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Abstract Elemental-, equivalent black- and refractory black-
carbon are terms that have been defined in order to dissect the
more general term, black carbon, into its component parts
related to its specific chemical and optical properties and its
impact on climate and health. Recent publications have
attempted to clarify the meaning of these terms with respect
to their environmental impact, particularly on climate. Here,
we focus on the measurement aspects, reviewing the most
commonly implemented techniques for the direct and indirect
derivation of black carbon properties, their strengths, limita-
tions, and uncertainties, and provide a non-exhaustive bibli-
ography where the reader can find more detailed information.
This review paper is designed as a guide for those wishing to
learn about the current state of black carbon measurement
instrumentation, how calibration is carried out, when one
instrument may have the advantage over another, and where
new techniques are needed to fill important knowledge gaps.
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Introduction

The title of this manuscript specifically avoids the use of the
simplified term “black carbon (BC)” in order to emphasize that
BC has been used for years as a catch-all term to describe a
variety of types of carbonaceous particles. These types of parti-
cles are an important and ubiquitous component of the atmo-
sphere that impact climate because of their direct interaction with
solar radiation. Some fraction of them indirectly modify climate
through their activation as cloud droplets or ice crystals whose
size make them more effective dispersers of radiation than when
they are aerosol particles [1, 2]. Their emissions from sources of
combustion, man-made or through natural events, can modify
the weather inadvertently by increasing the number of small
water droplets while decreasing the production of rain or snow,
an event that is still largely not understood yet generally accepted
as an important factor in changing precipitation patterns [3, 4].

Only very recently, within the last 10 years, have re-
searchers started identifying which types of aerosol particles
have the largest impact on health. The general correlation
between particle mass and mortality/morbidity has been well
documented but more recent studies have established a causal
link between carbonaceous particles and cardiovascular, re-
spiratory, and neurological problems, although a great deal
more research is needed to understand which properties of the
particles are responsible for inciting physical disorders [5].

The need to quantify and document the properties of car-
bonaceous particles has led to the development and prolifer-
ation of a number of different instruments that measure these
properties using a variety of techniques. Some of the older of
these have been extensively evaluated, whereas the newer
ones are still being studied to better understand their limita-
tions and the uncertainties associated with their measure-
ments. There are also numerous technical articles that describe
the operating principles of these instruments as well as a
number of studies comparing one technique against another.
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Given the increasing number of investigators in a broad range
of scientific disciplines who are interested in themeasurement of
carbonaceous particle properties to support their research in
climate change, air quality, glaciology, health, and in other topics
where these type of particles have significant impact, it seemed
timely to write a succinct review of the most commonly used
instruments that measure these particle properties. This presen-
tation is meant to be a guide to those who are new to this field of
research and wish to learn the basic operating principles of the
instruments, their uncertainties and limitations, and to find liter-
ature references where more detail may be unearthed.

Definitions

Carbonaceous particles have many different properties but we
will focus here only on the properties of those particles that are
produced from combustion of fossil fuels and biomass and
their physical, optical, and chemical properties. Because of the
confusion over the years concerning terminology, we will start
with definitions that have recently been clarified by Petzold
et al. [6] with respect to the types of carbonaceous particles.

Black carbon (BC)

Following Petzold et al [6], we use BC when describing the
material identified through the characteristic aggregate morphol-
ogy of combustion sourced particles. Very little qualitative infor-
mation on mass is achieved using morphology, and so the
general qualitative term BC has been maintained for morpholog-
icmethods. This term has historically been used to describe those
refractory carbonaceous particles that strongly absorb light at all
solar wavelengths as reflected in a recent EPA report to congress
[7] stating “In this report, BC is defined as the carbonaceous
component of particulate matter that absorbs all wavelengths of
solar radiation;” where all wavelengths of solar radiation corre-
sponds to “the solar wavelengths present in the troposphere (eg,
280–2500 nm).”Bond et al. [8] provide a refined definition as“a
distinct type of carbonaceous material that is formed primarily
in flames, is directly emitted to the atmosphere, and has a unique
combination of physical properties.” Bond et al. [8] and Petzold
et al. [6] describe four fundamental physical properties of BC:

1. Strong visible wavelength-independent light absorption
with a mass absorption coefficient (MAC) of at least
5 m2 g–1 at 550 nm

2. Refractory with vaporization temperature near 4000 K
3. Graphitic SP2-bonded carbon with aggregate morphology
4. Insolubility in water and common organic solvents

Petzold et al. [6] recommend that ‘BC’ should be used only
as a qualitative and descriptive term when referring to light-
absorbing carbonaceous particles and should be avoided when
describingmeasurements with evolved gasmethods. Given that

the term BC has been so widely used by the modeling and
assessment communities, its use will be unavoidable but some
mitigation is possible as long as additional description is given
as to how it is measured.

Elemental carbon (EC)

This is the component of carbonaceous particles that is ther-
mally stable in an inert atmosphere up to approximately
4000 K. It can only be oxidized at temperatures >340 °C [9].
EC can be derived from evolved gas analyzer (EGA) measure-
ments, aerosol mass spectroscopy, and Raman spectroscopy
measurements [6].

Equivalent black carbon (eBC)

A number of commercial instruments that measure the absorp-
tion coefficient of absorbing particles derive a mass concentra-
tion of “BC” using a conversion constant referred to as a mass
absorption coefficient (MAC). In order to clarify that what is
being measured may not be 100 % BC, Petzold et al. [6]
recommend the use of eBC when reporting the carbon mass
derived from the absorption coefficient.

Refractory black carbon (rBC)

The carbon mass derived from laser induced incandescence
(LII) is referred to as refractory black carbon since it is derived
by measuring the thermal emission of the carbon component
of the particle that absorbs the laser energy.

Light absorbing carbon (LAC)

The carbon component of atmospheric aerosol that strongly
absorbs light at visible wavelengths [10, 11], including eBC
and brown carbon.

Organic carbon (OC)

This is the component of carbonaceous particles where the
carbon molecules are chemically combined with hydrogen
and other elements like oxygen, sulfur, etc. [12]. OC can be
derived from several different methods and is also an opera-
tional definition for EGA measurements.

Total carbon (TC)

This is the sum ofOC and EC derived fromEGAmeasurements.

Brown carbon (BrC)

The light-absorbing OC in airborne aerosols of various ori-
gins, which tends to appear brown rather than black [10, 13,
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14]. Their color is a result of non-uniform absorption over the
visible wavelength range.

