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Abstract Biophysical properties of neurons become increasingly diverse over development, but

mechanisms underlying and constraining this diversity are not fully understood. Here we

investigate electrophysiological characteristics of Xenopus tadpole midbrain neurons across

development and during homeostatic plasticity induced by patterned visual stimulation. We show

that in development tectal neuron properties not only change on average, but also become

increasingly diverse. After sensory stimulation, both electrophysiological diversity and functional

differentiation of cells are reduced. At the same time, the amount of cross-correlations between

cell properties increase after patterned stimulation as a result of homeostatic plasticity. We show

that tectal neurons with similar spiking profiles often have strikingly different electrophysiological

properties, and demonstrate that changes in intrinsic excitability during development and in

response to sensory stimulation are mediated by different underlying mechanisms. Overall, this

analysis and the accompanying dataset provide a unique framework for further studies of network

maturation in Xenopus tadpoles.

DOI: 10.7554/eLife.11351.001

Introduction
Electrophysiological properties of neurons become increasingly diverse over development in ways

that are critical for proper nervous system function and maturation (Turrigiano and Nelson, 2004;

Marder and Goaillard, 2006). Perturbation of these processes can have broad and devastating con-

sequences leading to neurodevelopmental disorders such as mental retardation, autism, and schizo-

phrenia (Rice and Barone, 2000; Belmonte et al., 2004; Pratt and Khakhalin, 2013). It remains

unclear, however, to what degree this diversity in electrophysiological tuning reflects intrinsic devel-

opmental differentiation, and how much it reflects the particular activation history of a given neuron,

as well as the constraints that shape how well neurons adapt to changes in their input patterns.

The adaptability of electrophysiological properties is central for allowing developing neural cir-

cuits to maintain functional stability, while simultaneously providing flexibility for accommodating

developmental changes. One mechanism that contributes to this balance is homeostatic plasticity,

whereby neurons adjust their synaptic and intrinsic properties based on the activity of the circuit in

which they are embedded (Daoudal and Debanne, 2003; Desai, 2003; Turrigiano and Nelson,

2004; Ibata et al., 2008; Turrigiano, 2008; Marder, 2011). Homeostatic plasticity allows develop-

ing circuits to function stably by maximizing their dynamic range as new inputs become incorporated

(Bucher et al., 2005; Marder and Goaillard, 2006; Pratt and Aizenman, 2007). This is particularly
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relevant to developing animals: their nervous system must be functional and able to interact with its

environment even as nascent circuitry is still developing.

One place where this adaptability in synaptic and intrinsic properties is particularly salient, is in

the optic tectum of Xenopus laevis tadpoles—a midbrain area that processes inputs from visual,

auditory, and mechanosensory systems (Cline, 1991; Ewert, 1997; Cline, 2001; Ruthazer and

Cline, 2004; Ruthazer and Aizenman, 2010). Sensory inputs to the tectum are strengthened over

development, resulting in increasingly robust synaptic responses, yet this strengthening is accompa-

nied with decreases in intrinsic excitability that may function to maintain a stable dynamic range in

this circuit (Pratt and Aizenman, 2007). As a consequence, visually guided behaviors, such as colli-

sion avoidance, improve and become more tuned to specific stimuli (Dong et al., 2009). Changes in

sensory environment can also elicit homeostatic plasticity in tectal cells, resulting in adjustment of

both synaptic and intrinsic properties (Aizenman et al., 2003; Deeg and Aizenman, 2011).

Since homeostatic plasticity coordinates changes of different cellular properties, over time it is

expected to constrain these properties, limiting ways in which they can co-vary within the population

of cells (O’Leary et al., 2013): for example, strong excitatory synaptic drive results in lower intrinsic

excitability. Coordinated changes in different physiological properties may contribute to diversifica-

tion of cell tuning that happens as networks mature, creating and shaping differences in cell pheno-

types both between cell types as they emerge (Ewert, 1974; Frost and Sun, 2004; Kang and Li,

2010; Nakagawa and Hongjian, 2010; Liu et al., 2011), and within each cell type in a functional

network (Tripathy et al., 2013; Elstrott et al., 2014). These considerations suggest that multivariate

distributions of different physiological properties sampled across many cells in a network may con-

tain unique information both about current tuning of this network, and the mechanisms behind this

tuning that may act through local recalibration of properties in individual cells (O’Leary et al.,

2013). Yet relatively few studies have attempted this kind of analysis on a large scale so far.

Here we perform a large-scale electrophysiological census of retinorecipient neurons in the devel-

oping Xenopus laevis tectum to better understand the electrophysiological variability of tectal neu-

rons in development, and in response to a need for homeostatic change. Using a comprehensive

suite of tests we describe relationships between 33 electrophysiological variables, and show that

both the variability and the predictability of multivariate cell tuning increases over development, and

eLife digest Brains consist of many cells called neurons: billions of them in a human brain, and

hundreds of thousands in the brain of a small fish or a frog tadpole. Many of these neurons are very

much alike, and work together to process information in the brain. Yet while they are similar, they

are not exactly identical. One of the reasons for these differences seems to be to allow each neuron

to contribute something unique to the overall working of the brain. By looking at how individual

neurons within a specific type differ from each other, it is possible to understand more about how

they work together.

Ciarleglio, Khakhalin et al. have now compared the properties of the neurons in a part of the

brain of a developing frog tadpole that processes sensory information. This showed that these

neurons appear relatively similar to each other in young tadpoles. However, as the tadpoles grow

and their brains become more elaborate the neurons become increasingly diverse, and their

properties become more unique and nuanced.

One possible explanation is that this diversity reflects new types of neurons being formed;

another, that the differences between the neurons reflect how these cells have adapted to different

patterns of sensory input they may have experienced. To distinguish between these two

possibilities, Ciarleglio, Khakhalin et al. provided a group of older tadpoles with strobe-like visual

stimulation and observed that this caused the neurons to become more similar once again. This

suggests that neurons can change their response properties to adapt to the type of sensory input

they receive, which would allow the animal to better process different types of sensory information.

The data collected through these experiments could now be used to build computational models of

this part of the tadpole brain.

DOI: 10.7554/eLife.11351.002
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undergo changes in response to sensory stimulation. By analyzing groups of neurons that produce

similar spike trains, we also show that similar spiking behaviors may be supported by different com-

binations of underlying electrophysiological properties.

Results

Main dataset and correlation analysis
We recorded from 155 deep-layer, retinorecipient tectal cells across developmental stages 43 to 49

(Nieuwkoop and Faber, 1994) from 42 animals, measuring from 9 to 33 different electrophysiologi-

cal variables in each cell (median of 26 variables per cell; see Figure 1 and Supplementary file 1 for

a graphical description and a concise table of variables, and the Materials and methods for a

detailed description of each variable). Of 155 cells, 35 cells contributed to all 33 variables, 62 con-

tributed to 30 variables, 124 to 20 variables, and 154 to 10 variables. Across different variables, the

least covered variable had measurements from 64 cells, while the most covered one had measure-

ments from 154 cells (median of 134 cells per variable); in total, 18% of all possible observations

were missing. The dataset containing analysis parameters is available online as Supplementary file

2. The entire dataset including raw electrophysiology files has also been made available and can be

accessed with the following doi:10.5061/dryad.18kk6.

With 33 different cell parameters, we had 528 potential pairwise correlations to assess. Ninety of

these correlations were significant after FDR adjustment (a = 0.05, corresponding to Pearson corre-

lation p-value threshold of about 8e�3; Figure 2A); all correlations with r > 0.5 (n=11) were also sig-

nificant for Spearman correlation after same FDR adjustment. We found that there were at least

three distinct clusters of tightly correlated variables representing different neural characteristics: tec-

tal cell spikiness (a tendency to produce more spikes); measurements of spike shape and dynamics

that strongly anti-correlated with spikiness; and intrinsic neuronal properties, such as membrane

capacitance and amplitudes of intrinsic ionic currents. Some of the more salient correlations are

shown in Figure 2B.

