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Myelin degeneration is one of the characteristics of aging and degenerative diseases. This study
investigated age-related alterations in expression of myelin basic protein (MBP) in the hippocampal
subregions (dentate gyrus, CA2/3 and CA1 areas) of gerbils of various ages; young (1 month), adult (6
months) and aged (24 months), using western blot and immunohistochemistry. Western blot results
showed tendencies of age-related reductions of MBP levels. MBP immunoreactivity was significantly
decreased with age in synaptic sites of trisynaptic loops, perforant paths, mossy fibers, and Schaffer
collaterals. In particular, MBP immunoreactive fibers in the dentate molecular cell layer (perforant path)
was significantly reduced in adult and aged subjects. In addition, MBP immunoreactive mossy fibers in
the dentate polymorphic layer and in the CA3 striatum radiatum was significantly decreased in the aged
group. Furthermore, we observed similar age-related alterations in the CA1 stratum radiatum (Schaffer
collaterals). However, the density of MBP immunoreactive fibers in the dentate granular cell layer and CA
stratum pyramidale was decreased with aging. These findings indicate that expression of MBP is age-
dependent and tissue specific according to hippocampal layers.
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Myelin is a fatty white substance that is formed from

oligodendrocytes and is an electrically insulating layer

surrounding nerve axons in the central nervous system

(CNS) [1]. Myelin basic protein (MBP) is one of key

structural proteins of CNS myelin, accounting for 30%

of total myelin protein [2]. MBP is considered a

multifunctional protein that participates in scaffolding

and signaling functions between oligodendrocyte and

extracellular space as well as in forming and compacting

myelin sheath in the CNS [3,4].

The hippocampus is a part of the limbic system and is

critical for learning and memory [5]. Sequential neuronal
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circuitry within the ipsilateral hippocampus is classified

as a trisynaptic loop. The circuit begins from neurons in

the entorhinal cortex and projects to granule cells of the

dentate gyrus through the perforant path, and then

continues to the CA3 pyramidal cells through the mossy

fibers, finally connecting with CA1 pyramidal cells

through Schaffer collaterals [6]. In addition, CA3 and

CA1 pyramidal cells are also connected with contralateral

pyramidal cells through commissural connections [6].

It has been reported that aging contributes to a loss in

hippocampal neurons and volume and that these changes

are closely related to impairments of cognition [7].

However, investigations regarding effects of aging on

myelin proteins in the hippocampus are limited. The

majority of studies on myelin changes during aging have

focused on alterations of subcortical white matter in

normal brains [8,9], and brains with neurological diseases,

such as Alzheimer’s disease [10,11] or schizophrenia

[12,13].

Therefore, the present study investigated the patterns

in distribution and alteration of MBP immunoreactivity

in the hippocampus during normal aging in gerbils

which are good biological models for normal aging [14].

Materials and Methods

Experimental animals

Male gerbils (Meriones unguiculatus) were used at

postnatal month (PM) 1, PM 6 and PM 24 as the young,

adult and aged, respectively. Gerbils (n=14 in each

group) were handled and cared following the guidelines

of current international laws and policies (NIH Guide for

the Care and Use of Laboratory Animals, The National

Academies Press, 8th Ed., 2011). Our experimental

protocol was approved by Institutional Animal Care and

Use Committee (IACUC) of Kangwon National

University (approval no. KW-160802-2).

Western blot analysis

Animals (n=7 in each group) were used to examine

change in MBP levels. Western blot analysis was

performed according to our published method [15]. In

short, hippocampal tissues were homogenized and

centrifuged, the supernatants were subjected to western

blot analysis. Rabbit anti-MBP (1:1000, Abcam, Cambridge,

UK) was used as primary antibodies. Results of western

blot analysis were scanned, and densitometric analysis

for the quantification of the bands was done using Image

J 1.46 (National Institutes of Health) to count relative

optical density (ROD): A ratio of the ROD was calibrated

as %, with young group designated as 100%.

Immunohistochemistry

To examine age-related changes in NeuN and MBP

immunoreactivity in the hippocampus during normal

aging, immunohistochemical staining and quantitative

analysis of immunohistochemical data were performed

according to our method [16,17,15]. Shortly, animals

(n=7 in each group) were anesthetized with pentobarbital

sodium and perfused transcardially with 4% paraform-

aldehyde. Brain tissues were sectioned into at 30-µm

thickness. Mouse anti-NeuN (1:800, Millipore, Ontario,

Canada) and rabbit anti-MBP (1:1000, Abcam, Cambridge,

UK) were used as primary antibodies. A negative control

test was carried out using pre-immune serum instead of

primary antibody to establish the specificity of the

immunostaining. The negative control resulted in the

absence of immunoreactivity in any structures.