Measurement techniques

Throughout the remainder of this review, the focuswill be on the
measurement of EC, LAC (as a pathway to eBC), eBC and rBC.
The general structure of the presentations for each measurement
technique is (1) a brief description of the measurement principle,
(2) discussion of how the principle is applied in practice, (3)
cautionary notes on the limitations and uncertainties associated
with the technique and interpretation of the measurements, and
(4) a list references for further reading (these are combined in the
reference section at the end of the paper).

Elemental carbon (EC)

Thermal and thermal optical analysis Thermal analysis tech-
niques, commonly referred to as evolved gas analysis (EGA),
require the deposit of the sample of interest on a filter or
aluminum substrate. This is placed in an oven where it is heated
over a period of time, in different stages, where each stage
represents a different temperature. The property of EC that is
being used as ameasure of its concentration is its high oxidation
temperature, >470 °C, compared with the lower temperatures
that will volatilize OC and inorganics. Depending on the par-
ticular technique that is implemented, the heating is done in an
oxidizing or an inert atmosphere where the number of stages
and the temperature at each stage also depends on the protocol
that is selected. The word “protocol” is used here in the context
of what different monitoring programs have selected as opti-
mum setting for analysis of filters taken at the stations within
their network. In the US, the two most commonly used proto-
cols are the National Institute for Occupational Safety and
Health (NIOSH) Method 5040 [15, 16] and the Interagency
Monitoring for Protected Visual Environments (IMPROVE)
method [17, 18], respectively. Other countries’ monitoring
programs have implemented similar protocols.

The implementation of the thermal analysis is shown in
Fig. 1. It illustrates the basic steps for achieving a separation
between OC and EC. Steps 1 through N-1 are designed to
remove the carbon molecules associated with the OC by
heating the sample in a non-oxidizing atmosphere so that the
OC is volatilized and converted to carbon dioxide (CO2) as it
passes over a manganese dioxide (MnO2) catalyst and is then
measured, either with a CO2 analyzer or converted to methane
and quantified with a flame ionization detector (FID). The last
step substitutes an oxidizing gas for the inert gas so that the
remaining carbon combusts. Although this measurement can
be made in just two steps, N is usually greater than two
because OCwill volatilize at varying temperatures, depending
upon its source and composition; hence, providing additional

information about the evolved OC at different temperatures.
The laser shown in the Fig. 1, and the associated detectors, are
used to make corrections to the measurements attributable to
problems inherent in the techniques that are described below.

The advantage of this technique is that the measurement
principle and its implementation are straightforward; however,
there are a number of limitations associated with its imple-
mentation that complicate the interpretation of the results and
introduce uncertainties that cannot be completely minimized.
An excellent discussion of these limitations and uncertainties
can be found in Watson et al. [19].

The separation of EC from OC would be simplified if there
were a distinct temperature below which no EC would combust
and above which no OC would volatilize. This is not the case
since the process of heating the OC can cause some fraction of it
to char by pyrolysis. This pyrolyzed carbon will no longer
volatilize and, instead, combusts during the final temperature
stage, incorrectly being measured as EC. In an attempt to
determine how much of the OC pyrolyzes, the sample on the
filter is illuminated with a laser and the amount of light trans-
mitted or reflected is measured. The EC on the filter will absorb
some of the incident light and as the char is formed it will also
absorb light so that the measured transmission or reflectance
will be seen to decrease. During the final stage of heating, the
pyrolyzed OC and EC will begin to combust, removing the
light-absorbing carbon so that the transmission or reflectance is
seen to once again increase. When the measured transmitted or
reflected light returns to its initial value, it is assumed that all
carbon combusted after this point is only EC. The two tech-
niques using transmitted or reflected light are referred to as
thermal optical transmittance (TOT) [16, 20] or thermal optical
reflectance (TOR) [18, 21], respectively. The analytical limit of
detection for these two techniques is about 0.2μg cm–2 [17, 20].

There are various interferences that introduce uncertainties
into the determination of the exact temperature at which only
EC is being measured. Some EC can be evolved during the
inert gas stage as a result of the presence of various metal
oxides (eg, Fe2O3) that will oxidize the EC [22]. In addition,
complicating the interpretation of the TOT or TOR is that not
all pyrolyzed OC will absorb at the wavelength of the laser
[23]. There are additional problems related to the location of
the temperature sensor in the oven with respect to the sample
since the amount of time the oven is kept at a constant
temperature is dependent upon how quickly the sample
reaches the set temperature.

The calibration of this method can only be done to deter-
mine the response of the analyzer to a known quantity of an
OC like sucrose that is put onto a filter, weighed, and then
analyzed in the instrument. There is no generally accepted
method for calibrating the response of the thermal method to
EC since the community has yet to agree on a standard
reference material (SRM) [24]. The general features of the
thermal analysis measurement technique are listed in Table 1.
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For further reading: (1) experiments that have compared
the different thermal methods: [23, 25–30]; (2) interferences
from inorganic material: [31–33]; (3) sources of other limita-
tions and uncertainties: [25, 28, 34–36].

Raman spectroscopy Raman spectroscopy (RS) measures the
inelastic scattering of light when the vibrational mode of a
chemical bond shifts the wavelength of some of the incident
light. RS is very selective towards the hexagonal lattice struc-
ture of SP2-hydridized carbon, although a range of vibrational
modes around a peak energy is observed, RS provides sensitive
information on the structural order of atoms within systems that
can show crystalline (ordered) or amorphous (disordered) prop-
erties and is very selective towards the hexagonal lattice struc-
ture of SP2-hydridized carbon [37].When a long-range order of
these hexagonal lattices exists, the material is referred to as
graphite. The solid carbon produced from combustion of fossil-
and bio-fuels results in short range (or disordered) hexagonal
lattices [37]. Carbon–carbon (C–C) bonds within an intact
hexagonal lattice produce characteristic RS modes at
1585 cm–1 (referred to as the ‘G’, or graphitic, mode), whereas
C–C bonds at the edges of crystals (incomplete hexagonal

lattice) produce RS modes at 1620 cm–1 and 1360 cm–1

[38–40] (‘D’, or disordered, modes). Because SP2-hybridized
carbon contains only C–C bonds, these modes are highly
selective to the occurrence of just EC.

Subtle differences in the RS modes can provide detailed
information on the size and morphology of graphite crystals,
and therefore, some contend, can provide source attribution,
as morphology can change with combustion conditions [37,
41]. The modes, however, can also change because of other
materials within the sample matrix. This is potentially an issue
for combustion-sourced EC where common co-emitted spe-
cies (such as organic matter) contain varying ratios of SP2-
and SP3-hybridized carbon continuum [37, 39, 41]. Commer-
cially available graphitic and organic materials are available to
provide reference RS spectra [39, 42], some which show
similarities to those of atmospheric EC [42].

