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ARTICLE INFO ABSTRACT

Keywords: Chronic exposure of human bronchial epithelial BEAS-2B cells to hexavalent chromium (Cr(VI)) causes malignant
Cr(VD cell transformation. These transformed cells exhibit increases in migration and invasion. Neuronal precursor of
M.EG?’ developmentally downregulated protein 9 (NEDD9) is upregulated in Cr(VI)-transformed cells compared to that of
zg;;gs passage-matched normal BEAS-2B cells. Knockdown of NEDD9 by its shRNA reduced invasion and migration of
Invasion Cr(VD)-transformed cells. Maternally expressed gene 3 (MEG3), a long noncoding RNA, was lost and microRNA
Migration 145 (miR-145) was upregulated in Cr(VI)-transformed cells. MEG3 was bound to miR-145 and this binding

reduced its activity. Overexpression of MEG3 or inhibition of miR-145 decreased invasion and migration of
Cr(VID)-transformed cells. Overexpression of MEG3 was able to decrease miR-145 level and NEDD9 protein level in
Cr(VD)-transformed cells. Ectopic expression of MEG3 was also shown to reduce p-catenin activation. Inhibition of
miR-145 in Cr(VD)-transformed cells decreased Slug, an important transcription factor that regulates epithelial-to-
mesenchymal transition (EMT). Inhibition of miR-145 was found to increase MEG3 in Cr(VI)-transformed cells.
Further studies showed that mutation of MEG3 at the binding site for miR-145 did not change NEDD9 and failed
to decrease invasion and migration. The present study demonstrated that loss of MEG3 and upregulation of miR-
145 elevated NEDD9, resulting in activation of p-catenin and further upregulation of EMT, leading to increased

invasion and migration of Cr(VI)-transformed cells.

1. Introduction

Hexavalent chromium (Cr(VI))-containing compounds are carcino-
genic [1,2,3,4,5,6,7,8,9,10,11]. Environmental exposure to Cr(VI) is
associated with lung carcinogenesis [10]. The International Agency for
Research on Cancer (IARC) classifies Cr(VI) compounds as an established
human carcinogen [11]. It has been reported that chronic exposure of
normal cells to Cr(VI) at low doses can cause malignant cell trans-
formation [12]. These transformed cells exhibit phenotypes of cancer
cells, such as resistance to apoptosis [13,14], rapid cell proliferation/-
growth [15], and tumor growth in vivo [13,14].

Neural precursor cell expressed developmentally down-regulated
protein 9 (NEDD9), the CRK-associated substrate (CAS) family of
adaptor proteins [16,17], is a multidomain scaffolding protein. NEDD9
upregulation has been linked to the progression of various cancers
including lung [18], breast [19], melanoma [20], liver [21], pancreatic
[22], prostate [23], and colon [24]. Cancer cells acquire
epithelial-mesenchymal transition (EMT), resulting in the acquisition of
metastatic ability [25]. During an EMT, epithelial cells express the
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mesenchymal markers and increase motility and invasiveness [26]. It has
been reported that NEDD9 promotes EMT [27] and mesenchymal
protease-dependent migration [28].

Maternally expressed gene 3 (MEG3), a noncoding IncRNA, is
expressed in normal tissues but is downregulated or lost in various
human tumor tissues. MEG3 is associated with cancer initiation, pro-
gression, and metastasis [29]. Studies have shown that MEG3 regulates
p53, retinoblastoma protein (RB), Myc, and transforming growth factor
(TGF-p), leading to inhibition of proliferation and invasion of cancer cells
[30, 31, 32]. MEG3 gene expression is turned off by DNA methyl-
transferases (DNMTs) which methylates its promoter. It has been re-
ported that MEG3 regulates cell proliferation, apoptosis, and
angiogenesis by sequestering miRNAs [33]. In turn, these miRNAs sup-
press the translation of mRNAs.

IncRNA, a competing endogenous RNA (ceRNA), is associated with
the initiation and progression of various diseases, including cancers [34,
35]. MEG3 acts as a ceRNA of the PH domain and leucine-rich repeat
protein phosphatase 2 (PHLPP2) in competing with miR-27a, thus pro-
moting PHLPP2 protein translation, resulting in inhibition of invasion of
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bladder cancer cells and lung metastasis [36]. The mechanism of invasion
or migration of Cr(VI)-transformed cells remains largely unknown. The
present study investigated the mechanisms of NEDD9 as a key mediator
linking MEG3/miR-145 signaling in the invasion and migration of
Cr(VI)-transformed cells.

