the co-crystal ligand using receptor grid generation. The water residues beyond 5 Å were
eliminated. The protein was optimized by assigning H-bonds and the minimization of the
OPLS 2005 force field. The docked pose of ligands and their interactions were analyzed
after the end of the molecular docking.

3.3. Biological Activity
3.3.1. In Vitro Anticancer Activity by MTT Assay
Materials and Methods

(3-(4,5-Dimethyl-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), Dulbecco’s modified
Eagle’s medium (DMEM), 0.25% trypsin, and 0.02% EDTA mixture were purchased from
HiMedia (Mumbai, India), and fetal bovine serum (FBS) was obtained from Gibco (Grand
Island, NY, USA).

Cell Line and Culture Conditions

Human cervical cancer cell line SiHa, human breast cancer cell line MCF-7, human
prostate cancer cell line PC-3, and human embryonic kidney HEK-293 cells were procured
from the National Centre for Cell Sciences (NCCS) Pune, India. In this experiment, antibi-
otics (100 units/mL penicillin and 100 mg L−1 streptomycin were grown as a monolayer
culture in Dulbecco’s modified Eagle’s medium containing 10% fetal bovine serum) were
cultured in a humidified atmosphere of 5% CO2 at 37 ◦C in T-75 flasks and subcultured
twice a week.

In Vitro Cytotoxicity

The cytotoxic effects of the selected compounds were evaluated by MTT assay [48]
on the above-mentioned cell lines. Initially, 2 × 104 cells/well were seeded into 96-well
plates (150 µL/well) in triplicates and allowed to grow. The cells were incubated for 24 h
and subsequently treated with varying concentrations of the compounds. After 48 h, the
cells were incubated with 20 µL of MTT (5 mg/mL in PBS) in a fresh medium for 4 h at
37 ◦C. MTT is a metabolic substrate that is reduced to give formazan crystals, which were
solubilized in DMSO (150 µL/well) and analyzed by reading the absorbance at 540 nm
after 15 min of the incubation period on the iMark Microplate Reader (Bio-Rad). Percentage
viability and IC50 values were used to determine the relative absorbance of treated versus
control (untreated) cells.

3.3.2. In Vitro Tubulin Polymerization Assay

Tubulin polymerization is a dynamic process by enhancement of fluorescence intensity
due to the combination of a fluorescent reporter into the microtubules as polymerization
occurs [49]. Tubulin polymerization was performed by using a purified brain tubulin
polymerization kit purchased from Cytoskeleton (BK110P, Denver, CO, USA). The tubulin
polymerization assay was monitored by the increase in fluorescence over a 60 min period at
37 ◦C, with excitation at 360 nm and emission at 450 nm. The final buffer concentration for
tubulin polymerization contained 80 mM PIPES, pH 6.9; 2 mM MgCl2; 0.5 mM EGTA; 1µM
GTP; and 15% glycerol. Firstly, 5 µL of the test compounds (final concentration of 10 µM)
was added and then warmed to 37 ◦C for 1 min. The reaction was initiated by adding 50 µL
of the tubulin reaction mix as specified for 6 min.
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3.3.3. In Silico Bioactivity Study

All newly synthesized derivatives were screened for their physicochemical properties,
oral bioavailability, toxicity, and online biological activity by using online software such as
Molinspiration, Osiris Property Explorer, and the PASS prediction study. Hydrophobicity
(c-log P), molecular weight (MW), number of rotatable bonds (NROTB) of Lipinski’s rule
of five [33], water solubility (c-log S), toxicity [35], and drug-likeness [34] were calculated
using the online Molinspiration property calculation toolkit and online OSIRIS Property
explorer. With the help of Osiris Property Explorer software, the toxicities of the synthesized
derivatives were predicted, which showed that the newly synthesized compounds would
be free of carcinogenicity, mutagenicity, reproductive adverse effects, and irritation. All
these derivatives were also projected for their pharmacological activity by using the online
PASS computer program (prediction of activity spectra for substances).

3.4. Statistical Analysis

Statistical analyses were performed using Graph Pad Prism 5 software. All data were
analyzed by ANOVA, followed by Dunnett’s multiple comparison test for n = 6; (a) p < 0.05
and (b) p < 0.001. Relative to normal and data were analyzed by paired Student’s t-test for
n = 6; (c) p < 0.0001 and (d) p < 0.005.