The G mode intensity scales with crystal size [39], light
absorptivity [43], and mass of EC [42, 44] in the bulk sample
and so there is potential to use RS to quantify the absorptive
properties and mass concentrations of EC. Rosen et al. [43]
presented a semi-quantitative relationship of RS signals and
light absorption. They integrated the area of the RS modes
around 1600 cm–1 and compared this to the light transmission
through a filter, which can be corrected to produce a measure
of absorption. Keller and Heintzenberg [44] used the ratio of
intensities of the modes 1601 cm–1 and 888 cm–1 to linearly
correlate RS response to graphitic carbon mass. Mertes et al.
[42] integrated the area of the RS modes around from
1510 cm–1 to 1736 cm–1 to quantify the mass of atmospheric
EC on a filter. To achieve this, they calibrated the RS re-
sponses to known masses of a commercially available cali-
bration material that displayed similar RS properties to atmo-
spheric EC (see Figs. 2 and 3). Uncertainties of up to 13 % in
RS derived EC mass were reported [42]. If the calibration
material does not match the spectral features of atmospheric
EC, reported uncertainties will be larger. Ivleva et al. [41] and
others have reported that organic components can show RS
modes at around 1500 cm–3, which may interfere with the

Fig. 1 This diagram illustrates
that the derivation of organic and
elemental carbon using thermal
optical analysis requires multiple
stages of heating at different set
temperatures and with different
carrier gases

Table 1 Thermal optical analysis technique summary

Measures EC

Units Mass

Collection media Filter substrate

Collection time Hours

Uncertainty ±20 %-50 %

Calibration Currently no generally accepted method to
calibrate EC. It can be calibrated to model
compounds but there is no generally
accepted method for calibration to
atmospheric EC.

Biases Pyrolysis, inorganics

Measures BrC No
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wavenumber integration range used for the quantification of
EC by Mertes et al. [42]. Organic material can produce high
background fluorescence in RS, which can influence curve-
fitting routines and limit the quantitative ability of the ap-
proach [41]. Ivleva et al. [41] did show a robust negative
correlation between the relative content of EC to total carbon
and the FWHM of the D band at 1350 cm–1 with organics
appearing as an outlier to this relationship, potentially provid-
ing a semi-quantitative measure of the influence of organic
material to the RS analysis of EC mass.

Overall, the RS technique, although providing very specific
identification of EC in a sample, has had limited application to

the quantification of EC. One major drawback of the technique
is that the analysis of RS spectra usually requires curve fitting to
multiple convolved spectral features. To achieve robust fitting
high signal-to-noise is required; therefore, a sufficient quantity
of sample must be collected [37, 39]. To achieve this for
atmospheric samples, tens of minutes to multiple hours [42] of
sampling are required making RS an impractical technique for
real time atmospheric sampling requiring high time resolution.
As mentioned, interference by fluorescence of some materials
limits the ability to provide accurate curve fitting and so care
must be taken that sample collection is not done using a fluo-
rescing filter medium [39]. Sufficiently high laser power can
also damage samples, although signal to noise can be improved
with higher laser powers. Care should be taken to balance these
trade-offs [39]. The general features of the Raman spectroscopy
measurement technique are listed in Table 2.

Insolubility At room temperature, EC is an inert substance,
insoluble in polar and nonpolar solvents including acids, bases,
and organic solvents. While this property is often cited as a
defining characteristic of EC [6, 46], very little work has been
done to develop this characteristic into a measurement method.
For the analysis of OC, solvent extraction with polar and non-
polar solvents is often used to extract fractions of OC from filter
samples [47–49]. Apple et al. [50] have obtained an upper limit
estimate of the EC fraction in atmospheric aerosol sampled on
glass fiber filters from the carbon remaining insoluble after a
two-step extraction process. While we are not aware of any
attempt to further develop this estimation into a quantitative
measure of EC concentrations, insolubility has potential for
separating EC from OC if a suitable protocol with appropriate
solvents can be formulated and tested. The general features of
the Insolubility measurement technique are listed in Table 3.

Equivalent black carbon via measurement of light absorbing
carbon (LAC)

Light absorption by particles has been used extensively to derive
a mass of eBC requiring the conversion of the light absorption

Fig. 2 Figure 1 from Mertes et al. [42]. Raman spectra of graphite
(dashed dotted line), Monarch 71 (dotted line), and GC contained in
atmospheric aerosol particles (solid line)

Fig. 3 Figure 4 from Mertes et al. [42] comparing GC mass loadings on
the PSAP glass fiber filters and simultaneously operated polycarbonate
filters from ambient sampling. The expected GCload values (x-axis) are
calculated from the GC mass loadings measured on the polycarbonate
filters. Regression results (straight line) and the 1:1 line (dashed line) are
indicated

Table 2 Raman spectroscopy technique summary

Measures EC by calibration

Units Mass

Collection media Filter substrate

Collection time Hours

Uncertainty >13 %

Calibration Commercially available material can
provide calibration for RS spectra
and derived EC mass

Biases Possibly co-emitted organics

Measures BrC No
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coefficient to mass, via a mass absorption coefficient (MAC).
The MAC of atmospheric air masses containing BC can vary
with source and can be highly variable. Bond and Bergstrom
[11] provide an extensive review of the literature and concluded
that theMAC of freshly emitted BC from fossil fuel combustion
is 7.5 ± 1.2m2g–1 (550 nm), whereasMACs for a variety of BC-
containing air masses can range upwards of 15 m2g–1.

In recent years, it has been recognized that there are mul-
tiple contributors to atmospheric particle light absorption that
may alter or bias theMAC of atmospheric BC [10, 11, 49]. BC
and mineral dust were thought to be the main particle ab-
sorbers until recent research into the intrinsic absorptive prop-
erties of organic carbon showed that absorption can occur at
some specific short, visible wavelengths (called brown car-
bon, BrC) [10]. Additionally, the enhanced BC absorption by
coatings on the BC (internal mixing) has been demonstrated
theoretically [51, 52], in the laboratory [53–55], and field
settings [56–58]. Given this, it must be recognized that any
assumption that an absorption method is measuring exclusive-
ly BC must be questioned. When the contribution of these
non-BC absorbers is unknown, and a BCMAC is applied, the
non-BC absorption is converted to a BC equivalent, thus the
source of the term “equivalent BC,” described here and by
Petzold et al. [6]. This treatment could bias the derived eBC
mass high compared with the methods outlined in other sec-
tions, particularly for commercial instruments that use a single
MAC to convert light absorption to eBC mass. There is
evidence that for measurement of fresh combustion particles
that this bias is within the uncertainties of the measurement
methods [8, 58]. For instruments that measure light absorption
but derive a BC mass by applying a single MAC to all air
masses, care must be taken to determine whether the manu-
facturer applied MAC is appropriate.