2. Materials and methods
2.1. Reagents

Sodium dichromate dihydrate (NapCrpO7) was from Sigma (St Louis,
MO, USA). Dulbecco’s Modified Eagle Medium (DMEM) and F12/K were
purchased from Fisher Sci (Waltham, MA). Transfection reagent PolyJet was
purchased from SignaGen Laboratories (Rockville, MD). Primary antibodies
against NEDD9, Slug, non-p-f-catenin, and f-catenin, and secondary anti-
bodies against mouse and rabbit were purchased from Cell Signaling Inc
(Beverly, MA, USA). GAPDH antibody was purchased from Gentex Corpo-
ration (Irvine, CA, USA). SuperScript first-strand synthesis kit was purchased
from Invitrogen (Waltham, MA, USA). miRScript PCR kit was purchased
from Qiagen (Hilden, Germany). PowerUP SYBR green master mix was
purchased from Applied Biosystems (Waltham, MA). A Dual-Luciferase
Assay kit was purchased from Promega (WI, USA). ECF substrate for West-
ern blot was purchased from GE Healthcare (Pittsburgh, PA, USA).

2.2. Plasmids

The full-length human MEG3 sequences (NR_002766) were synthe-
sized and subcloned into the pEGFP-C1 vector (Clontech, Palo Alto, CA,
USA) as described previously [37]. The miR-145 binding site mutation of
the MEG3 expressing vector (MEG3/miR-145 mt) was constructed using
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a site-directed mutagenesis kit (Agilent Tech, TX, USA) following
manufactory instruction. Primers for the construct are followed. MEG3-F:
GGCATGGACGAGCTGTACAAG, MEG3-R: GAGCGAGTCAGGAAGCAGT;
MEG3 mt-S: TCACCTGCTAGCAAACTCCAGTGTTTCCCTCCCCAA, MEG3
mt-A:  TTGGGGAGGGAAACACTGGAGTTTGCTAGCAGGTGA. MEG3
shRNA and its control vector were kindly provided by Dr. Shau-Ping Lin
(Institute of Biotechnology, National Taiwan University, Taipei, Taiwan).
NEDD9 shRNA plasmids and control vector were purchased from
Addgene (Cambridge, MA, USA). miR-145 inhibitor plasmid and its
control vector were purchased from GeneCopoeia (Rockville, MD).
Human miR-145 promoter (from —1548 to —30) was cloned into the
pGL3-basic luciferase reporter as previously reported [38].

2.3. Cell culture, stably expressing cells, and Cr(VI)-transformed cells

Both human bronchial epithelial cells (BEAS-2B) and human adeno-
carcinoma alveolar basal epithelial cells (A549) were from ATCC. BEAS-
2B cells were cultured in DMEM medium with 10% FBS and A549 cells
were cultured in F12/K medium with 10% FBS. The cells were split when
reaching 90% confluent. For the establishment of stable expression cells,
the cells were transfected with 2 pg plasmid DNA in each well of a six-
well plate followed by antibiotics G418 or puromycin selection for at
least one month. The verification of gene expression was carried out by
immunoblotting or real-time qPCR analysis.

BEAS-2B cells were exposed to a low dose (0.1 pM) of NayCry05 for 6
months. The cells were split twice a week and fresh culture media was
added. After 6 months, a Soft Agar assay was performed. Single colonies
from soft agar were isolated and expanded in tissue culture. These cells
were considered Cr(VI)-transformed cells. Passage-matched BEAS-2B
cells without Cr(VI) exposure were used as control.
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Figure 1. Increased invasion and migration and upregulation of NEDD9 in Cr(VI)-transformed cells. Normal human bronchial epithelial (BEAS-2B) cells were
chronically exposed to a low dose of Cr(VI) for 6 months. A cell transformation (Soft agar) assay was performed. Single colonies from the cell transformation assay
were isolated and expanded in culture. These cells were used as Cr(VI)-transformed cells (CrT). Passage-matched normal BEAS-2B cells without exposure to Cr(VI)
were used as control (CrT-M). (A) Both invasion and migration were determined using a transwell assay. Images represent one of three images captured in each group.
The numbers of cells in invasion and migration were counted. (B) and (C), Whole protein lysates from Cr(VI)-transformed cells (CrT), passage-matched normal BEAS-
2B cells (CrT-M), BEAS-2B cells, and A549 cells were harvested for immunoblotting analysis. (D) RNAs were isolated to determine NEDD9 mRNA levels using real-time
PCR. (E) Both CrT-M and CrT cells were treated with MG132 or cycloheximide or their combination for 6 h. The whole-cell lysates were harvested for the deter-
mination of NEDD9 levels using immunoblotting analysis. (F) BEAS-2B cells with stable overexpression or knockdown of MEG3 were established. The cells were
exposed to Cr(VI) at 0.05 and 0.1 pM for 6 months. Whole-cell lysates were harvested for immunoblotting analysis. *, p < 0.05, compared to that in passage-matched

normal BEAS-2B cells (CrT-M).
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2.4. Immunoblotting analysis