The presence of correlations in our dataset suggested that not all variables were independent,

which is expected for sets of variables that describe different aspects of common underlying cellular

qualities, such as spikiness or synaptic effectiveness (McGarry et al., 2010). To make sure that none

of the variables were redundant (brought no new information to the set), or too noisy (having no

interactions with other variables in the set), we ran the so-called Principal Variable Analysis, quantify-

ing the total amount of variance in the dataset explained by each variable (Mccabe, 1984). We

found that the most informative, and thus least independent, variables were related to the number

of spikes the cell was able to generate (N spikes to cosine and step injections explained 15% and

14% of total variance, respectively), or different aspects of spike shape (9–13% of total variance;

Figure 2C, top of the list). Conversely, some variables did not serve as good linear predictors for

other properties in the set (bottom of Figure 2C), suggesting that they were more independent —

the lowest variable explained 4% of total variance, which was still more than the 3% expected for a

fully uncorrelated variable. In summary, it can be seen from Figure 2C that no single variable was

’too good’ in explaining overall variance in the dataset, but also that none of them fell at or below

the predicted noise level; there was no clear division of variables into distinct groups, but rather a

smooth decline across the list. Finally, variables of different biological nature were diversely distrib-

uted across the parts of the plot corresponding to higher and lower explanatory power. From this

we concluded that our dataset was well balanced for exploratory analysis, offering a healthy mix of

independent and interacting variables (Guyon and Elisseeff, 2003).

Knowing that the maximal number of spikes in response to current step injections can alone

explain 14% of total variance in the dataset made us wonder which protocol of those we used was

the most informative in the sense of best capturing the electrophysiological identity of each tectal

cell. To answer this question, we ran the Principal Variance Analysis on a combination of variables

coming from different protocols. We found that 9 variables from the step current injection proto-

col together explained 42% of total variance in the set; 7 variables quantifying IV-curves explained

34%; 6 variables from cosine current injections explained 33%; 5 synaptic variables and 4 passive

membrane properties both accounted for 21%; and 2 variables describing miniature postsynaptic

currents (mEPSCs) predicted 11% of total variance (shares of explained variance don’t have to add
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up to 100%). Based on this analysis, we conclude that the step current injection protocol (see

Figure 1E–G) is thus one of the most informative, and should be recommended for fast profiling

of cell types in the future.

Changes with development
We next asked which electrophysiological characteristics changed with development as tadpoles

matured from stage 43, a time when axons from the eye make first functional connections in the

brain (Holt and Harris, 1983), to stage 49, when tectal networks become sufficiently refined to sup-

port spatially coordinated visual behaviors and multisensory integration (Deeg et al., 2009;

Dong et al., 2009; Xu et al., 2011; Khakhalin et al., 2014). To compensate for the unevenness of

data availability across cell properties and developmental stages, we combined data from stages

43–44, 45–46, and 48–49, as these groupings have proven useful in previous studies (Pratt et al.,

Figure 1. A review of cell properties characterized in this study (See methods for a detailed description of every measurement). (A) Response to voltage

clamp steps after passive current subtraction; full currents on the left, a zoom-in look at early active currents on the right. Red vertical lines show how

voltage-gated sodium (INa), stable potassium (IKS), and transient potassium currents (IKT) were measured. (B) IV curve for INa. (C) IV curve for IKS. (D) IV

curve for IKT. (E) Spiking responses to current step injections of different amplitudes; first response to produce a spike is shown in blue; response

generating maximal number of spikes is shown in black. (F) An expanded look at the first spike produced by the cell in response to step current

injections. (G) Number of spikes as a function of step current injection amplitude. (H) A trace of membrane potential recorded from the cell in response

to cosine current injections of varying frequency. (I) Spike-raster of 10 consecutive responses to cosine injections shown in H. (J) Average number of

spikes in response to a single cosine injection as a function of cosine period. (K) Average number of spikes per cosine wave in response to injections of

shortest period (10 ms; leftmost group in panels H and I. (L) Sample trace of excitatory synaptic currents recorded in voltage clamp mode in response

to optic chiasm stimulation with a 30 ms inter-stimulus interval. (M) Total postsynaptic charge as a function of inter-stimulus interval. (N) Average

postsynaptic current showing time-windows that were used to build the "Monosynapticity ratio". Panels (A–D) originate from one cell; panels (E–M)

were recorded in another cell; both from stage 49 animals.

DOI: 10.7554/eLife.11351.003
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2008; Dong et al., 2009; Sharma and Cline, 2010). We did not group stage 47 with others how-

ever, as there were indications that this transient stage in development may be unique in terms of

tadpole behavior, network excitability, and average tectal cell properties (Pratt and Aizenman,

2007; Bell et al., 2011). We found that 12 cell properties changed significantly across these devel-

opmental periods (PANOVA < 0.05), with 5 values decreasing overall, and 6 variables increasing (Fig-

ure 3; also see Supplementary file 3 for summary table).

While average values changed in both directions during development, the effect on variability of

cellular properties was much more consistent: 14 variables out of 33 increased their variability from

stages 45–46 to 48–49 (PV < 0.05, corresponding to increases in standard deviation of 40% and

higher; see Supplementary file 3). Among others, spiking inactivation (as measured by ’Wave

decay’), maximal amplitudes of sodium and slow potassium ionic currents, the frequency of minis,

and the total synaptic charge all experienced an almost twofold increase in variability. Only two

properties out of 33 became less variable over development: synaptic resonance and synaptic reso-

nance width. These data suggest that by stages 48–49, neurons became more electrophysiologically

diverse than they were at stages 45–46.

Factor analysis
To visualize and explore the patterns behind co-dependence and co-variance of variables in our

dataset, and to better measure common features that underlie these correlations, we used principal

component analysis (PCA). As not every variable was measured in every cell, we used an iterative

Bayesian version of PCA known as ’PCA with missing values’ (Ilin and Raiko, 2010), followed by a

promax oblique rotation. We extensively verified the validity of our PCA analysis, comparing it to

standard PCA on restricted and imputed data, PCA on rank-transformed data, as well as two most

common non-linear dimensionality reduction approaches: Isomap and Local Linear Embedding (see

Materials and methods). We concluded that our PCA analysis was the most appropriate analysis for

for this data set, and performed better than local non-linear approaches, with the first two principal

components explaining 15% and 8% of total variance respectively (this total of 23% of variance

explained would have corresponded to ~35% of variance if we had every type of observation in

every cell; see Materials and methods for details).

A loading plot (Figure 4A) shows contributions of individual variables from the dataset to rotated

PCA components. Points on the plot are colored according to the biological nature of each variable

Figure 2. Correlations between cell properties. (A) Diagram illustrating significant correlations and their strengths (r-values) for all pairs of cell

properties measured. Positive correlations are shown in red; negative correlations in blue; the width and darkness of each line are proportional to

respective r-value. (B) Selected significant correlations between cell variables. (C) Variables sorted by the total variance each of them can explain in the

full dataset (amounts are not additive and do not add up to 100%). Colors indicate the biological nature of each variable (red for spiking, green for

spike shape, blue for spike timing, orange for ionic currents, yellow for activation potentials, gray for passive properties, and purple for synaptic

properties). The white dashed line shows the expected variance explained for an ideally uncorrelated variable.

DOI: 10.7554/eLife.11351.004
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(Figure 4, see legend); variables shown on the right contributed positively to the first component

(C1), while those on the left contributed negatively to this component; variables in the upper part of

the cloud contributed positively to the second component (C2), while those at the bottom contrib-

uted negatively to it. Consistent with high predictive value of individual variables related to spiking,

we found that C1 describes the overall ’Spikiness’ of each cell. Cells with large values of C1 gener-

ated many sharp and narrow spikes in response to current injections (Figure 4A, green points

describing spike shape, left; red points describing number of spikes, right). These cells spiked

strongly in response to prolonged current injections (Figure 4A, red point for ’Spiking resonance

width,’ upper right quadrant); had low accommodation, both in spike amplitude (Figure 4A, green,

left bottom corner) and inter-spike interval (Figure 4A, blue, left top corner), and had high trial-to-

trial spike-timing precision (low jitter; Figure 4A, blue point, left top corner). Properties of cells with

different C1 and C2 values can also be illustrated in a modified score-plot, in which traces of mem-

brane potential responses to a 100 pA step current injection are arranged within the C1-C2 principal

component space (Figure 4B). Note the difference in spiking responses between cells on right (high

Figure 3. Changes in cell properties with age. All cell properties that significantly changed with development are shown here as mean values (central

line) and standard deviations (whiskers and shading). Transitions between points are shown as shape-preserving piecewise cubic interpolations.

DOI: 10.7554/eLife.11351.005
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C1) and left (low C1) sides of Figure 4B. Cells with large C1 also tended to be involved in polysynap-

tic networks (Figure 4A, purple point for ’Monosynapticity coefficient,’ lower left quadrant) and did

not exhibit short-term facilitation of synaptic inputs during repeated stimulation (Figure 4A, purple

point for ’Synaptic PPF,’ lower left quadrant). Cells with low values of C1 exhibited opposite traits:

they produced few broad, squat, quickly accommodating spikes (Figure 4B, left), were not recruited

in recurrent networks, and tended to have strong synaptic facilitation that could potentially indicate

high plasticity of synaptic inputs (Kleschevnikov et al., 1997).