These biases may be reduced by determining individual
contributions to total absorption. Contamination from dust can
usually be determined by a combination of air mass trajectory
modeling, particle size measurement or absorption wavelength
dependence [53, 59, 60]. Contributions of BrC and internal
mixing have been determined using a variety of methods
[61–63], however, the multi-wavelength extrapolation methods
that have often been applied contain significant uncertainties

that should be considered before quantitative attribution is
reported [62]. An alternative to measuring these contributions
is to minimize them by sample pretreatment such as sample
heating to vaporize the semi-volatile materials that lead to
increased absorption by internal mixing or BrC [57, 62, 64].

The following sections detail the common filter-based and
in-situ particle absorption measurement methods and pre-
suppose that (a) the contributions of non-BC absorbers are
adequately considered, and (b) an acceptable community
standard MAC is applied to derive eBC .

Filter transmission measurements The darkening of filters
loaded with absorbing atmospheric particles is commonly used
to measure particle absorption. The intensity of light measured
before (I0) and after (I) passing through a filter (of thickness x)
loaded with particles can produce an absorption coefficient of
the particle-filter system (bpf), according to the Beer-Lambert
law:

I ¼ Ioe
−bpf x

Instruments that use this filter transmission technique deter-
mine the absorption coefficient of the system by knowing the
surface area of the collection filter (A), the flow rate of air
passing over the filter (V), the sample time interval (Δt), and
the light intensities at the beginning and end ofΔt [46, 65–71]:

bpf ¼ A

V

ln
Io
I

� �

Δt

True absorption can only be measured if there is no light
scattered off the filter matrix that can be interpreted as absorp-
tion. This method also relies on the sample layer being thin to
avoid multiple scattering effects of radiation between particles
[72]. In practice, these conditions are rarely met, so significant
effort to minimize or characterize and correct for these artifacts
is necessary to produce accurate bAbs values [eg, 45, 65, 67].
The following corrections are likely necessary for correction of
measured transmission to light absorption:

1) Multiple light scattering within the filter:
Incident light can scatter from the unloaded filter ma-

trix (membrane or fibers) and increase the sample path, x
[73]. This will be dependent on filter type and optical
configuration of the instrument [46, 71, 74].

2) Filter Loading:
As the filter becomes loaded with absorbing particles,

the incident light is absorbed and less light is passed
through the filter, which is the basis for the measurement.
However, as loading builds, the sample path (x) is de-
creased, leading to a bias in the calculated bAbs [66, 71].
This correction is dependent on the amount of absorbing
material loaded onto the filter and dependent on the particle

Table 3 Insolubility technique summary

Measures EC solvent extraction

Units Mass

Collection media Filter substrate

Collection time Hours

Uncertainty Unknown

Calibration Untested

Biases Unknown

Measures BrC No
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optical properties (eg, single scatter albedo (SSA) and
particle size [65, 70, 71], which are highly variable depend-
ing on source, transport, processing etc. [71, 75–79].

3) Particle Scattering Correction:
As the filter is loaded with scattering particles, incident

light is scattered in all directions. This leads to higher
filter reflectance and more opportunities for absorbing
particles to absorb light. This correction will be dependent
on total particle scattering (shape, size, composition,
mass) [65, 66]. For the particle soot absorbing photometer
(PSAP), approximately 2 % of particle scattering is
interpreted as absorption [65, 70], whereas the choice of
the Aethalometer filter introduces somewhat less of a
scattering artifact [73].

In addition to the corrections, these methods require careful
calibration of the filter surface area (A), sample flow rate (V)
[65, 66, 71], and may have biases due to liquid-like organics
spreading across filter fibers [80–82]. This phenomenon in-
troduces one of the limitations of the filter-based methods in
that the particles deposited on the filter may change morphol-
ogy [46], a property that contributes to both scattering and
absorption. Additionally, artifacts related to elevated relative
humidity and pressure and temperature fluctuations can influ-
ence the quality of measurements [83]. See Fig. 4 for a
schematic of the radiation pathways for these methods.

There are numerous applications of the filter transmission
method. The integrating plate (IP) [68] or integrating sand-
wich (IS) [84] methods use optical diffusors to measure the
scattered radiation to enable scattering corrections. The IP and
IS methods also utilize a membrane filter (with a refractive
index that is close to that of atmospheric particles) for sample
collection and, therefore, minimizes multiple scattering effects
inherent to fiber filters. However, because of the sharp filter–
sample interface, the filter loading correction can become
significant. The IP and IS methods also do not measure
continuously, therefore requiring sample collection followed
by offline data collection. Detailed discussions on these par-
ticular techniques are provided by Clarke et al. [85],
Heintzenberg et al. [86], Horvath [87], and Reid et al. [88].

Advances to the IP and IS methods include instruments such
as the aethalometer [67, 71], PSAP [65], and the continuous
soot monitoring system (COSMOS) [89]. There are also a
number of PSAP variants in use; the continuous light absorp-
tion photometer (CLAP; US National Oceanic and Atmospher-
ic Administration, Global Monitoring Division), the PSAP-
ITM [90], and the spectral optical absorption photometer
[SOAP, 91]. These instruments sample continuously (seconds
resolution) over multiple wavelengths, and often have multiple
filter spots or automated filter changes for continuous field
operation. One downside of these methods is the use of fiber
filters that introduce varying degrees of scattering corrections
larger than those of the membrane filters used by the IP and IS
methods. These methods require significant laboratory experi-
ments using a reference absorption method to determine appro-
priate correction factors [66, 70, 71, 83, 89, 92–94]. Ultimately,
these correction factors lead to measurement uncertainties of
20 %–30 % [8]. Of these techniques, the aethelometer and
PSAP are the most commonly used commercial multi-
wavelength instruments. Collaud Coen et al. [66] and Virkkula
and co-workers [70, 94] provide the most detailed discussions
on the aethelometer and PSAP, respectively.

It should be noted that the use of these multi-wavelength
instruments for interpreting absorption by BC and BrC is not
advised, particularly for conditions where BrC does not con-
tribute a significant amount of absorption. Both Collaud Coen
et al. [66] and Virkkula et al. [70] point out that there are
wavelength-dependent correction factors, whereas Lack and
Langridge [62] show the uncertainties of using these multi-
wavelength attribution methods.