The cells were cultured in 6-well plates. After 90% confluence, the
cells were washed with PBS and then lysed using a boiling buffer. The
whole-cell lysates were sonicated. Protein concentrations were
measured. Proteins were separated by SDS-PAGE gels followed by incu-
bation with primary antibodies overnight. The blots were then probed
with secondary antibodies. Proteins were visualized using ECF substrate.

2.5. Real-time gPCR

RNA was extracted and purified using Qiagen RNeasy mini kit. cDNA
for MEG3 and NEDD9 mRNA was synthesized using a SuperScript first-
strand synthesis kit. cDNA for miR-145 was synthesized using a miR-
Script PCR kit. Primers were designed using Primer-Blast with forward
sequence (F) and reverse (R) as followed: NEDD9: F-GATGGGTGTCTC-
CAGCCTAA, R-GGATCTGGTGGGAGTCTTCA; MEG3: F-
AGACCCGCCCTCTGACTGAT, R-AGGAGCCCACTTCCCACA; GAPDH: F-
AGAAGGCTGGGGCTCATTTG, R-AGGGGCCATCCACAGTCTTC; miR-
145-5p: GTCCAGTTTTCCCAGGAATCCCT. Levels of MEG3 and NEDD9
mRNA were measured using PowerUp SYBR Green master mix and
GAPDH as a control. The miR-145 level was measured using a miScript
PCR kit and U6 as a control. The value of cycle threshold (CT) was
examined. Data were analyzed by calculation of AACT.

2.6. Invasion and migration assays

The invasion assay was conducted using the Biocoat Matrigel Inva-
sion Chambers (Corning, NY) according to the manufacturer’s in-
structions. Migration assay was conducted using chamber inserts
(Corning, NY). Cells were seeded in the chamber inserts at a density of
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1.0-2.0 x 10* per well in 500 pL medium (0.1% FBS). The inserts were
placed into the wells with 700 pL culture medium (10% FBS). After 48 h,
the cells were washed with PBS, fixed with 3.7% formalin and methanol
followed by Giemsa staining. The images were captured using an
Olympus microscope. The number of invaded and migrated cells were
counted and recorded.

2.7. Luciferase assay

The cells were transfected with a miR-145 luciferase reporter. After
48 h, the cells were washed with PBS. Luciferase activity was measured
using the Dual-Luciferase Assay kit according to the manufacturer’s
protocol. The Renilla luciferase transfection control was used for
normalization.

2.8. Statistical analysis

The student’s test was used to evaluate the difference between the
two groups. A value of p < 0.05 was considered significant.

3. Results

3.1. Cr(VD-transformed cells exhibit increased invasion and migration as
well as upregulation of NEDD9 expression

The results from migration and invasion assays showed that both in-
vasion and migration were increased in Cr(VI)-transformed cells (CrT)
compared to passage-matched normal BEAS-2B cells (CrT-M) (Figure 1A).
Epithelial-mesenchymal transition (EMT) was associated with increased
invasion and migration of cancer cells. During the EMT process, cancer cells
lose epithelial markers, such as E-cadherin, and activate -Catenin. The
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Figure 2. Knockdown of NEDD9 reduces invasion and migration in both Cr(VI)-transformed cells and human A549 lung adenocarcinoma cells. Stable knockdown of
NEDD9 by using its shRNA was established in CrT and A549 cells. (A) and (C) The cells were collected for invasion and migration assays. Images represent one of three
images captured in each group. The total cell numbers of invasion and migration were counted. (B) and (D) The whole-cell lysates from Cr(VD)-transformed cells and
A549 cells with or without knockdown of NEDD9 were harvested for immunoblotting analysis. *, p < 0.05, compared to that scramble cells.