The second component (C2) can be loosely dubbed ’Current density’: cells with high values of C2

had large intrinsic ionic currents (voltage-gated sodium INa and slow potassium IKS currents), high

membrane capacitance (Cm) and low membrane resistance (Rm), consistent with a larger membrane

surface, and received strong synaptic inputs, in terms of both frequency and amplitude of mEPSCs.

These cells produced frequent and sharp spikes (Figure 4A, blue point for ’Spike ISI’ and green

points for ’Spike rise-time’ and ’Spike width,’ lower part of the plot), but also tended to have higher

values of spike-timing jitter and inter-spike interval accommodation. Conversely, cells with low values

of C2 behaved as smaller cells electrophysiologically (low Cm, high Rm), and had weak intrinsic and

spontaneous synaptic currents. As principal neurons in the optic tectum have relatively uniform geo-

metrical cell body sizes (Lazar, 1973), these differences in electrophysiological properties may indi-

cate different levels of electrical coupling between the cell bodies, where the recording was

performed, and both dendritic and axonal compartments, where the currents are generated.

After classifying all cells according to their position in the PCA space (Figure 5A), we were able

to visualize developmental maturation of tectal cells as movements of point clouds within the C1-C2

plane, and as changes of these clouds’ shapes (Figure 5B). It can be seen from Figure 5B that as

cells matured, their representations in the PCA space migrated from the left to the right side of the

plot. Indeed, the Spikiness (C1) changed with age (PANOVA = 1e�5), first increasing from stages 43–

44, through 45–46, and up to stage 47 (PMW < 4e�3 at each transition, N = 11, 64 and 24 respec-

tively), and then decreasing again at stages 48–49 (PMW = 0.02, N = 24, 56; Figure 5B). The value of

C2, or ’Current density’, did not change much over development (PANOVA = 0.08) except for a slight

decrease between stages 47 and 48–49 (PMW = 0.02, N = 24, 56).

Figure 4. Principal Component Analysis (PCA). (A) Loading-plot, presenting contribution of individual cell properties to the first two PCA components

(see detailed description in the text). Points are colored with regards to how they describe the spikiness of the cell (red), shape of spikes (green), their

temporal properties (blue), ionic currents (orange), passive electrical properties (gray), or synaptic properties of the cell (purple). (B) Modified score-plot

showing how individual cells score on first two PCA components, with responses of respective cells to step current injections used instead of standard

plot markers. Responses on the right are spikier that those on the left, while responses on the bottom have a greater passive component than

responses on the top.

DOI: 10.7554/eLife.11351.006
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The clouds of points shown in Figure 5B also differ in size and structure, with the stages 45–46

cloud being more compact and simple, and the stages 48–49 cloud being more sprawled with an

uneven distribution of points. To quantify cloud size, we compared medians of pairwise Euclidian

distances between points in the PCA space and found that they were larger at stage 48–49 than at

any other developmental group (PMW < 5e�7 for all comparisons). Likewise, the value of ’Current

density’ (C2) was more variable at stages 48–49 than at stages 45–46 (PV = 0.004, N = 64, 56), and

the average pairwise difference between cells in the original 33-dimentional space was 22% larger at

stages 48–49 than at stages 45–46 (PTT < 1e�11; see Materials and methods for details). This sug-

gests that from stages 42 to 47, neurons changed their properties consistently, gradually getting

more spiky, but then scaling their average spikiness back at stages 48–49, while simultaneously

expanding to the whole range of possible C1-C2 values, increasing the diversity of electrophysiologi-

cal tuning across individual tectal cells.

We then quantified the presence of internal structure within the original 33-dimentional datasets,

separately for younger and older cells, by performing multiple imputation on the data, and then run-

ning two different types of unsupervised feature analyses that identify structure in multivariate distri-

butions: the hierarchical cluster analysis that looks for subclouds of points within a larger cloud, and

local PCA (as opposed to previously described global PCA that was run on the full set of data) to

quantify linear interdependencies between cell properties within each age group. For cluster analy-

sis, we used the agglomerative nesting coefficient AGNES (Struyf et al., 1996) and found

(Figure 6A) that the degree of clustering was 36% larger at stages 48–49 compared to stages 45–46

(0.67 ± 0.04 and 0.49 ± 0.03 respectively, PTT < 1e�11), reflecting a substantial increase in within-

group heterogeneity. For local PCA analyses, we looked at the amount of total variance explained

by the first 2 components within each stage group as a measure of internal structure and linear

Figure 5. Evolution of PCA component scores with development. (A) Score-plot of PCA scores for all cells from the main dataset, with cells colored by

the developmental stage of the animal: from reds for stages 43–44, through yellows for stages 45–46, to blues for stages 48–49. Note that most red

cells are located on the left, while most light blue cells (stage 47) are located on the right. (B) Isolated sub-clouds of points from panel (A), shown on

the same axes as panel (A), and illustrating the progression of different stages through the score-plot (N points = 11, 64, 24, and 56). Estimated density

kernels for sub-clouds are shown as colored backgrounds. Stages 43–47 illustrate that the cloud moved to the right, while at stages 48–49 it moved

back to the center, and expanded at all directions (see quantification in the text).

DOI: 10.7554/eLife.11351.007
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interactions between different variables. We found (Figure 6B) that despite an increase in total vari-

ance and heterogeneity in older cells, locally run PCA explained a slightly higher degree of variance

in these cells (0.35 ± 0.04) than in younger cells at stages 45–46 (0.31 ± 0.02; PTT < 1e�11) suggest-

ing that in more mature networks, cell properties are more coordinated with each other.

Effects of sensory stimulation
While our analysis of neuronal maturation demonstrated that several cellular properties changed

over development, both in terms of their average values and their variability, we were not able to

tell whether these phenomena represented genetically determined developmental programs, or if

they reflected experience-dependent adaptations of electrophysiological properties resulting from

the cumulative sensory experience of each cell (Dong et al., 2009; Munz et al., 2014). It is known

from previous studies that tadpoles exposed for several hours to strongly patterned visual stimula-

tion show synaptic (Aizenman et al., 2002; Aizenman and Cline, 2007), intrinsic (Aizenman et al.,

2003; Dong et al., 2009) and morphological (Sin et al., 2002) changes in individual tectal cells, as

well as in tectal network activity (Pratt et al., 2008), and animal behavior (Dong et al., 2009). We

provided four hours of strongly patterned visual stimulation to an experimental group of stage 49

tadpoles and then measured and analyzed same 33 variables from 65 cells (across 19 animals).

Of 33 electrophysiological properties, 8 changed significantly between naı̈ve and visually stimu-

lated cells (see Supplementary file 3). As previously described (Aizenman et al., 2003), visually

stimulated cells spiked more in response to step current injections, producing on average 7.1 ± 4.7

spikes per injection, compared to only 4.6 ± 3.3 spikes in naı̈ve cells (PMW = 5e�3, N = 51, 60;

Figure 7A). Interestingly, while for naı̈ve cells the number of spikes produced in response to cosine

injections strongly correlated with the number of spikes in response to step injections (r = 0.82, Pcorr

= 2e�27, N = 108), visually stimulated cells did not change their spiking response to cosine injec-

tions (0.8 ± 0.5 for naı̈ve, 0.9 ± 0.5 for stimulated cells; p = 0.3, N = 38, 60), indicating that changes

in spikiness in development, and after visual experience, may be implemented by different biophysi-

cal mechanisms. Other variables that increased after stimulation included the absolute value of the

holding current, and spike threshold potential (Figure 7B). Three properties decreased after visual

stimulation: membrane capacitance (Figure 7C), speed of response build-up during cosine stimula-

tion ("Wave build-up"), and jitter.

Figure 7D shows h2 effect sizes and marks statistical significance for changes during develop-

ment and in response to sensory stimulation (Ferguson, 2009). It can be seen that the overlap

between normal changes in development and changes after visual stimulation is very small: only 3

electrophysiological properties changed significantly both in development and after stimulation —

Figure 6. Internal structure of cell property distributions. (A) Agglomerative clustering coefficients for properties of

naı̈ve cells at stages 45–46, 48–49, and cells after sensory stimulation (stage 49). Higher values correspond to

higher levels of clustering (grouping); lower values correspond to more Gaussian-like unimodal distributions.

(B) The amount of within-group variance explained by the first two components of PCA for the same groups of

data. Higher values correspond to higher correlations between different electrophysiological variables in the set.

Both plots show means ± standard deviations of results obtained in the original 33-dimensional space after

multiple imputation with subsampling.