Recently, Petzold and co-workers [45, 69] introduced the
multi-angle absorption photometer (MAAP), which measures,
at multiple angles, the back-scattered light that is used in a
radiative transfer model to provide the scattering corrections.
In contrast to the other methods, the MAAP does not use
empirical corrections. Using this method, they reported that
filter loading and multiple scattering artifacts were significantly
reduced. The MAAP has a reported uncertainty of about 12 %
(see Figs. 4 and 5 for the schematic of theMAAP radiation path

Fig. 4 Schematic of the MAAP radiation pathway, highlighting the
forward and backscattered radiation, the multiple scattering within the
particle layer and filter. Aerosol Science and Technology: Evaluation of
multiangle absorption photometry for measuring aerosol light absorption.
(39):40–51. Copyright 2005. Mt. Laurel, NJ., Reprinted with permission
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and comparisons of MAAP absorption with measurements
from a PSAP and a photo-acoustic spectrometer (PAS), the
latter instrument discussed in the following section.

Although significant work has been done on the measure-
ment corrections for a variety of filter-based absorption instru-
ments, there is still variable quality of bAbs measured by filter-
based methods compared with a bAbs standard, such as the
photo-acoustic method (e.g., [96, 97]), the difference of extinc-
tion and scatteringmethod (e.g., 64, 96]), or theMAAP [66, 69,
97]. Controlled laboratory measurements of simplified BC
particles or fresh fossil fuel combustion particles usually pro-
vide acceptable comparisons, whereas complex particles from a
variety of sources can produce deviations from the reference
methods [45, 53, 70, 79, 81, 83, 92, 98–103].

We note here that there are other commercial applications
of the filter transmission method, particularly in industry
applications where the qualitative Filter Smoke number
(e.g., [104]), or Bosch number measurements are used to
determine exhaust opacity. We note that these measurements,
although used under standardized protocols (ISO8178), have
not been subjected to the same rigorous artifact corrections as
the aethelometer, PSAP, COSMOS, or MAAP.

Advantages of these well-characterized methods include
insensitivity to gas phase absorption and simple, inexpensive
operation. The disadvantages included the added uncertainty
of the measurement because of the required corrections and
the removal and potential alteration of the particles from their
suspended state. The general features of the filter-based ab-
sorption measurement technique are listed in Table 4.

Photo-acoustic techniques Thermal measurement techniques,
including photo-acoustic and interferometric (see following
section) techniques are very direct, in situ measurements of
the aerosol absorption coefficient at the wavelengths of the
light source(s) employed. They quantify the fraction of
absorbed optical energy that is rapidly transferred into the
surrounding air as illustrated in Fig. 6 for the photo-acoustic
technique [46]. Light, generally in the form of a laser beam, is

incident on a particle suspended in air (Fig. 6a); some of the
light is transmitted, some scattered, and if the particle has a
non-zero imaginary component of the refractive index, some
is absorbed and heats the particle (Fig. 6b). For small particles,
the heat is rapidly transferred to the surrounding air (Fig. 6c),
and if the incident light is power-modulated, an outgoing
acoustic wave at the modulation frequency is generated [46].
Generally, an acoustic resonator is employed to enhance the
acoustic signal and to exclude and reduce acoustic noise. The
resulting acoustic pressure is quantified with a microphone
where the resulting signal is proportional to the aerosol ab-
sorption coefficient [105].

To calibrate the photo-acoustic technique, the microphone
signal needs to be related to the absorption coefficient of the
sample. For this purpose, a sample with known absorption
coefficient can be employed, for example a gas such as nitro-
gen dioxide [106], ozone [96], or oxygen [107, 108], which
has a well-known absorption spectrum and that can be intro-
duced into the sample volume at a controlled concentration. A
related calibration method that does not rely on previously
measured absorption coefficients and concentrations intro-
duces an absorbing gas or aerosol with sufficiently high
absorption coefficient so that the transmittance and thereby
the extinction coefficient can be measured accurately. If

Fig. 5 Comparison of MAAP-
measured absorption coefficients
with those measured by the
difference method, PAS and
PSAP. 1:1 line shown as dashed
line. Aerosol Science and
Technology: Evaluation of
multiangle absorption photometry
for measuring aerosol light
absorption. (39):40–51.
Copyright 2005. Mt. Laurel, NJ.,
Reprinted with permission

Table 4 Summary of measurement features of filter-based absorption

Measures Absorption and eBC by MAE

Units Mm–1, Mass

Collection media In situ

Collection time Seconds

Uncertainty 12 %–30 %

Calibration Involves corrections requiring extensive
laboratory experiments to derive eBC

Biases Elevated RH, possible elevated levels of OC

Measures BrC? Multi-wavelength units can provide qualitative
to semi-quantitative estimates [62]
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scattering can be neglected (generally true for gases), calibra-
tion can be achieved by assuming that the absorption coeffi-
cient equals the extinction coefficient. For aerosols, scattering
cannot be neglected but the scattering coefficient can be
measured with the reciprocal nephelometer [109] that is com-
monly integrated into photo-acoustic instruments and the
absorption coefficient can be obtained by subtracting the
scattering coefficient from the extinction coefficient. For the
measurement of eBC, a correlation between BC mass and
measured absorption needs to be established (e.g., [110,
111]). This is best done at a near-infrared wavelength where
contributions of brown carbon to absorption are insignificant.

For gases, not all of the absorbed energy may be available as
acoustic energy because it may be transferred into different
pathways. This must be taken into account if the instrument is
calibrated using gaseous absorption. One example of an alter-
nate, energy-absorbing pathway is the photodissociation of the
absorbing molecule, thereby reducing the acoustic signal. The
photodissociation of nitrogen dioxide (NO2), a frequently used
calibration gas, is prevalent in the ultraviolet below 398 nm
[112]. Another source of energy absorption is collision-induced
relaxation that limits conversion of absorbed energy into acous-
tic energy. This is common for the oxygen molecule [108]. For
the case of calibrating with particles, not all of the absorbed
energy may be transferred into acoustic energy because (1) part
of the energy is used to evaporated semi-volatile particle com-
pounds such as water, thereby reducing the acoustic signal
[113–116], (2) because for large particles, the time constant of
heat transfer to the surrounding air [117] might be larger than
the inverse of the power modulation frequency. In the latter
case, the error can be detected and quantified by observing the
phase shift of the acoustic signal [46]. Gaseous absorption of
the aerosol sample will also contribute to the measured

absorption coefficient. To obtain the absorption coefficient of
the particles, wavelengths where gaseous absorption of air is
minimized should be used. Any remaining gaseous absorption
can be subtracted by periodically or continuouslymeasuring the
absorption of particle free (ie, filtered) air [118].