Z. Zhang et al.

results of the present study showed that E-Cadherin was lost and p-Catenin
was activated in Cr(VI)-transformed cells (Figure 1B). EMT is regulated by
transcription factors, one of them is zinc finger protein SNAI2 (Slug) [26].
Slug represses the expression of E-cadherin [26]. Slug protein level was
elevated in Cr(VI)-transformed cells (Figure 1B). NEDD9 has been identi-
fied as a metastatic marker. The results showed that both mRNA and pro-
tein levels of NEDD9 were elevated in Cr(VI)-transformed cells (Figure 1C
and 1D). Treatment of cells with cycloheximide (CHX), a protein synthesis
inhibitor, markedly reduced NEDD9 (Figure 1E). In contrast, treatment of
cells with MG132, a proteasome inhibitor, increased NEDD9 (Figure 1E).
Stable overexpression or knockdown of MEG3 was established in BEAS-2B
cells. Those cells were chronically exposed to low doses of Cr(VI) for 6
months. The results showed that exposure of BEAS-2B cells to Cr(VI) at 0.05
or 0.1 pM was able to increase the NEDD9 protein level (Figure 1F).
Overexpression of MEG3 blocked the increase in NEDD9 induced by Cr(VI)
(Figure 1F). In contrast, knockdown of MEG3 caused a greater increase of
NEDD9 compared to cells harboring a control vector (Figure 1F). Over-
expression of MEG3 appeared to reduce p-Catenin activation compared to
the scramble controls (Figure 1F). The reduction of activated p-Catenin
occurred in the cells with or without Cr(VI) exposure. However, no sig-
nificant changes in activated f-Catenin were observed in BEAS-2B cells
with MEG3 knockdown (Figure 1F). To demonstrate the increase of NEDD9
in Cr(VI)-transformed cells is not cell-type specific, A549 cells, well-known
lung cancer cells were used to measure the NEDD9 level. The results from
Figure 1C and 1D showed that both mRNA and protein levels of NEDD9 in
A549 cells were increased compared to those in BEAS-2B cells.

3.2. NEDDS9 is a positive regulator of invasion and migration in Cr(VI)-
transformed cells

To study whether upregulation of NEDD9 plays an important role in the
increased invasion and migration of Cr(VI)-transformed cells, stable
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knockdown of NEDD9 by its shRNA in Cr(VI)-transformed cells was
established. The results showed that knockdown of NEDD9 reduced both
invasion and migration of Cr(VI)-transformed cells (Figure 2A). Further
study showed that knockdown of NEDD9 decreased Slug level (Figure 2B).
It has been reported that p-catenin activation upregulates EMT [39]. The
results of the present study showed that knockdown of NEDD9 in
Cr(VI)-transformed cells decreased p-catenin activation (Figure 2B). To
verify the above observations in Cr(VI)-transformed cells, A549 cells with
stable knockdown of NEDD9 were established. The results showed that
knockdown of NEDD9 decreased invasion and migration of A549 cells
(Figure 2C), p-catenin activation, and Slug protein level (Figure 2D).

3.3. MEG3 is a negative regulator of invasion and migration in Cr(VI)-
transformed cells

Maternally expressed 3 (MEG3), imprinted long non-coding RNA
gene, is often lost in cancer cells. The results from Figure 3A showed that
exposure of BEAS-2B cells to Cr(VI) at 2.5 and 5.0 pM up to 12 h
decreased MEG3 expression. Furthermore, MEG3 was lost (reduced by
99.9999%) in Cr(VI)-transformed cells (CrT) compared to that in
passage-matched normal BEAS-2B cells (CrT-M) (Figure 3B). To explore
whether loss of MEG3 is important in the invasion and migration of
Cr(VI)-transformed cells, stable expression of MEG3 was established and
MEGS3 expression was measured (Figure 3C). The results showed that
overexpression of MEG3 reduced both invasion and migration of Cr(VI)-
transformed cells (Figure 3D), indicating that MEG3 is important in the
invasion and migration of Cr(VI)-transformed cells. To test whether
MEGS3 itself is sufficient to regulate invasion and migration, normal
BEAS-2B cells with stable knockdown of MEG3 were subjected to inva-
sion and migration assays. MEG3 expressions were determined to
confirm the success of these engineered cells (Figure 3E). Knockdown of
MEGS3 increased invasion and migration of BEAS-2B cells (Figure 3F),
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Figure 3. MEG3 negatively regulates invasion and migration of Cr(VI)-transformed cells. (A) BEAS-2B cells were exposed to various doses of Cr(VI) for 12 h. RNA was
isolated for the measurement of MEG3 levels using real-time PCR analysis. *, p < 0.05, compared to without Cr(VI) exposure. (B) RNA was isolated from CrT-M and
CrT cells. Real-time PCR was performed to measure MEG3 levels. *, p < 0.05, compared to that in passage-matched normal BEAS-2B cells (CrT-M). (C) and (D) Stable
expression of MEG3 in CrT cells was established. The cells were harvested for the measurement of MEG3 levels using real-time PCR (C) and invasion and migration
assays (D). *, p < 0.05, compared to that in scramble cells. (E) and (F) BEAS-2B cells with stable knockdown of MEG3 were subjected to measurement of MEG3 levels
using real-time PCR analysis (E), and invasion and migration assays (F).. For those invasion and migration assays, the images represent one of three captured in each
group. The total cell numbers of invasion and migration were counted, and relative invasion and migration were presented as mean + SD (Right). *, p < 0.05,