4. Conclusions

A series of E-3-(3-(4-(benzyloxy)phenyl)-1-phenyl-1H-pyrazol-4-yl)-1-phenylprop-2-
en-1-one conjugates were synthesized, characterized, and evaluated for anticancer potential
and tubulin polymerization inhibition. The conjugates 5d, 5k, 5n, 5o, and 5p revealed po-
tent cytotoxic activities against MCF-7 (human breast), SiHa (human cervical), PC-3 (human
prostate), and non-cancerous cell lines using combretastatin A4 as the standard. Compound
5o displayed the most potent cytotoxic activity with the IC50 value of 2.13 ± 0.80 µM for
the MCF-7 cancer cell line. Furthermore, compound 5o considerably arrested the cell cycle,
induced apoptosis in a dose-dependent manner, and inhibited polymerization of tubulin
by 66.40%. Molecular docking studies of compound 5o (highest docking score of −7.22)
showed that the colchicine-binding site of tubulin established promising interactions with
ASN 249, ALA 250, LYS 254, SER 178, and TYR 224, and pi-cation interaction with LYS 352
in the active site of tubulin. The in silico bioactivity study and PASS prediction studies
exposed that most of the synthesized compounds displayed excellent physicochemical
properties within the ideal range. These results established that compound 5o is a newer
tubulin polymerization inhibitor and is commendable of advanced investigation in the
future, directing to the progress of newer potential anticancer agents. Therefore, these
conjugates can further be structurally modified to promote a new potential target for the
optimization and development of anticancer agents.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ph15030280/s1, Figure S1: 1H NMR of (E)-3-(3-(4-(benzyloxy)phenyl)-1-phenyl-1H-pyrazol-4-
yl)-1-(3,4-dimethoxyphenyl)prop-2-en-1-one; Figure S2: 13C NMR of (E)-3-(3-(4-(benzyloxy)phenyl)-1-
phenyl-1H-pyrazol-4-yl)-1-(3,4-dimethoxyphenyl)prop-2-en-1-one; Figure S3: 1H NMR of (E)-3-(3-(4-
(benzyloxy)phenyl)-1-phenyl-1H-pyrazol-4-yl)-1-(3,4-dimethoxyphenyl)prop-2-en-1-one; Figure S4:
13C NMR of (E)-3-(3-(4-(benzyloxy)phenyl)-1-phenyl-1H-pyrazol-4-yl)-1-(3,4-dimethoxyphenyl)prop-
2-en-1-one; Figure S5: Mass spectra of (E)-3-(3-(4-(benzyloxy)phenyl)-1-phenyl-1H-pyrazol-4-yl)-
1-(3,4-dimethoxyphenyl)prop-2-en-1-one; Figure S6: 1H NMR of (E)-3-(3-(4-(benzyloxy)phenyl)-
1-phenyl-1H-pyrazol-4-yl)-1-(4-bromophenyl)prop-2-en-1-one; Figure S7: 1H NMR of (E)-3-(3-(4-
(benzyloxy)phenyl)-1-phenyl-1H-pyrazol-4-yl)-1-(4-bromophenyl)prop-2-en-1-one; Figure S8: 13C
NMR of (E)-3-(3-(4-(benzyloxy)phenyl)-1-phenyl-1H-pyrazol-4-yl)-1-(4-bromophenyl)prop-2-en-1-one;
Figure S9: Mass spectra of (E)-3-(3-(4-(benzyloxy)phenyl)-1-phenyl-1H-pyrazol-4-yl)-1-(4-bromophenyl)
prop-2-en-1-one; Figure S10: 1H NMR of (E)-3-(3-(4-(benzyloxy)phenyl)-1-phenyl-1H-pyrazol-4-
yl)-1-(4-methoxyphenyl)prop-2-en-1-one; Figure S11: 13C NMR of (E)-3-(3-(4-(benzyloxy)phenyl)-
1-phenyl-1H-pyrazol-4-yl)-1-(4-methoxyphenyl)prop-2-en-1-one; Figure S12: 1H NMR of (E)-3-(3-
(4-(benzyloxy)phenyl)-1-phenyl-1H-pyrazol-4-yl)-1-(4-methoxyphenyl)prop-2-en-1-one; Figure S13:
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13C NMR of (E)-3-(3-(4-(benzyloxy)phenyl)-1-phenyl-1H-pyrazol-4-yl)-1-(4-methoxyphenyl)prop-2-
en-1-one; Figure S14: Mass spectra of (E)-3-(3-(4-(benzyloxy)phenyl)-1-phenyl-1H-pyrazol-4-yl)-1-(4-
methoxyphenyl)prop-2-en-1-one; and Figure S15: Effect of lead conjugates 5d, 5e, 5i, 5k, 5l, 5m, 5n,
5o, 5p, and 5r on tubulin polymerization. Tubulin polymerization was monitored by the increase in
fluorescence at 360 nm (excitation) and 420 nm (emission) for 1 h at 37 ◦C. Combretastatin A-4 was
used as the reference standard in this study.
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