DOI: 10.7554/eLife.11351.008
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of these, one (Spike threshold) changed in opposite directions, and two others changed in the same

direction. These results suggest that while visually stimulated cells from stage 49 animals seem to

spike similarly to naı̈ve stage 47 animals, the biophysical mechanisms that underlie high cellular excit-

ability in these groups are not likely to be shared.

Curiously, the only electrophysiological property that was significantly affected by both develop-

mental stage and sensory history of the animal, and that could conceivably contribute to differences

in cell excitability, was membrane capacitance — a variable that is usually interpreted as an estima-

tion of cell size, and thus does not make an obvious first candidate as a underlying mechanism for

short-term intrinsic cellular plasticity. Significant changes in membrane capacitance (Figure 7D, low

left corner) and spike threshold potential (Figure 7D, low right corner) may indicate a change in

electrical coupling between cell soma, from which recordings were performed, and the spike-gener-

ating axon hillocks, similar to what has been described in other preparations (Grubb and Burrone,

2010; Kuba et al., 2010).

To better compare changes after visual stimulation to those occurring over development, we pro-

jected electrophysiological data from sensory stimulated cells into the original PCA space defined

by data from naı̈ve tadpoles, and compared the resulting point cloud to points from naı̈ve stage 48–

49 animals (Figure 7E). Compared to the naı̈ve group (Figure 7E, blue) the ’Spikiness’ (C1) of neu-

rons from visually stimulated animals (Figure 7E, black) was higher (PMW = 0.02, N = 56 and 60 for

naı̈ve and visually stimulated groups), while average ’Current density’ (C2 value) of stimulated cells

did not change (PMW = 0.06). The variances of C1 and C2 did not change significantly (PV > 0.05),

however the size of the cloud, as measured by median pairwise Euclidean distance between points

in PCA space, decreased in stimulated cells (PMW < 1e�8). Likewise, the average pairwise difference

between cells in the original 33-dimensional space decreased by 11% after visual stimulation (29 ± 1

for stimulated, compared to 33 ± 1 for naı̈ve stage 48–49 cells; PTT < 1e�15). This change in cloud

Figure 7. Visual stimulation changes some cell properties. (A–C) Visual stimulation increased the spikiness of stage 49 cells in response to step current

injections (A), increased spike threshold potential (B), and decreased membrane capacitance of tectal cells (C). (D) A survey of cell properties that

significantly changed either during development (red filled markers), in response to visual stimulation (blue hollow circles), or to neither variable (small

black markers). Properties that changed both in development and after stimulation are shown as red markers with blue circles surrounding them. The

position of each marker on the plot is defined by the share of variability explained by developmental stage or visual stimulation, presented as h2 effect

size value, and taken with a sign that reflects the direction of the change. Properties that did not change significantly are labeled by their number (see

’Materials and methods’ or Supplementary file 3 for the full list). (E) Projection of cells from visually stimulated s49 animals (black) into PCA space

defined by the analysis of naı̈ve dataset, with naı̈ve cells from s48-49 animals shown in blue. Shading shows estimated density kernels for respective

groups.

DOI: 10.7554/eLife.11351.009
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size is almost certainly because 8 out of 33 electrophysiological properties became significantly less

variable after visual stimulation: namely, maximal Na+ and slow K+ voltage-gated currents, transient

K+ current activation potential, spiking threshold, jitter, frequency and amplitude of miniature

EPSCs, and synaptic resonance inter-stimulus interval (PV < 0.05 for each of these comparisons).

Only two properties were more variable in visually stimulated cells: mean number of spikes in

response to step injections and membrane resistance Rm (PV < 0.01 for both).

We then analyzed the internal structure of naı̈ve and stimulated datasets from stage 48–49 ani-

mals in the same way as it was done for different developmental stages. We found that the amount

of internal heterogeneity, as quantified by the agglomerative nesting coefficient, was reduced in

stimulated neurons (0.62 ± 0.02) compared to naı̈ve cells (0.67 ± 0.04; PTT < 1e�15; Figure 6A),

while the share of total variance explained by first two components of local PCA was higher in stimu-

lated cells (0.41 ± 0.02) than in naı̈ve cells (0.35 ± 0.04; PTT < 1e�15; Figure 6B). Together these

findings suggest that visual stimulation of tectal neurons increased their propensity to spike and low-

ered overall cell-to-cell variability and within-group heterogeneity, making cells more alike. Visual

stimulation also made different cell properties more interdependent and predictable, consistent with

the consequences of a strong homeostatic constraint experienced by these neurons.

Convergence of spiking phenotypes
Our data suggest that spiking properties of tectal neurons can be modulated in several different

ways during development and in response to sensory stimulation. We used our dataset to try to infer

biological processes that could underlie adjustment of spike output. To deduce these processes, we

looked for basic intrinsic properties that could serve as good predictors of cell spiking output across

all experimental groups (220 cells). We ran a set of competitive sequential linear regression models

(Calcagno and de Mazancourt, 2010) to test whether we could predict the number of spikes pro-

duced by cells in response to current step injections based on their low-level electrophysiological

properties, namely: membrane resistance (Rm), membrane capacitance (Cm), and both ionic current

activation potentials and maximal amplitudes for sodium (INa), stable potassium (IKS) and transient

potassium (IKT) voltage-gated currents (8 variables total). We found that across all cells, the pair of

properties that explained most of spike-output variance was a pair of activation potentials for

sodium and stable potassium voltage-gated currents (INa and IKS; 18% of variance without interac-

tion, 19% with interaction). After activation potentials were considered, the next most informative

variable was membrane resistance (Rm, 7% of variance; 13% with interactions) followed by voltage-

gated sodium channel amplitude (2% of explained variance, 4% with interactions), and membrane

capacitance (5% without, 15% with interactions). Together these 5 variables explained 33% of varia-

tion in the number of spikes if taken without interactions, and as much as 51% if multiple-order inter-

actions were included. Unfortunately, linear models did not help to differentiate between variables

underlying tuning of spike output during development and after sensory stimulation, as none of the

effects disappeared (based on PF < 0.05 criterion) when both developmental stage and experimental

manipulation were factored in.

At the same time, the relative abundance of significant interactions (7 out of 26 investigated in

the model) and the high share of variance in spiking output explained by these interactions (18%,

compared to main linear effects of 33%) indicated that simple electrophysiological properties

included in our analysis do not regulate cell spiking independently, but are likely to be constrained

(O’Leary et al., 2013). For example, the cell property that predicted most of spiking output vari-

ance, voltage-gated sodium current activation potential, interacted significantly (PF < 0.05) with slow

potassium current activation potential, membrane resistance and capacitance, as well as several sec-

ond and third-order combinations of these variables. In practical terms it means that to keep the

spike output of a tectal cell constant, a change in any of these variables should be accompanied by a

balancing correction of sodium current activation potential, and vice versa. To further investigate

this point, we analyzed distributions of low-level electrophysiological properties in a subset of cells

that had similar spiking output in response to current injections (Figure 8).

To objectively identify cells with similar spike outputs, we combined each cell’s responses to con-

secutive step injections of increasing current amplitudes into one trace and extracted spike-timing

data from this trace. We then applied a commonly-used standard cost-based metric sensitive to

both number of spikes and their timing to quantify similarity between spike-trains of different cells

(Victor and Purpura, 1996, 1997), and used multidimensional scaling to represent a matrix of
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pairwise cell-to-cell distances in a 2D plot (Figure 8A). We used this analysis to select groups of cells

(6 in each group) that generated similar spike trains in response to current step injections

(Figure 8B) by pulling 5 nearest neighbors to arbitrarily selected reference cells. Although the spike-

trains produced by cells within each group were very similar to each other, we found that these cells

did not form compact clusters when projected on the C1-C2 PCA space, but resembled sparse con-

stellations that were partially overlapping between groups (Figure 8C). These results suggest that

although spiking output was similar between these cells, they differed drastically in other electro-

physiological aspects.