compared to that in scramble cells.
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consistent with the results observed in Cr(VI)-transformed cells. Taken
together, these results suggest that MEG3 was a negative regulator of
invasion and migration.

3.4. MEGS3 negatively regulates NEDD9 in Cr(VI)-transformed and A549
cells

NEDD9 was upregulated in Cr(VI)-transformed cells (Figure 1C and
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Cr(VID)-transformed cells (Figure 2A). The results from Figure 3D
showed that overexpression of MEG3 reduced invasion and migration
in Cr(VI)-transformed cells. We hypothesized that MEG3 may regulate
NEDD9. Our results showed that MEG3 did not change NEDD9 mRNA
levels in Cr(VI)-transformed cells or A549 cells (Figure 4A and 4B), but
it reduced NEDD9 protein levels in these two types of cells (Figure 4C).
Furthermore, MEG3 decreased activated f-catenin (Figure 4D). These
results indicated that MEG3 was an upstream regulator of NEDD9 and
p-catenin.
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CrT cells with or without MEG3 overexpression or with or without expression of MEG3/miR-145 mt were transfected with a miR-145 luciferase reporter. After 48 h,
cells were harvested, and luciferase activities were measured. (E), (G), and (I), *, p < 0.05, compared to that in scramble cells. (H), *, p < 0.05, compared to that in

passage-matched normal BEAS-2B cells.

3.5. Inhibition of miR-145 reduces NEDD9 and invasion and migration in
Cr(VD-transformed cells

miR-145 plays an important role in tumorigenesis and metastasis of
various cancers [40]. miR-145 expression was assessed in
Cr(VI)-transformed cells. The results showed that miR-145 was elevated
in Cr(VI)-transformed cells compared to that in passage-matched normal
BEAS-2B cells (Figure 5A). To further examine whether upregulation of
miR-145 contributes to the increased migration and invasion in
Cr(VI)-transformed cells, a plasmid of miR-145 inhibitor was transfected
into Cr(VI)-transformed cells followed by antibiotics selection to
construct a cell that stably expresses an inhibitor of miRNA-145. The
results from Figure 5B showed that miR-145 levels were lowered by 60%
with the miR-145 inhibitor compared to the scramble control. Inhibition
of miR-145 in Cr(VI)-transformed cells reduced NEDD9 mRNA and pro-
tein levels (Figure 5C and 5F). Decreased both Slug and p-Catenin acti-
vation were also observed in the Cr(VI)-transformed cells with stable
expression of miR-145 inhibitor (Figure 5F). Similarly, A549 cells with
stably expressing miR-145 inhibitor were also established and miR-145
levels were verified (Figure 5D). Similar results as those in
Cr(VI)-transformed cells were obtained in A549 cells (Figure 5E and 5G).
Not surprisingly, inhibition of miR-145 in Cr(VID)-transformed cells
reduced invasion and migration (Figure 5H). These results demonstrated
that miR-145 positively regulated NEDD9 and invasion and migration of
Cr(VI)-transformed cells.

3.6. MEGS3 negatively regulates miR-145 and miR-145 feedbacks to MEG3

In Cr(VI)-transformed cells, MEG3 was lost (Figure 3B) and miR-145
was upregulated (Figure 5A). Overexpression of MEG3 decreased miR-