To quantitatively analyze the immunoreactivities,

digital images of the corresponding hippocampal areas

from 6 sections per animal were captured with an

AxioM1 light microscope (Carl Zeiss, Germany) equipped

with a digital camera (Axiocam, Carl Zeiss) connected

to a PC monitor. First, NeuN immunoreactive neurons

were counted in a 250×250 µm square, applied

approximately at the center of the CA1, CA2/3 region

and DG using an image analyzing system (software:

Optimas 6.5, CyberMetrics, Scottsdale, AZ). Cell counts

were obtained by averaging the counts from each animal.

Second, the densities of all MBP immunoreactive

structures were evaluated based on optical density (OD),

which was obtained after the transformation of the mean

gray level using the formula: OD=log (256/mean gray

level). After the background was subtracted, a ratio of

the OD of image file was calibrated as % (relative

optical density, ROD) using Adobe Photoshop version

8.0 and NIH Image J software (National Institutes of

Health, Bethesda, MD). The mean value of the OD of

the young group was designated as 100%, and the ROD

of each group was calibrated and expressed as % of the

young group.

Statistical analysis

The data shown here represent the means±SEM.

Differences of the means among the groups were

statistically analyzed by analysis of variance (ANOVA)
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with a post hoc Bonferroni’s multiple comparison test to

elucidate age-related differences among groups. Statistical

significance was considered at P<0.05.

Results

NeuN immunoreactivity

In all the groups, most of NeuN-immunoreactive neurons

were distributed in the granular cell layer in the dentate

gyrus, and in the striatum pyramidale in the hippocampus

proper (CA1-3 areas) (Figure 1). The distribution pattern

of NeuN-immunoreactive cells was not changed with

age (Figure 1A-1C, 1A1-1C3). In addition, the number

of NeuN-immunoreactive cells in the dentate gyrus and

hippocampus proper was not significantly different

among the groups (Figure 1D).

MBP protein levels

The western blot results showed that MBP level in the

hippocampus was significantly declined with age during

Figure 1. NeuN immunohistochemistry in the hippocampus of young (A), adult (B), and aged (C) gerbils. Numbers of NeuN
immunoreactive neurons are not significantly different among all the groups. GCL, granular cell layer; MoL, molecular cell layer;
PoL, polymorphic cell layer; SL, stratum lucidum; SO, stratum oriens; SP, stratum pyramidale. Scale bars=400 (A-C), 100 (A1-C3)
µm. D: The relative number of NeuN immunoreactive neurons in the dentate gyrus, CA2/3, and CA1 region (n=7 per group). The
bars indicate the means±SEM.
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normal aging; the MBP level was significantly decreased

in the aged group compared to that in the young group

(Figure 2).

MBP immunoreactivity

MBP immunoreactivity in the dentate gyrus was

generally decreased with age; however, MBP immuno-

reactivity in the CA1-3 regions was different according

to layers (Figure 3).

Dentate gyrus: The density of MBP immunoreactive

fibers was generally low in the molecular layer and high

in the polymorphic layer in all the groups (Figure 3A1-

C1). In the molecular layer, which contains perforant

path, the density of MBP immunoreactive fibers was

significantly decreased by 48 and 60% in the adult and

aged, respectively, compared with that in the young

group (Figure 3B1, 3C1, 3D). In the granular cell layer,

MBP immunoreactive fibers were also decreased with

age (Figure 3B1, 3C1, 3D). In the polymorphic layer, the

density of MBP immunoreactive fibers in the young

group was highest among all layers (Figure 3A1). The

density in the adult group was significantly decreased by

56 and 67% in the adult and aged, respectively,

compared with that in the young group (Figure 3B1,

3C1, 3D).

CA2/3 region: In the stratum oriens, the density of

MBP immunoreactive myelinated fibers was not

significantly different among all the groups (Figure 3A2-

3D). In the stratum pyramidale, the density of MBP

immunoreactive fibers was generally highest (181% of

the young group) in the adult group (Figure 3B2, 3D),

and slightly decreased in the aged group (Figure 3C2,

3D). In the stratum lucidum, the density of MBP

immunoreactive fibers was generally low in all the

groups (Figure 3A1-3C2). In the stratum radiatum,

which contains mossy fibers, the density of MBP

immunoreactive fibers in the adult and aged group was

reduced by 13% and 39%, respectively, compared with

that in the young group (Figure 3B2, 3C2, 3D).

CA1 region: The density of MBP immunoreactive

myelinated fibers was generally high in the stratum

pyramidale in all the groups (Figure 3A3-3C3). In the

stratum oriens, the density of MBP immunoreactive

fibers was significantly increased in the adult by 35%

compared with that in the young group (Figure 3B3,

3D), and, in the aged group, the density was similar to

that in the young group (Figure 3C3, 3D). In the stratum

pyramidale, the density of MBP immunoreactive fibers

was not significantly different among all the groups

(Figure 3A3-3C3, 3D). In the stratum radiatum, which

contains Schaffer collaterals, MBP immunoreactive

myelinated fibers was abundantly found in the young

group (Figure 3A3). The density of MBP immunoreactive

fibers in the adult and aged was significantly decreased

by 30% and 64%, respectively, compared with that in the

young group (Figure 3B3, 3C3, 3D).