Finally, we combined these two approaches and labeled groups of similarly-spiking cells in corre-

lograms of electrophysiological values that were found to be best linear predictors for cell spiking

output, as described above. These variables included activation potentials for sodium and slow

potassium voltage-gated ionic currents (Figure 8D); passive properties, such as membrane resis-

tance and capacitance (Figure 8E), and ionic current amplitudes (Figure 8F). Although spiking

responses of cells (Figure 8B) were similar to each other within each group, and strikingly different

between the groups, corresponding markers formed neither clusters nor layered structures indicative

of low-dimensional constraints that could link different properties together (Figure 8D,E,F). This

Figure 8. Low-level cell properties are a bad predictor for spiking output. (A) Multidimensional scaling of differences between cell spiking outputs onto

a 2D plane. Cells that produced similar trains of spikes in response to step current injections, both in terms of the total number of spikes, input-output

curve, and spike latency, are located nearby. (B) Spike-raster for several subsets of 6 cells each shown in panel A. Spiking outputs of cells are very

different between the groups, but are closely matched within each group. (C) Groups of cells from panels A and B, projected into PCA space that

describes the full variability of cell properties. Clusters of cells are still visible, but they are no longer compact, and groups are partially overlapping. (D–

F) The same groups of cells are shown on correlation plots for meaningful (both biologically and statistically; see text) pairs of cell properties: threshold

potentials for voltage-gated sodium and stable potassium currents (D), membrane resistance and capacitance (E), and ionic currents amplitudes (F). The

clusters are strongly overlapping, suggesting that cells in which a small subset of properties match can be tuned to produce strikingly different spiking

outputs. Threshold data in panel D is renormalized to avoid overplotting (see ’Materials and methods’).

DOI: 10.7554/eLife.11351.010
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suggests that in our system, cells with similar spiking phenotypes may have very diverse underlying

electrophysiological properties, and conversely, cells that are strikingly different in their spiking out-

put can have very similar low-level physiological properties (Figure 8, black and red points

respectively).

Discussion
In this study we systematically assessed cell-to-cell electrophysiological variability of primary neurons

in the optic tectum of Xenopus tadpoles across several developmental periods and in response to

sensory stimulation. Our results indicate that during development cells in the deep layer of the tec-

tum become more diverse — although at the stages we studied they do not split into distinct non-

overlapping cell types that are reported in the tecta of other species and at later stages of develop-

ment in frogs (Lazar, 1973; Ewert, 1974; Grüsser and Grüsser-Cornehls, 1976; Frost and Sun,

2004; Kang and Li, 2010; Nakagawa and Hongjian, 2010; Liu et al., 2011). We also found that

several key electrophysiological properties of tectal cells change over development. We confirmed

previously described changes in the average intrinsic excitability of tectal cells with age (Pratt and

Aizenman, 2007), and showed that at these stages most physiological differences between cells are

linked to their overall spikiness (based on the results of Principal Variable Analysis, Principal Compo-

nent Analysis, and the comparison of statistical efficiency of different protocols).

More importantly, we report an increased diversification of cell phenotypes at later developmen-

tal stages, and a shrinkage of this diversity in response to strong sensory stimulation. The cell-to-cell

variability remained relatively low at stages 43–47, and different electrophysiological parameters

were more random with respect to each other, both in terms of clustering and linear interdependen-

cies between different variables. By stages 48–49 cell variability in the tectum increased, and some

internal structure in the PCA cloud began to emerge, with patterns of cell properties agglomerating

into clusters, which although poorly resolved at the PCA plot, were noticeable through the quantita-

tive clustering analysis. Complementing previously described receptive field refinement

(Dong et al., 2009), and temporal decorrelation of spiking activity (Xu et al., 2011), this tuning and

differentiation of cell properties likely reflects maturation of tectal networks. An increase in cell tun-

ing variability is reminiscent of reports from other experimental models, including mammalian sen-

sory cortex (Jadhav et al., 2009; Yassin et al., 2010), where the non-uniformity of neuronal

recruitment thresholds was shown to be a common feature of developed, functional networks

(Elstrott et al., 2014).

This emerging structure and differentiation of cell properties was, however, decreased by

strongly patterned visual stimulation, which reduced cell-to-cell variability, making neurons more

similar to each other electrophysiologically. At the same time, the amount of variance explained by

linear correlations between different variables increased after visual stimulation. This suggests that

sensory stimulation, and associated homeostatic plasticity (Aizenman et al., 2003; Dong et al.,

2009) left a predictable trace in the mutual arrangement of different physiological properties within

each cell (Turrigiano et al., 1994; Dong et al., 2009; Munz et al., 2014). These predictable traces

and correlations were then picked up by local factor analysis, making our results similar to reports

from the stomatogastric ganglion model (O’Leary et al., 2013). We also show that the shift in neuro-

nal excitability induced by visual stimulation was supported by different underlying electrophysiolog-

ical properties than were the similar changes in excitability observed during development.

Among the practical consequences of this study, we point to developmental stage 47 as a likely

candidate for the critical tuning period for tectal network maturation. We describe a previously

undocumented sharp, transient increase in excitability in tectal cells during stage 47, providing an

explanation for the previously unarticulated practice of aggregating developmental data over stages

45–46 and 48–49, but avoiding pools of stage 47 neurons with other stages (Pratt et al., 2008;

Deeg et al., 2009; Dong et al., 2009; Sharma and Cline, 2010; Xu et al., 2011; Khakhalin and

Aizenman, 2012; Spawn and Aizenman, 2012). This transient development stage, which lasts for

only about 12–18 hr, and is traditionally defined solely on the basis of embryonic morphology

(Nieuwkoop and Faber, 1994), was accompanied by rapid changes in cell tuning variability, and a

powerful (almost two-fold) increase in cell excitability. This intriguing developmental pattern could

be explored in the future as a model for a critical period in development.
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Finally, our analysis of neurons with similar spiking outputs demonstrated that strikingly different

combinations of underlying low-level electrophysiological properties can lead to similar spiking phe-

notypes, and conversely, that the predictability of spiking phenotype from any small set of cell prop-

erties is low. This reinforces the notion that the conflicting biological goals of developmental

flexibility and stability in response to perturbations rely on the redundancy of parameters underlying

dynamic behavior of these systems (Marder and Taylor, 2011; Marder et al., 2014). The conse-

quence of this redundancy is that multiple parameter configurations can produce phenomenologi-

cally identical patterns of network activation (Goaillard et al., 2009; Caplan et al., 2014).

Altogether, our results provide a promising framework for studying mechanisms of network matu-

ration and calibration in Xenopus tadpoles, as well as a unique dataset that will be helpful to inform

computational modeling of the optic tectum. In future studies we plan to combine electrophysiologi-

cal identification of single cells with the transcriptional mapping of relevant genes (Nelson et al.,

2006; Schulz et al., 2006) to further advance our understanding of the molecular biology underlying

development and plasticity in dynamic systems.

Materials and methods

Animals and housing
Wildtype Xenopus laevis adults were bred overnight through natural mating in the Brown University

animal care facility. Females were primed with 800U human chorionic gonadotropic (hCG); males

were primed with 300U hCG ([1000 U/mL]; Sigma-Aldrich; St. Louis, MO). Embryos were collected

the following day; cleaned by removal of unhealthy/unfertilized oocytes, and kept in a variant of 10%

Steinberg’s Solution (also known as ½x MR) [in mM: 5.8 NaCl, 0.067 KCl, 0.034 Ca(NO3)2 � 4H2O,

0.083 MgSO4 � 7H2O, 5 HEPES; pH 7.4] in incubators at 18–21˚C under a 12:12 light:dark cycle.

Developmental stages are determined according to Nieuwkoop and Faber (Nieuwkoop and Faber,

1994). Under our rearing conditions, tadpoles reach stages 44–46 at 9–12 days post-fertilization

(dpf), and 48/9 at 18–20 dpf. Animals between stages 43 and 49 were used in experiments. Tad-

poles used to characterize development of tectal electrophysiological properties were taken directly

from the 18–21˚C incubators, while those stage 49 tadpoles that were used to assess homeostatic

changes in the tectum were first placed in a custom black acrylic box with four rows of four green

LEDs flashing in sequence at 1 Hz for 4 hr.

Tadpole brains were prepared as described in (Aizenman et al., 2003). All experiments were per-

formed between ZT 3–9 (10:00–16:00 EST), where ZT 0 is lights-on for a diurnal animal. In brief, tad-

poles were anesthetized with 0.02% (w/v) tricaine methanosulfonate (MS-222) in 10% Steinberg’s

solution and brains were then dissected out in HEPES-buffered extracellular media (containing in

mM: 115 NaCl, 4 KCl, 3 CaCl2, 3 MgCl2, 5 HEPES, 10 glucose, 10 mM glycine; pH 7.2 at 255 mOsm/

Kg). To access the soma layer of the tectum, brains were filleted along the dorsal midline and

extracted for pinning to a submerged block of Sylgard 184 Silicone Elastomer (Dow Corning; Mid-

land, MI) in a custom recording chamber at room temperature (23˚C). Using a large-bore glass elec-

trode, the ventricular membrane was suctioned to reveal the tectal cell body layer.