Several research groups and companies have built and are
using photo-acoustic instruments for the measurement of aero-
sol light absorption. Early efforts were often hindered by the use
of very large and power-consuming lasers such as argon ion
lasers (e.g., [119]), whereas more recently small and efficient
diode lasers and diode-pumped solid state lasers are commonly
used (e.g., [118, 120]). Some early efforts used radial and
azimuthal resonators [121–123], whereas currently longitudinal
resonators of half- or full-wavelength length have becomemore
common [46]. The influence of acoustic background noise has
been reduced, for example, by placing sample inlets at nodes of
the acoustic pressure [118], employing acoustic notch filters
[118], using subtraction techniques employing two identical
resonators with only one containing a laser beam [96], and by
reducing noise from the sample pump with a critical orifice
[46]. Such reduction of acoustic background noise, together
with the use of phase-sensitive detection techniques and pow-
erful lasers and optical multi-pass cells [96], has yielded detec-
tion limits for the measurement of aerosol light absorption
below 0.1 Mm–1 (60 s averaging time) and an instrument
accuracy of ~5 % [96]. In addition, the ongoing development
of multi-wavelength photo-acoustic instruments [124–128] is
important for characterizing the wavelength dependence of
aerosols such as brown carbon and mineral dust [46].

Photo-acoustic instruments have been used for characteri-
zation of aerosols in ambient air with instruments deployed
stationary and on vehicles, including airborne deployment
[46]. The early characterization and measurement of eBC
and the calibration of filter-based measurements (e.g., [80,
81, 92]) have been complemented with characterization of
brown carbon [63, 124, 129–132] and mineral dust [133],
and the investigation of the role of particle coatings [53, 63,
132, 134], morphology [135], and humidity induced particle
collapse [136] on light absorption. While photo-acoustic in-
struments have become the “standard” for the accurate mea-
surement of aerosol light absorption [97], deployment is still
limited compared with filter-based instrument, and part of
their utility has been in improving the calibration of filter-
based measurements. The general features of the photo-
acoustic measurement technique are listed in Table 5.

Interferometric techniques Light absorption can be measured
by photo-thermal methods that alter the density and refractive
index (RI) of air molecules or particles that absorb laser
radiation [137]. Photo-thermal interferometry (PTI1) is the

1 Here we use PTI for the methods originally described as phase fluctu-
ation optical heterodyne/homodyne spectroscopy (PFLOHS)

Fig. 6 (A) Light is incident on a particle. (B) Some of the incident light
is absorbed by the particle, some is transmitted, and some is scattered. The
particle is heated by light absorption. (C) Heat transfers from the particle
to the surrounding air. (D) The surrounding air expands upon receiving
heat, resulting in an outgoing acoustic wave if the incident light is power-
modulated (from [46])
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method most commonly used to measure particle absorption
[138–141] and is the focus of this review section.

When particles absorb radiation, the energy is returned to
the surrounding air by collisional quenching, which heats the
air leading to gas expansion, gas density changes, and RI
changes [141]. These changes are measured using an interfer-
ometer, where two identical laser beams (split from the same
source) pass through almost identical geometric paths. The
only difference in beam paths is that the ‘probe’ beam travels
through the sample volume and is then recombined with the
second ‘reference’ beam after which an interference pattern is
measured. When the sample is heated with a ‘sample’ laser
(modulated at frequencies <100 Hz, [142, 143]), the optical
path length of the probe beam changes because of the gas
density change, which leads to a phase shift between the probe
and reference beams, observable in the interference pattern.
This phase shift is proportional to the RI change of the sample
air, and the amount of energy absorbed by the sample [141,
142, 144, 145].

Theoretically, PTI can achieve detection limits two orders
of magnitude lower than PAS [144]; however, early
implementations did not achieve such detection limits [96,
141, 142]. This can be attributed to unwanted changes in the
optical path length from sample turbulence, temperature gra-
dients, and mechanical vibrations [141, 142, 146]. Signal to
noise can be improved by increasing sample and probe laser
power and integrated sample volume [141–143], although
particle components, including water at elevated RH, can
volatilize and create measurement biases (also common to
PAS) when subjected to excessive laser power [142, 145].
Probe beammodulation frequency can also be chosen within a
certain range to avoid mechanical vibrations, whereas the
probe laser wavelength can be chosen to avoid absorption of
specific gas or particle species [141, 142, 147, 148].

The PTI signal is linear with high concentrations of ab-
sorbing species [141, 145]; however, sample saturation can
occur when the phase change between probe and reference
beams becomes too large [142] and when the particles are too
large to transfer the absorbed energy to the surrounding air

within the probe beam modulation period (an issue common
to PTI and PAS) [141, 142]. Measurements of sub-micron
particle properties and sample dilution can successfully avoid
these issues [141, 142, 145].

PTI calibration for particle absorption has been achieved in
a number of ways. Lin and Campillo [141] and Sedlacek [143]
measured the PTI phase shift of known concentrations of
ethylene or NO2, utilizing the known absorption cross section
of these gases to determine absorption. Particle mass, calcu-
lated from known particle diameters and number concentra-
tions of mono-disperse ammonium sulfate particles, rather
than absorption, was correlated to the PTI phase shift by
Fluckiger et al. [142].

Due to fundamental instabilities in the various interferom-
eter optical designs that make the technique susceptible to
mechanical vibrations [141], the PTI technique has seen very
limited application for measuring particle light absorption
[141, 142]. To overcome this issue, Moosmüller and Arnott
[146] introduced a unique interferometer design that virtually
eliminated these mechanical instabilities, the folded Jamin
interferometer, and this design has proven to be capable of
robust visible wavelength light absorption measurements by
particles [143, 145, 149]. Sedlacek and Lee [145] showed a
10 % uncertainty in measured absorption and 0.4 Mm–1

detection limit (10 s sampling time), in addition to showing
accurate comparisons to absorption measured by other tech-
niques (PAS and PSAP). For absorption by particle from
laboratory and ambient sources, comparisons of PTI and
PSAP to within 4 % were achieved (Fig. 7).

With these recent advances and other advantages over filter-
based methods (ie, no particle scattering interferences [143]),
and claims of superiority over PAS [142], PTI would appear to

Fig. 7 Figure 3 from Sedlacek and Lee [145], plot of nigrosin absorption
coefficients measured by the PTI and Aerosol Science and Technology:
Photothermal interferometric aerosol 1813 absorption spectrometry.
(41):1089–1111. Copyright 2007. Mt. Laurel, NJ., Reprinted with
permission

Table 5 Summary of measurement features of photo-acoustic techniques

Measures Absorption and eBC by calibration

Units Mm–1, Mass

Collection Media In situ

Collection time Seconds

Uncertainty 5 %

Calibration Calibration aerosols and gases

Biases Large particles (>2.5 um), elevated RH

Measures BrC At appropriate wavelengths, with
appropriate sample conditioning
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be a favorable advance for measuring particle absorption, par-
ticularly when multi-wavelength PTI instrumentation seems
eminently possible [145]. Despite this, PTI remains a research
tool with limited applications for measuring particle light
absorption.