145 level in both Cr(VI)-transformed cells (CrT) and their passage-
matched normal BEAS-2B cells (CrT-M) (Figure 6A). Consistent with
these findings, the knockdown of MEG3 in BEAS-2B cells elevated the
miR-145 level (Figure 6B), while overexpression of MEG3 decreased it
(Figure 6C). These results demonstrated that MEG3 negatively regulates
miR-145. A binding site of MEG3 on miR-145 located between 468 and
475 nucleotides of MEG3 was identified using miRcode, miRWalk, and
TargetScan database (Figure 6D). A plasmid with two points mutation at
the MEG3 binding site was constructed. To confirm the success of the
construct, stable expression of MEG3 mutant in Cr(VI)-transformed cells
was established, and MEG3 and miR-145 expressions were measured.
The results showed that the presence of this mutation (MEG3/MiR-145
mt) in Cr(VI)-transformed cells increased MEG3 but had no effect on miR-
145 (Figure 6E and 6F). In an additional experiment, miR-145 luciferase
activity was determined. The results showed that miR-145 luciferase
activity was increased in Cr(VI)-transformed cells compared to that in
passage-matched normal BEAS-2B cells (Figure 6H). Overexpression of
MEG3 reduced the miR-145 luciferase activity (Figure 6I). The miR-145
luciferase activities remained in a similar level in Cr(VI)-transformed
cells with or without overexpression of MEG3/miR-145 mt (Figure 6J).
These results suggest that the regulation of MEG3 by miR-145 was
through its binding to miR-145. Interestingly, inhibition of miR-145
dramatically increased MEG3 level in Cr(VD)-transformed cells
(Figure 6G), demonstrating that miR-145 fed back to increase MEG3.

3.7. MEGS3 regulates invasion and migration through miR-145

To study whether MEG3-regulated invasion and migration were
mediated by miR-145, stable expression of MEG3/miR-145 mt in Cr(VI)-
transformed cells were established. The results showed that



Z. Zhang et al.

A ) Migration
P o

o
Qo
E
s
(8]
w

':i =

ol E
0
3
!i ¥
E
™
@ 1
[T
s

§15 § 15

8§12 g;;

E 09 =0

S 06 T 06

o 0.3 O 03

s s
0.0 0.0

(4 = Z (4 .

% £
% 3 %
% %,
o N
Zz
kS
%

overexpression of MEG3/miR-145 mt was unable to alter the invasion or
migration of Cr(VI)-transformed cells (Figure 7A). NEDD9 protein or
mRNA level remained similar in Cr(VI)-transformed cells with or without
overexpression of MEG3/miR-145 mt (Figure 7B and 7C), indicating that
MEGS3 regulated NEDD9 and invasion and migration through its binding
to miR-145.

4. Discussion

Cr(VI) compounds are confirmed human carcinogens. While re-
searchers have made great progress in understanding Cr(VI) carcino-
genesis, the mechanisms of invasion and migration in Cr(VI)-transformed
cells remain unclear. Previous studies have demonstrated that Cr(VI)-
transformed cells are tumorigenic [14,41]. The present study investi-
gated (a) invasion and migration in Cr(VI)-transformed cells and (b) the
mechanisms in these processes. This study provided new insights into
exploring the invasion and migration of Cr(VI)-transformed cells by
focusing on MEG3/miR145/NEDDS9 signaling pathways.

NEDD?9, a member of the Cas protein family, has been reported to be a
metastasis marker in various cancers, including lung [18]. Our results
showed both mRNA and protein levels of NEDD9 were elevated in
Cr(VI)-transformed cells. MG132, a proteasomal inhibitor, and cyclo-
heximide, an proteinase inhibitor, were used to treat the
Cr(VD-transformed cells. The results further confirm that upregulation of
NEDD9 occurred at the transcriptional level. Knockdown of NEDD9
decreased invasion and migration in Cr(VI)-transformed cells, suggesting
that NEDD9 plays an important role in the aggressiveness of
Cr(VD)-transformed cells.

Mesenchymal and amoeboid invasion are major mechanisms of in-
vasion and migration in cancer cells [42]. Previous studies indicated that
NEDD9 regulated mesenchymal migration by acting as a scaffolding
protein to pull cells through the extracellular matrix [42]. The results
from the present study showed that p-catenin was activated in
Cr(VI)-transformed cells, and that knockdown of NEDD9 by its sShRNA
decreased B-catenin activation, indicating that NEDD9 is a positive
regulator of f-catenin. p-catenin expression was increased in EMT.
Canonically, phosphorylated B-catenin is associated with APC, Axin, CK1,
PP2A, GSK-3, and B-TrCP, causing proteasomal degradation of p-catenin
[43]. In many types of cancers where Wnt signaling was activated,
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Figure 7. MEG3/miR-145 axis plays an important
role in the migration and invasion of Cr(VI)-
transformed cells. (A) Cr(VI)-transformed cells (CrT)
with or without overexpression MEG3/miR-145 mt
were subjected to invasion and migration assays. Im-
ages represent one of three images captured in each
group. The total cell numbers of invasion and migra-
tion were counted. The relative invasion and migra-
tion were presented as mean + SD. (B) Whole protein
lysates were isolated in Cr(VI)-transformed cells (CrT)
with or without overexpression of MEG3/miR-145 mt.
Immunoblotting was used to determine the NEDD9
protein level. (C) RNA was isolated in Cr(VI)-
transformed cells (CrT) with or without over-
expression of MEG3/miR-145 mt. Real-time PCR was
used to measure NEDD9 mRNA level.