Electrophysiology
Tectal cells were visualized using a Nikon (Tokyo, Japan) FN1 light microscope with a 60x water-

immersion objective. While a visually heterogeneous population of tectal neurons were selected,

care was taken to only patch those principal tectal neurons that looked healthy (clear, no granula-

tion) and to avoid particularly large cells (size and shape) that might be mesencephalic trigeminal

neurons (Pratt and Aizenman, 2009).

To ensure valid comparisons across stages of development, we restricted our recordings to the

middle third of the tectum, thus reducing developmental variability along the rostro-caudal axis

(Wu et al., 1996; Khakhalin and Aizenman, 2012; Hamodi and Pratt, 2014). All cells were

recorded within 3 hr of dissection. Drugs and chemicals were obtained from Sigma (Sigma-Aldrich;

St. Louis, MO).

Glass electrodes were pulled on a Sutter P97 or P1000 puller (Sutter Instruments; Novato, CA)

from either Corning 7056 thin wall capillary glass tubing (G75165T-4, Warner Instruments; Hamden,

CT) or Sutter thick wall capillary glass tubing (B150-86-10) to a tip resistance of 8–12 MW. The
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electrodes were then filled with a K-gluconate-based intracellular saline (containing in mM: 100 K-

gluconate, 5 NaCl, 8 KCl, 1.5 MgCl2, 20 HEPES, 10 EGTA, 2 ATP, 0.3 GTP; pH 7.2 at 255 mOsm/Kg)

through a 200 nm syringe filter (#171, Nalgene-Thermo; Waltham, MA). Filled electrodes were

placed in an Axon headstage containing a AgCl wire and controlled by a motorized micromanipula-

tor (MX7600R and MC1000e-R, Siskiyou; Grants Pass, OR). Electrode was lowered into the chamber

with slight positive pressure in the pipette until the target cell was contacted, at which time negative

pressure was applied to form a high resistance seal (>1GW), and then again to break through the

neuronal membrane. Whole cell patch clamp electrophysiological signals were measured with an

Axon Instruments MultiClamp 700B amplifier, filtered with a 5 kHz band-pass filter, and digitized at

10 kHz by an Axon Instruments DigiData 1440A, and acquired with pCLAMP 10 software (Molecular

Devices; Sunnyvale, CA).

Upon initial whole cell patch, a seal test and membrane test measured the following parameters:

cell membrane capacitance (Cm), cell membrane resistance (Rm), access resistance (Ra), and holding

current (I hold) necessary to keep the membrane at -65 mV. Each clamped neuron was subjected to

a series of voltage clamp and current clamp protocols to assess its characteristics. First, cells were

held at -65 mV in voltage clamp to ensure that Na+ channels are fully de-inactivated. Then cells were

stepped for 150ms to membrane potentials from -65 mV to 115 mV in 20 mV increments to get the

data for IV curves. Cells were then switched to current clamp and subjected to ten square pulses of

current from 0 pA to 180 pA in 20 pA increments. We next explored potential resonances in tectal

neurons (Hutcheon and Yarom, 2000) by probing their ability to fire in response to cosine current

injections of varying frequencies. Each sweep contained five separate 200 ms bouts of cosine injec-

tions with frequencies of 100, 50, 30, 25, and 20 Hz, and peak amplitude of 135 pA. To determine

health of the neurons, they were switched back to voltage clamp and subjected to the IV-curve volt-

age step protocol once again. After that, the spontaneous activity was continuously recorded for

one minute at �45 mV holding potential. Continuing to hold at -45mV, cells were then subjected to

synaptic stimulation protocols, in which the optic chiasm (OCh) was stimulated with a bipolar stimu-

lating electrode (FHC, Bowdoin, ME) to activate retinal ganglion cell axons. Five stimuli of 150 mA to

800 mA and duration of 180 ms were provided at varying frequencies, with inter-stimulus intervals of

10, 20, 30, 40, 50, 100, 150, 200, 250, and 300 ms; the protocol was repeated 5 times. Finally, the

IV-curve voltage step protocol was repeated a third time to ensure the health of the cell and stability

of the data. The microscope was then switched to the 10x objective, and the cell location was

recorded (Khakhalin and Aizenman, 2012). The cell was suctioned away from the tissue and the

process was repeated for up to 6 neurons. Some cells did not survive the entire series of protocols,

but as long as the nearest IV-curve recording from these cells was stable, they were included in the

dataset. No potentials reported in this paper were corrected for the expected junction potential of

+12 mV.

Data processing and analysis
Here we introduce and enumerate variables that were included in the analysis, and are presented

further. In total, up to 33 different variables were measured for each cell, with 4 variables coming

from a standard seal test; 6 variables from the IV-curve protocol; 10 variables from the step current

injection protocol; 6 from the protocol of cosine-shaped current injections of different frequencies; 5

from the synaptic stimulation protocol, and 2 from the recording of spontaneous postsynaptic

potentials. Data analysis was performed in MATLAB (Mathworks, MA) and R Studio.

Passive electric parameters
Based on the standard seal test, as implemented in pClamp 10, cell capacitance (variable #1: Cm,

pF); membrane resistance (variable #2: Rm, GW), and access resistance (#3: Ra, MW) were measured.

We did not measure the resting membrane potential Em of each cell, but recorded the holding cur-

rent (#4: I hold, pA) required to keep the cell membrane at �65 mV. This value is linked to Em by a

simple linear equation: I hold = (�65 � Em)/Rm, and thus can be used as a substitute for Em in

exploratory analysis. Based on our data, Em in naı̈ve cells was �49 ± 13 and did not change over

development (PANOVA>0.05); in stimulated cells, Em increased to �35 ± 27, which was significant

(PANOVA = 1e�3), and translated from significant changes in I hold (see Results). It is also important

to note that tectal cells are relatively small, and in them the value of Em is dominated by the ionic
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concentrations of the internal and external solutions. The original resting membrane potential is dis-

rupted within 2–3 seconds after the whole-cell patch is established (Khakhalin and Aizenman,

2012).

IV protocol
It was previously shown (Aizenman et al., 2003) that in Xenopus tadpoles OT neurons Na+ and K+

ionic currents are isolated enough temporally to allow their simultaneous measurements from traces

produced by brief membrane depolarization in voltage-clamp mode (Figure 1A). A time window

from 0 to 185ms after the membrane potential change was used to estimate peak sodium (INa) and

potassium currents (Figure 1A, right); an average current over the window from 1165 to 1365ms

after the potential change was used as an estimation of the steady state potassium current (IKS;

Figure 1A, left). The amplitude of transient potassium current IKT was estimated as a difference

between peak potassium current within the first window and the steady state potassium current. To

quantify IV curves for these currents, for each cell the curves were fit with a smooth function of mem-

brane potential, and the parameters of this fit function were reported. For INa and IKT currents

(Figure 1B,D) fit curves were defined as

IðvÞ ¼ c=1þ expð�ðv�aÞ=bþ dÞ

where v is the depolarization step potential and a-d are parameters. The potential at which each of

these ionic currents reached ½ of its maximal value, and the maximal current (maximum of the fit

curve) were used as variables #5 (INa activation, mV); #6 (INa, pA); #9 (IKT activation, mV), and #10

(IKT, pA). For IKS current IV curve (Figure 1C) was fit with a model

IðvÞ ¼ maxð0; expððv� aÞ=bÞ� eÞ � cþ d

where v is the potential, and a-d are parameters. The first potential at which IKs was activated and

the fit curve maximum were reported as variables #7 (IKS activation, mV), and #8 (IKS, pA). Note that

’activation potentials’ are empirical potentials at which macroscopic ionic currents were activated,

and they are likely to be different from threshold potentials of individual channels, both because of a

different mathematical definition of these potentials, and because macroscopic activation potentials

are also affected by the geometry and cable characteristics of each tectal cell.

As in IV-curve experiments we tested holding potentials at increments of 10 mV, and as activation

of voltage-gated currents was sharp, the distribution of ionic current activation potential estimations

had modes around discrete values separated by 10 mV. Raw data was used for all calculations, but

in Figure 8D, to avoid overplotting, we homeomorphically transformed the data by first rank-trans-

forming it, and then scaling it back from ranks to original readings in mV using a least squares best

fit cubic polynomial. This mapping strictly preserved the relative arrangement of points, but made

the local density of points in Figure 8D less banded.