Comprehensive treatments of the theory of the PTI tech-
nique are presented in a number of studies (e.g., [138, 139,
141, 142]), while the technique also finds common application
in metrology [150–153]. Moosmüller et al. [144] provided a
review of PTI for particle absorption measurements following
the critical advance of the folded Jamin interferometer by
Moosmüller and Arnott [146]. Since these two publications,
only the work of Sedlacek and coworkers [143, 145, 149] has
provided any advance to the science on PTI measurement of
particle absorption. The general features of the photo-thermal
interferometry measurement technique are listed in Table 6.

Remote sensing measurements At the moment, eBC cannot
be derived using remote sensing techniques, although a great
deal of effort is being invested in finding the means to do so. If
it is possible to remotely measure aerosol light absorption or
single scattering albedo (SSA) at multiple wavelengths, it may
be possible to distinguish between the dominant aerosol types
that absorb in the visible and near-visible wavelengths, more
specifically BC, BrC, and mineral dust [154]. The derivation
of aerosol light absorption by remote sensing techniques has
in itself been challenging with mainly multi-angle techniques
showing success. Single-angle techniques such as monostatic
lidar [155] or simple sun photometry [156] cannot distinguish
the scattering and absorption components of extinction. Ad-
vanced high-resolution lidar [157–161] and Raman lidar sys-
tems [162–164] can measure aerosol particle extinction and
backscatter coefficients; however, the 4π-integrated aerosol
scattering coefficient cannot be derived from the aerosol
backscatter coefficient without knowledge of the particle-
phase function that depends on the size distribution and re-
fractive indices of the ensemble of particles that scatter and
absorb the incident light. It has been found, however, that
mineral dust aerosol extinction coefficients depend much less

on the imaginary part of the refractive index than mineral dust
backscatter coefficients; hence, their ratio may provide some
indication of mineral dust aerosol light absorption [165].
Multi-wavelength Raman lidar has been used for the retrieval
of the SSA for spherical particles [166] and bi-static lidar
systems may be able to derive significant parts of the aerosol
phase function; hence, there is some potential for deriving
light absorption by remote sensing, possibly in combination
with sun photometry [167].

The retrieval of aerosol light absorption, using the measure-
ment of diffuse and direct solar radiation [168], is being
attempted with multi-angle and multi-wavelength observations
of sun and sky radiances with sun and sky scanning radiome-
ters, as implemented by AERONET [169] or multi-filter rotat-
ing shadowband radiometers such as those deployed by the
ARM program [170, 171]. These retrievals require sophisticat-
ed inversion algorithms that are based on models of the vertical
profiles of atmospheric particles and optical calculations of their
properties for spherical or spheroidal particles. These retrievals
yield column-averaged aerosol light absorption, which is com-
monly given either as SSA or absorption optical depth
[172–175]. Spectral SSA data fromAERONET have been used
to derive concentrations of mineral dust iron and BC during
dust and pollution episodes. Some of these retrievals show
reasonable agreement with chemical analyses [176]. Measure-
ments of aerosol light absorption with sun and sky radiometer
networks are extremely useful for the characterization of aero-
sol light absorption for specific aerosol types and for determin-
ing their atmospheric distribution [154, 177, 178]. However,
these observations yield column-integrated measurements and,
therefore, “effective” values, potentially including different
aerosols and mixing states. Additional comparisons of remote
sensing with direct in-situ measurements of aerosol light ab-
sorption would be desirable.

The retrieval of aerosol light absorption from satellite mea-
surements is even more challenging [179] because of the
spatial and temporal variations of the earth’s surface albedo
that often dominates the measured radiances. Proposals have
been made to use critical reflectance [180, 181] and sun glint
over oceans [182], yet only UV measurements, originally
designed for the monitoring of stratospheric ozone, are cur-
rently employed operationally, with accuracies that still re-
main open for debate. Critical reflectance methods and multi-
angle measurements are showing some promise, as are novel
multi-angle, polarimetric measurements, whose objective are
more accurate SSA retrievals.

Sensors that are currently being used to retrieve aerosol
optical properties include the total ozone mapping spectrometer
(TOMS) and the ozone-monitoring instrument (OMI). TOMS
was deployed on board the Nimbus-7 (1979–1992), Meteor-3
(1991–1994), and Earth Probe (1996–2006) satellites. Data
products from TOMS include the aerosol index (AI), calculated
from the difference in surface reflectivities derived from two

Table 6 Summary of measurement features of photo-thermal
interferometry

Measures Absorption and eBC by calibration

Units Mm–1, mass

Collection media In situ

Collection time Seconds

Uncertainty 10 %

Calibration Calibration gases of known concentrations

Biases Large particles (>2.5 um), elevated RH

Measures BrC With instrument development
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UV channels [183]. The AI, although effective for the detection
of aerosols above land and ocean surfaces, including the detec-
tion of absorbing aerosols (ie, smoke and mineral dust) above
ice, snow, and clouds [184], and qualitatively mapping the
distribution of aerosol light absorption, does not provide a
quantitative measure of aerosol light absorption. The TOMS
observations, when used in conjunction with the moderate
resolution imaging spectroradiometer (MODIS) [185]measure-
ments in the visible spectrum, have been utilized to retrieve the
SSA [186–188]. MODIS observations have also been used to
implement the critical reflectance method [180, 181] for retriev-
ing aerosol SSA [189]. The multi-angle imaging spectrora-
diometer (MISR), operating in the visible-near-IR spectrum,
on board the Terra satellite (1999–present), is able to distinguish
weakly- from strongly absorbing aerosol types by retrieving the
SSA [190–193].

There was the expectation that the state of satellite aerosol
light absorption retrieval would be improving after the 2009
launch of the aerosol polarimetry sensor (APS) on board the
Glory satellite [194, 195]; however, this satellite experienced a
launch failure and never reached orbit. APS data products,
based on the multi-angle polarimetric capabilities [194, 196]
were to include aerosol SSA in at least three spectral channels
for fine and coarse modes with an SSA uncertainty of 0.03.
The general features of remote sensing measurement tech-
nique are listed in Table 7.

Refractory black carbon

Refractory black carbon is measured using laser induced
incandescence (LII). LII occurs when light-absorbing particles
are illuminated by intense radiation and heated to tempera-
tures much higher than the surrounding air. The high temper-
ature particles emit grey/blackbody radiation that can be de-
tected and used to derive the mass of the illuminated particle
or particles. At sufficient light intensities, particles are heated
to their vaporization temperature (or boiling point), which for
rBC is approximately 4300 K [197]. At this point, the energy
absorbed is approximately balanced by the energy lost via
vaporization and radiation. The LII signal decreases as the

particle shrinks since less light is absorbed and emitted by the
evaporating particle.