non-phosphorylated p-catenin (active form) stimulated the expression of
genes associated with the T-cell factor (TCF)/lymphoid enhancer factor
(LEF), particularly EMT [44]. In normal epithelial cells, Slug transcrip-
tion is low, resulting in high expression of E-cadherin, which allows the
formation of epithelial adherent junctions. During the process of EMT,
the loss of E-cadherin, which is caused by increased Slug expression, is an
early and crucial step. The present study observed that EMT marker Slug
was upregulated and that E-Cadherin was lost in Cr(VI)-transformed cells
compared to passage-matched normal cells. Knockdown of NEDD9 in
Cr(VI)-transformed cells decreased Slug level. E-Cadherin complexes
with f-Catenin in normal cellular adhesion junctions [45]. When
E-Cadherin was lost, f-Catenin was released and activated Wnt signaling
associated with cancer survival and migration [45]. Cr(VI)-transformed
cells exhibited decreased E-Cadherin and increased active
non-phosphorylated f-Catenin, indicating that loss of E-Cadherin likely
promoted fB-Catenin release and facilitated EMT. Taken together, these
observations suggested that activation of p-catenin, a transcription factor
with TCF/LEF for transcription of Slug in p-Catenin driven EMT, plays an
important role in the invasion and migration of Cr(VI)-transformed cells.

miRNAs, short noncoding RNAs, are encoded in protein-coding
transcription units or are generated from noncoding transcription units.
miRNA loci are located in the intron regions and exon regions of non-
coding transcripts and protein-coding transcription units. One of the
largest miRNA clusters is located in the DLK1/MEG3 imprinted region,
which is exclusively controlled by MEG3 [46]. The canonical mechanism
of miRNAs regulation on gene expression is through their binding to the
3’ untranslated region (UTR) of their target genes. Non-canonical
mechanisms include (a) binding to the open reading frame or 5-UTR
of the target genes, causing downregulation or upregulation of the target
genes [47]; (b) direct binding to the DNA [48,49], regulating gene
expression at the transcriptional level; and (c) binding to ribonucleo-
proteins, interfering with the RNA binding function [50].

miRNAs play an important role in the developmental processes
including neuronal cell fate, metabolism, cell proliferation, and apoptosis
[51]. miRNAs act as tumor suppressors or oncogenes in cancer biology
[52]. miR-145, located on chromosome 5q, is involved in multiple
human cancers. Downregulation of miR-145 was observed in colorectal
cancer [53,54], non-small-cell lung cancer [55], breast cancer [56],
cervical cancer [57], prostate cancer [58], glioma [59], and bladder
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cancer [60]. In the contrast, miR-145 was upregulated in esophageal
cancer cells, miR-145 directly targeted SMADS5, promoting proliferation
and metastasis [61]. An earlier study showed that miR-145 promoted the
invasion of esophageal adenocarcinoma cells [62]. It has been reported
that miR-145-3p was increased in the plasma of workers occupationally
exposed to Cr(VI) [63]. The results from the present study showed that
miR-145-5p expression was increased in the Cr(VI)-transformed cells
compared to that in passage-matched normal BEAS-2B cells. However,
miR-143, the cluster of miR-145, has been reported to be reduced in
Cr(VI)-transformed cells [64]. The results from a previous study showed
that miR-21 was upregulated in Cr(VI)-transformed cells and inhibition
of miR-21 elevated programmed cell death 4 (PDCD4), a tumor sup-
pressor, resulting in suppression of malignant cell transformation and
invasion of Cr(VI)-transformed cells [15].