Step current injection protocol
For each step current injection (Figure 1E), the number of evoked spikes, their amplitudes, and

latencies at peak were measured. Spikes were detected automatically through adaptive filtering with

subsequent thresholding, which discriminated against spikelet shapes that were either too small or

too broad. All results of spike detection were also visually verified by two people blinded to neuro-

nal identity. The amplitude of each spike was measured as a difference between peak potential dur-

ing the spike and the potential at the kink point, defined as a point at which the 2nd derivative of

potential over time went through a maximum (Figure 1F). For every spike, rise time (10% to 90% of

potential increase from kink point to the peak) and width at half-height (measured at potential

between the kink point and the peak) were measured automatically (Figure 1F). As the current injec-

tion ended, and the neuron repolarized, the shape of this repolarization potential curve was fit

exponentially.

For every cell the following properties were reported: median time constant of repolarization

after current injection as variable #11 ’Tail’ (Figure 1E); potential of the kink point of the first spike

generated at the smallest current injection as #12 ’Spike threshold’ (Figure 1E , blue traces); ampli-

tude of the first spike at the smallest current potential as #13 ’Spike amplitude’, and its rise time and

width at half-length as #14 ’Spike rise-time’ and #15 ’Spike width’ respectively (Figure 1F).
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The number of evoked spikes as a function of injected current (Figure 1G) was fitted with a

curve:

nsðiÞ ¼ maxð0; expð�ði� aÞ=bÞ � expð�ði�aÞ=cÞÞ � d

where i is current, and a-d are fit parameters. From this fit two variables were estimated: the current

that generated maximal spiking (defined as x-coordinate of fit curve maximum) as #16 ’I best’, and

weighted maximal spiking, estimated as maximum of a fit curve, as #17 ’N spikes, step’.

For the trace that produced highest number of spikes and was the closest to the inferred ’optimal

current’ (Figure 1E, black trace), and if more than one spike was generated, we reported the inter-

spike interval in ms (#18, ’Spike ISI’). If more than two spikes were generated we also reported the

ratio between the 2nd and the 1st inter-spike intervals (#19, ’Spike ISI accommodation’). For cells

that generated at least 2 spikes, the amplitude ratio of the 1st and the 2nd spikes in the train was

reported as #20 ’Spike accommodation’ (Figure 1E).

To identify cells that produced similar spike-trains in response to step current injections (as pre-

sented in Figure 8) we used a standard cost-based metric of spike-train similarity (Victor and Pur-

pura, 1996, 1997) with a cost of 0.1/ms for spike-timing adjustments; this procedure is sensitive to

both number of spikes and their latencies. For this calculation, responses to step current injections

of all amplitudes were combined and treated as one long recording (similar to that shown in

Figure 1H , but for step, rather than cosine injections).

Cosine current injections of different frequencies
To assess dynamic resonances in tectal neurons (Tan and Borst, 2007) we injected them with

cosine-shaped currents of different frequencies (Figure 1H). Spikes were detected in MATLAB and

verified visually, similar to step-injections. The number of spikes as a function of wave period

(Figure 1J) was fit with the formula:

nðT Þ ¼ max½0; expð�½T � a�=bÞ � expð�½T � a�=cÞ� � d

where T stands for wave period, while a-d are optimization parameters. From this fit, the optimal

wave period in ms was estimated (variable #22, ’Spiking resonance’). Mean number of spikes aver-

aged across waves of all frequencies was reported as #21 ’N spikes, cosine.’ The time constant of

spike-output build-up with cosine injection period increase (parameter b from the formula above)

was reported as a measure of spike-non-inactivation in response to slow-frequency currents (#23:

’Spiking resonance width’).

For the highest frequency of cosine current injections (100 Hz) number of spikes in response to

each current wave, taken as a function of wave number ns(x), was fit with the formula:

nsðxÞ ¼ ðx�aÞ � expð�ðx� bÞ=cÞ � dþ e

where x is a continuous independent variable interpolating integer wave numbers, and a-e are fit

parameters (Figure 1K). From this fit we inferred properties of spiking activation and inactivation in

each cell, and reported the wave number that was expected to produce highest spiking in this set

based on the fit (#24, ’Wave buildup’), and the speed of spike number adaptation, given by the c

parameter from the formula above (#25, ’Wave decay’).

Cosine current injections of different frequencies were also used to estimate the index of spiking

unpredictability, or jitter (#26, ’Jitter’). To estimate this value, 10 different spike trains generated in

response to cosine current injections (Figure 1I) were represented by d-functions in a 10 kHz trace,

convolved with a Gaussian (s = 2 ms) and normalized. Pairwise scalar products (correlations) were

calculated for each suitable pair of traces; these correlations were then averaged across all sweep

pairs. The resulting value represented a measure of spike-time consistency, as it would be equal to 1

for identical trains, and approach 0 for perfectly unmatched trains. To move from a ’consistency

index’ to a ’jitter index’ we inversed the value, and calculated a natural logarithm of it. The final for-

mula could thus be expressed as:

Jitter ¼ ln½1�meanðscalarProductðai; ajÞÞ�

where
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aj ¼ convðspikeTrainj; gaussianðs ¼ 2 msÞÞ

Synaptic stimulation protocol
For responses to synaptic stimulation (Figure 1J), we removed stimulation artifacts, averaged trials

with the same inter-stimulus intervals (ISIs), and calculated total synaptic charge for each of the ISIs.

The total charge Q as a function of ISI (Figure 1M) was fit with a function:

QðtÞ ¼ ðt�aÞ � exp½�ðt� bÞ=c� � dþ e

where t stands for the ISI value in ms, and a-e are fit parameters. From this fit we reported estimated

optimal inter-stimulus interval to produce maximal synaptic input as #27 ’Synaptic resonance’ (ms);

the parameter c from the fit formula as #28 ’Synaptic resonance width’ (the measure of sharpness of

synaptic frequency tuning), and the maximal total synaptic charge produced in a cell as #29 ’Synaptic

charge’ (pA�s). We also calculated the ratio between the maximal total synaptic charge observed in

each cell and the projected total charge in response to infinitely slow stimulation (max Q/e from the

fit formula above). We dubbed this variable #30 ’Synaptic PPF’ and interpreted it as a measure of

non-linear synaptic summation, even though unlike actual Paired-Pulse Facilitation (PPF), our mea-

sure was based on five, and not 2 stimuli; involved a ratio of total charges, and was reported for the

best inter-stimulus interval out of 10 different intervals we tried for each cell.

Finally, traces with longer inter-stimulus intervals (100, 150, 200, 250 and 300 ms) were used to

compare the average amplitude of early monosynaptic components of the response (those mea-

sured between 5 and 14 ms after the shock at the optic chiasm) to that of polysynaptic recurrent

responses that occurred later after the stimulus (observed from 15 to 145 ms after the shock;

Figure 1N). The ratio of average currents over these time windows was interpreted as the measure-

ment of relative strength of monosynaptic and polysynaptic (recurrent) inputs to each cell; it was

reported as variable #31, ’Monosynapticity’.

Spontaneous synaptic events
For 64 cells we recorded spontaneous synaptic activity, and calculated average frequency (#32,

’Minis frequency’) and amplitude (#33, ’Minis amplitude’) of spontaneous excitatory postsynaptic

currents. While spiking activity in the preparation was not blocked, and so some of these spontane-

ous events could have been influenced by background spiking in the network, our previously pub-

lished results show that these data can be used as good proxy for ’true’ miniature postsynaptic

potentials (Pratt and Aizenman, 2007).

Potential sources of variability
To get a better understanding of sources of cell properties variability, we checked whether values of

any of 33 variables we measured correlated with cell location within the tectum, as previously

described in (Wu et al., 1996; Khakhalin and Aizenman, 2012; Hamodi and Pratt, 2014), and

despite our attempts to consistently sample from the middle third of the tectum. For tadpoles at

stages 48–49, from the main dataset (see below), only two variables significantly correlated with ros-

tro-caudal distance in our preparation (after FDR adjustment of Pcorr with a = 0.05): membrane

capacitance Cm (r = �0.41, N = 46), and membrane resistance Rm (r = �0.42, N = 46). While com-

parison of rostro-caudal distances between different developmental stages is problematic, there was

no difference in rostro-caudal distances of sampled cells between main (naı̈ve) and visually stimu-

lated experimental sets at stages 48–49 (PMW = 0.3, N = 20 and 36 respectively). We also looked at

whether the age of the preparation (time since dissection in hours) and the time of the day (assum-

ing potential presence of circadian or diurnal rhythmic modulation in the tectum) affected any of our

variables (based on significant correlation after FDR adjustment with a = 0.05). For naı̈ve tadpoles at

stages 48–49 the preparation age did not affect any of the variables we measured, and none of the

variables were affected by the time of day at which cells were recorded.