Discussion

In the present study, we compared the changes in

neuronal distribution and myelin expression in the

hippocampus of young, adult, and aged gerbils using

western blot and immunohistochemistry.

In this study, MBP protein levels were significantly

reduced and correlated with normal aging. Also, MBP

immunoreactivity was significantly reduced with age in

specific layers; namely, the dentate molecular cell layer

which carries axons of the perforant path, the dentate

polymorphic layer and the CA3 stratum radiatum which

contain the path of mossy fibers, and the CA1 stratum

radiatum contains the Schaffer collaterals. Similar to the

Figure 2. Western blot analysis of MBP in the hippocampus of
young, adult and aged gerbils. The relative optical density
(ROD) as percentage of immunoblot band is presented (n=7
per group; *P<0.05: significantly different from the young group,
†
P<0.05, significantly different from the adult group). The bars

indicate mean±SEM. 
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present study, Tanaka et al. (2005) reported that MBP

immunoreactivity in the hippocampal CA1 subfield was

significantly reduced in the senescence-accelerated mouse

P8 [18], and MBP protein levels were significantly

reduced in older rats [19]. On the other hand, the present

study showed that no significant differences in MBP

immunoreactivity were found in the CA3 stratum oriens

which sends axons to contralateral CA1 pyramidal cells

via the associational commissural pathway in all the

groups. Based on our findings and previous studies,

MBP immunoreactivity in the gerbil hippocampus

progressively decreases within specific layers with age;

however, MBP expression in the fibers going to the

contralateral hippocampus were relatively more resistant

to aging than fibers in the ipsilateral hippocampus.

Sloane et al. (2003) reported differences in age-related

alterations of myelin proteins in the corpus callosum of

aged rhesus monkey, a major white matter in the

Figure 3. MBP immunohistochemistry in the hippocampus of young (A), adult (B), and aged (C) gerbils. In the dentate gyrus, the
density of MBP immunoreactive fibers is decreased in all layers with age. In the CA2/3 and CA1 regions, the density of MBP
immunoreactive fibers is significantly reduced only in the stratum radiatum (SR) with age. GCL, granular cell layer; MoL, molecular
cell layer; PoL polymorphic layer; SL, stratum lucidum; SO, stratum oriens; SP, stratum pyramidale. Scale bars=400 (A-C), 50 (A1-
C3) µm. D: The relative optical density (ROD) of MBP immunoreactive fibers in the hippocampal subregions (n=7 per group;
*P<0.05, significantly different from the young group, †P<0.05, significantly different from the adult group). The bars indicate the
means±SEM.



242 Ji Hyeon Ahn et al.

Lab Anim Res | September, 2017 | Vol. 33, No. 3

telencephalon but that MBP levels were not significantly

different [20]. In addition, Xie et al. (2013) identified the

overall age-related decline of MBP in the corpus

callosum and in the dorsal column of the spinal cord in

the aged rats [19]. Above findings may be associated

with reports that show that myelinated nerve fibers are

significantly lost and their myelin sheaths break down

structurally with age in rhesus monkeys and humans,

which displays the formation of myelin lamellae splits

and myelin balloons in the gray and white matter

[21,22]. It is well known that myelin is relatively well

preserved in the gray matter compared to that in the

white matter; namely, age-dependent reduction of

myelin sheaths of nerve fibers [23,24] and myelin

proteins [19] is much more obvious in the white matter.

These results indicate that age-associated alterations of

myelin proteins might occur differently according to

specific brain regions and gray/white matter.

Finally, we show in the present study that neuronal

morphology and distribution patterns were not significantly

changed in the hippocampus in all the groups, although

numbers of NeuN positive neurons were slightly decreased

in the whole hippocampus with age, which coincides

with previous studies [25,26]. Despite the preservation

of neuron numbers, age-related defects of myelin lead to

reduction in the conduction velocity of nerve fibers and

diminution in neural connectivity [27,28], and there is a

significant correlation between myelin degeneration and

cognitive deficits [29,23]. Results of previous studies

support the present findings that showed that MBP

expression was age-dependent and decreased over time

without neuronal loss in the hippocampus, which

underscore age-related cognitive declines with advanced

age.

In summary, the present study identified age-related

declines in MBP expression in the gerbil hippocampus

as an indicator of aging; in particular, MBP immuno-

reactivity was significantly reduced in the trisynaptic

loop.
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