It has been reported that miR-145 was expressed at much lower levels
and NEDD9 was highly expressed in glioblastomas compared to normal
brain tissue. Overexpression of miR-145 reduced NEDD9 and knockdown
of NEDD9 increased miR-145, leading to inhibition of invasion in glio-
blastoma cells [65]. Inhibition of miR-145 in Cr(VI)-transformed cells
reduced NEDD9 level, demonstrating that NEDD9 was the downstream
target of miR-145. Using TargetScan, NEDD9 was predicted to be one of
the miR-145-5p targets, and position 47-54 of NEDD9 3’ UTR was
sequentially paired with miR145 (http://www.targetscan.org/cgi-bin/ta
rgetscan/vert_71/targetscan.cgi?mirg=hsa-miR-145-5p). ~To  study
whether the observations obtained in Cr(VI)-transformed cells are cell
type-specific, in the present study A549 cells with stable expressing
miR-145 inhibitor were established. The results showed inhibition of
miR-145 in A549 cells decreased mRNA and protein levels of NEDD9
which were consistent with the results from Cr(VI)-transformed cells.
Because the present study has shown that knockdown of NEDD9
decreased invasion and migration in A549 cells, it is anticipated that
miR-145 promotes invasion and migration of A549 cells. However, a
previous study reported that miR-145 suppressed the invasion and
migration of A549 cells [66]. Given the observation of reduction of both
mRNA and protein levels of NEDD9 by miR-145 inhibition, it is specu-
lated that miR-145 may regulate NEDD9 through transcriptional mech-
anisms, such as mRNA degradation. The precise mechanism needs to be
investigated further.

The loss of MEG3 expression has been observed in various human
cancers. Competing endogenous RNA (ceRNAs) function as molecular
suppressors for microRNAs through their binding sites. MEG3, a ceRNA,
regulates the biological functions of cancer cells. It has been reported that
ectopic expression of MEG3 reduced malignant cell transformation
induced by chronic exposure to nickel, a confirmed human carcinogen,
while knockdown of MEGS3 facilitates the malignant cell transformation
by this metal [37]. Further studies demonstrated that the downregulation
of MEG3 induced by nickel was due to its promoter hypermethylation
[37]. The present study has shown that MEG3 was lost in
Cr(VI)-transformed cells. Overexpression of MEG3 reduced both invasion
and migration of Cr(VI)-transformed cells, accompanied by reduced
NEDD?9 protein level and p-catenin activation. Further study showed that
overexpression of MEG3 decreased miR-145 level and that inhibition of
miR-145 increased MEG3 expression in Cr(VI)-transformed cells, indi-
cating that MEG3 and miR-145 are reciprocal regulators. A previous
study indicated that MEG3 binds to miR-27a, resulting in inhibition of
bladder cancer invasion [36]. Furthermore, the present study identified
the binding site of MEG3 to miR-145 and a plasmid of MEG3 mutation at
the binding site to miR-145 was constructed. The results showed that the
MEG3 mutation does not exhibit any effect on invasion and migration of
Cr(VD)-transformed cells, or NEDD9, suggesting that invasion and
migration inhibited by MEG3 may be through its binding to miR-145.
Consistent with these findings, a recent study showed that in the
human kidney 2 (HK-2) cells downregulation of MEG3 increased
miR-145, and that miR-145 mimic or miR-145 inhibitor reduced or
elevated MEG3 luciferase activity, respectively. The present study has
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Figure 8. Scheme of the mechanism of MEG3/miR-145 in the regulation of
invasion and migration of Cr(VI)-transformed cells. Chronic exposure of BEAS-
2B cells to Cr(VI) causes malignant cell transformation. Those transformed
cells exhibit increased invasion and migration. Loss of MEG3 causes an increase
of miR-145 and miR-145 feedbacks to MEG3 in Cr(VI)-transformed -cells,
resulting in upregulation of NEDD9. Elevation of NEDD9 activates Wnt/f-cat-
enin and EMT pathway, leading to increased invasion and migration of Cr(VI)-
transformed cells.

also shown that knockdown of MEG3 in BEAS-2B cells increased invasion
and migration, suggesting that MEG3 functions as a tumor suppressor.

In summary, the present study observed that MEG3 was down-
regulated and that miR-145 was upregulated in Cr(VI)-transformed cells.
Overexpression of MEG3 reduced miR-145 level and inhibition of miR-
145 elevated MEG3 expression. Overexpression of MEG3 or inhibition
of miR-145 decreased invasion and migration in Cr(VI)-transformed
cells, accompanied by reduction of NEDD9 and EMT marker Slug. The
present study suggested that the downregulation of MEG3 and upregu-
lation of miR-145 play an important role in invasion and migration in
Cr(VD)-transformed cells. The overall mechanism of MEG3,/miR-145 on
the regulation of invasion and migration of Cr(VI)-transformed cells was
summarized in Figure 8.
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