Statistical procedures
As many variables analyzed in this paper were not normally distributed, and to stay consistent, we

preferred Mann-Whitney two-sample tests for comparing data between groups; p-values of this test
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were reported as PMW. At the same time, to make referencing and subsequent meta-analysis possi-

ble, we always report means and standard deviations in the text. Other statistical tests used in this

study include Pearson correlation (Pcorr), one-way ANOVA (PANOVA), multiple linear regression test

(PF), Welch generalization of Student’s t-test (PTT), and F-test for equality of variance (PV). When

exploring potential correlations between variables we used False Discovery Rate (FDR) procedure to

adjust for multiple testing, keeping the false discovery rate at 0.05 (Benjamini and Hochberg,

1995). The FDR procedure was performed separately for each massive set of comparisons, as indi-

cated in the text. In post-hoc pairwise comparisons of data groups after ANOVA tests we used a

more conservative Bonferroni correction, but reported uncorrected p-values. To illustrate correlation

levels between variables (Figure 2A) we used a custom MATLAB script inspired by the circular dia-

gram from the ’Circos’ visualization package (Krzywinski et al., 2009). As not every pair of variables

was available in every cell, different correlation tests were run on different numbers of points (from

38 to 154; median of 108). We verified our Pearson correlation-based analysis by calculating Spear-

man correlation coefficients; after FDR 112 Spearman correlations were significant (as opposed to

90 for Pearson), and all Pearson correlations with r>0.5 (n=11), including all shown in Figure 2B,

remained significant for Spearman calculation.

We ran the Principal Variables Analysis in R — package ’subselect’ (Mccabe, 1984; Cadima and

Jolliffe, 2001; Cadima et al., 2004) — using the correlation matrix of original non-imputed data,

which was computed on all available pairwise observations for each pair of variables. We then com-

pared and presented squared RM coefficients (Cadima and Jolliffe, 2001), to make the results of

this analysis comparable to that of factor analysis below.

As not all measurements were available for every cell in the dataset, for factor analysis we used a

generalization of a standard Principal Component Analysis (PCA) procedure, called the Variational

Bayesian PCA, or the PCA with missing values (PCA-MV; (Ilin and Raiko, 2010); MATLAB m-files are

available at the web-site of Bayesian Group, Aalto University, Finland). To verify that the PCA-MV

procedure is applicable to our data, we selected a subset of 52 cells and 27 variables to form a full

matrix free of missing values. A standard PCA was then run on this reduced data set, and the results

of it were compared to the results of PCA-MV run on the full data set. The scree plot of a standard

PCA on restricted data suggested that two first components (explaining 20% and 16% of variation

respectively) could be interpreted meaningfully; the remaining components representing individual

variability of the data, or ’noise’; see (Shabalin and Nobel, 2013) for references. We therefore only

present the first two PCA-MV components in this paper (explaining 15% and 8% of total variance

respectively). Component scores found by standard PCA and PCA-MV on the same subset of cells

(N = 52) were highly correlated (r = 0.90 and 0.85 for components 1 and 2 respectively; p < 3e�15),

suggesting that the PCA-MV is indeed applicable to our data set.

As 18% of all possible measurements in our dateset were missing, the total share of explained

variance (23%) was almost certainly underestimated, and cannot be compared to variance explained

by standard PCA. This statement is obvious if you consider that the estimation of total variance in a

set with randomly missing values is unbiased, yet explained variance is biased, as missing values can-

not contribute to the calculation: while predictions for them are available, the values themselves are

not present. As described above, a standard PCA run on a subset of data with full representation of

all cells and variables explained 36% of total variance. Similarly, when we performed multiple impu-

tation of missing values using R package ’Mi’ (Su et al., 2011) (see below for details), a standard

PCA procedure explained on average 35 ± 5% of total variance.

Some of the variables we assessed were distributed non-normally, and we attempted to run PCA-

MV on renormalized rank-transformed variables, and compared the results of this analysis to that of

PCA-MV run on raw variables. Rank-based normalization improved the amount of variance explained

by the first component (from 15% on raw data to 21% on rank-transformed data), but did not

improve explanatory value of higher components. Upon visual comparison of score-plots and load-

ing-plots, we concluded that the relative arrangement of individual cells (score-plot), as well as con-

tributing variables within the 2D plane of first two components (loading-plot), did not change

enough to justify the use of rank-transformation. All analysis reported in the paper was therefore

performed on raw variables.

While linear approaches to factor analysis, such as PCA or Multidimensional Scaling, are usually

considered to be safe and preferable methods when noisy and weakly correlated data are concerned

(Nowak et al., 2003; Sobie, 2009; McGarry et al., 2010), we compared the performance of PCA to
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the two most popular non-linear 2D ordination approaches: Isomap and Local Linear Embedding. To

quantify the quality of 2D ordination we looked at how well the 2D map preserved pairwise differen-

ces between points in the original 33D space, using the squared correlation coefficient R2 between

2D and 33D distances as an output measure (Pedhazur, 1982). Based on this metric, PCA preserved

51 ± 2% of variance in pairwise differences (5 alternative Bayesian imputations of missing data using

R package ’Mi’). The quality of Isomap projection improved as the projection became less and less

local, from 17 ± 4% for isomap based on 3 closest neighbors for each point, to 36 ± 7% based on 20

closest neighbors; still it was substantially lower than for PCA. The Local Linear Embedding approach

(R package ’lle’, based on (Kouropteva et al., 2005) also produced better results as more neighbors

were considered, with the local best solution achieved at 19 neighbors explaining 27 ± 9% of vari-

ance in pairwise differences (as opposed to 51 ± 2% for PCA). Based on these results we concluded

that for our data linear factor analysis approach is not only adequate, but also the most appropriate.

In all cases testing was performed on centered and normalized data.

We also attempted restricting the number of variables included in PCA by pre-screening them

based on their Principal Variables rank and leaving only variables that explained high amounts of

total variance in the dataset. At 17 variables (one half of the original set, corresponding to total

explained variance threshold of 6%) PCA-MV explained 40% of total variance in the set (as opposed

to 23% for full data PCA-MV), and some of the effects we describe in the paper became more prom-

inent (for example, F-value for changes in PCA cloud size across developmental stages increased

from 75 for the full set to 118 for restricted set). However we decided not to present PCA of

restricted data in the paper, as thinning out of the multivariate dataset is generally not recom-

mended for exploratory analysis when there is no objective post-hoc test to justify the use of one

restricted model over another (Guyon and Elisseeff, 2003). We therefore only report it here as

another validation of the method.

To simplify interpretation of loading- and score-plots we performed ’promax’ oblique rotation of

first two PCA-MV components using a standard ’rotatefactors’ routine from MATLAB statistics tool-

box. This approach maximizes varimax criterion using orthogonal rotation, and further simplifies the

projection by applying Procrustes oblique rotation, using orthogonal rotation from the first step as a

target.

To compare cloud sizes in the PCA space, we calculated all possible pairwise 2D Euclidian distan-

ces between the cells and compared their medians. To illustrate positions, shapes and spreads of

clusters at the PCA scores plot in Figure 5 and Figure 7 we used the Kernel Density Estimation pro-

cedure (Botev et al., 2010). To compare cluster sizes in the original 33-dimensional space, we cen-

tered and normalized the data, performed 50 alternative Bayesian imputations of missing values

using R package ’Mi’ (Su et al., 2011), and for each imputation subsampled 10 different sets of 50

points to compensate for small differences in original dataset sizes (n = 64, 56 and 60 for naı̈ve stage

44–45, naı̈ve stage 48–49 and visually stimulated stage 48–49 respectively). For each sampled subset

of points we computed city-block ("Manhattan") pairwise distances between all cells in the subset,

and calculated the median of these values. Finally, we used a t-test to compare sets of medians

between data groups (resulting in n = 500 values for each group).

To quantify the amount of internal heterogeneity within data sets, we ran agglomerative nesting

analysis (AGNES from package ’cluster’) in R, and used the agglomerative nesting coefficient as a

measure of heterogeneity (Struyf et al., 1996). In practice, we used the same imputation procedure

as described above (50 imputations, each contributing to 10 subsets of 50 points each), applied the

AGNES clustering procedure to these data, saved agglomerative clustering coefficients, and finally

compared them across data groups. Similarly, for ’local within-group PCA’ we used same imputation

/ subsetting procedure, ran PCA on each set, and calculated the share of variance explained by first

two components.

To statistically link the number of spikes produced in response to step injections to basic electro-

physiological properties of each cell we built a family of general linear models using non-marginal

sequential GLM statistics in R package ’glmulti’ (Calcagno and de Mazancourt, 2010).
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