Investigations into rBC using LII fall into two sub-groups,
those using pulsed lasers and those using continuous lasers.
Interference during Raman spectroscopy measurements moti-
vated the earliest LII work on rBC produced in flames [198].
Weeks and Duley [199] showed that LII signals could be
related to particle size for carbon black; however, it was the
subsequent theoretical and observational studies [200, 201]
that showed that LII could be used to directly derive the rBC
properties in flames. For example, Melton [200] showed that
the magnitude of the incandescence signal could be related to
the volume concentration of rBC in the measurement region.

The LII rBC experiments employ pulsed (~20 ns), high
intensity lasers that illuminate a point source or a two-
dimensional measurement volume as illustrated in the exam-
ple shown in Fig. 8 [202]. The ability to visualize the spatial
distribution of rBC in the measurement volume was particu-
larly useful for studies of combustion systems (e.g., [203]),
particularly those investigating turbulent and/or flickering
flames where slower, scattering-based approaches were insuf-
ficient [204]. The decay of the LII signal was related to the
primary particle size [205] because of the dependence of the
particle cooling behavior on surface area. LII was also com-
bined with two-color pyrometry (measuring the light emitted
over different wavelength ranges) to determine the tempera-
tures of particles in combustion systems [206]. Pulsed LII has
also been combined with light scattering measurements to
investigate rBC morphology [207]. Besides rBC measure-
ments in flame combustion processes, pulsed LII techniques
were eventually applied to measurements of diesel emissions
[208], laboratory-scale gas flares [209], dusts [210], and at-
mospheric rBC measurements (e.g., [211]).

Stephens et al. [212] developed an alternative method for
measuring LII of single particles for the purpose of identifying
particle composition using two-color pyrometry. Unlike pre-
vious pulsed LII systems, Stephens et al. [212] illuminated
particles by passing them directly through a continuous, intra-
cavity, solid-state laser beam. Their design also featured a
detector to measure light scattered by individual particles,
which was used to estimate their size. Although the main
motivation for the instrument was the identification of particle
types based on vaporization temperatures, Stephens et al.
[212] also highlighted the technique’s ability to measure at-
mospheric rBC. The design was eventually commercialized as
the single particle soot photometer (SP2) and has been used
for atmospheric rBC measurements for roughly the last de-
cade. Figure 9 illustrates the configuration of the SP2 for
illuminating single aerosol particles and measuring the
scattered and emitted components of the light.

The high sensitivity and time resolution afforded by the
single particle measurements provided by the SP2 make the
instrument suitable for ambient measurements in pristine

Table 7 Remote sensing technique summary

Measures Light absorption and extinction

Units Aerosol optical depth

Collection media None

Collection time Variable

Uncertainty Unknown

Calibration None

Biases Unknown

Measures BrC No
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environments. The earliest applications of the SP2 focused
on airborne characterization of rBC in the lower
stratosphere/upper troposphere region [95, 213]. The instru-
ment was subsequently widely adopted for not only aircraft-
based measurements but also field- and laboratory-based
measurements of ambient rBC (e.g., [102, 214–216]).
McConnel et al. [217] showed that the SP2 could be applied
to measure rBC in liquid samples (ie, melt streams from ice
cores), and the approach has since been applied in a number
of studies measuring rBC concentrations and properties in
ice (e.g., [218, 219]), snow [220, 221], lake water [222],

and precipitation [223]. Several investigators have also de-
veloped more advanced methods for interpreting the scat-
tering measurements made by the SP2 to infer information
regarding coatings and/or other particles mixed with rBC in
individual particles [215, 224–226]. These analyses have
enabled a number of investigations into atmospheric pro-
cessing of rBC and the role coatings have on rBC optical
properties (e.g., [227]) and hygroscopicity [228, 229].

Uncertainties for pulsed LII measurement methods stem
mainly from the need to model the physical behavior of the
measured rBC in order to interpret LII signals and determine

Fig. 8 From Michelsen et al.
[202]. This schematic is showing
the fundamental components of
the experimental apparatus.
Abbreviations are as follows: B:
bandpass filter; CB: camera
control box; CL: signal collection
lenses; DG, digital delay
generators; F: colored glass filter;
HV: high voltage power supply;
ICCD: intensified charge coupled
detector; IL: imaging lend;
LWDM: long working distance
camera; M: ¼ meter
monochromator; PD: photodiode;
PMT: photomultiplier tube; SH:
laser sheet forming optics; SL:
adjustable slit; VCR; video
cassette recorder

Fig. 9 Schematic of the
SP2 optical head from
Schwarz et al. [95]
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volume concentrations and size distributions [230]. At high
laser intensities, rBC particles vaporize and can undergo
restructuring [231], which alters their optical properties and
LII signals. Other factors include changes in rBC absorption
and extinction properties at different temperatures, expansion
of particles as they heat, changes in their refractive index that
affect the interpretation of LII signals, and mechanisms
through which particles interact with the carrier gas [230].
Measurements of the primary particle size depend on the
carrier gas properties and structure of the rBC aggregates. If
the aggregate collapses, some primary particles are shielded
from the surrounding air, which affects the aggregate cooling
rate and subsequent LII signal decay, leading to a larger
inferred primary particle size. Chan et al. [211] used this
behavior as a diagnostic for rBC aggregate collapse in atmo-
spheric measurements. The majority of pulsed LII studies
have focused on combustion environments where coatings
on rBC particles are relatively minor. For atmospheric appli-
cations aged rBC particles can acquire substantial coatings
(e.g., [56, 95]). At high laser intensities, these coatings will
evaporate and should not affect measurement of the volume
fraction [211]. If coatings or mixed particles survive the initial
particle heating, they might affect the determination of the
primary particle size from the observed LII signal decay, as
they will affect the cooling rate of the mixed particle.

For continuous LII measurements, several studies have
investigated the response of the SP2 to different rBC calibra-
tion standards, ambient rBC, rBC mixed with other material,
and rBC with different morphologies [95, 102, 149, 232–234].
These works have shown that the radiation emitted by rBC
particles at their vaporization temperatures is linearly propor-
tional to rBC mass and independent of mixing state and mor-
phology over a wide range of conditions. The lower particle
size threshold for the SP2 is limited by the requirement that
particles must be heated to their vaporization temperature, and
has been found to be 0.7 fg (90 nm volume equivalent diam-
eter) for reasonable laser intensities [235]. The upper size limit
of the SP2 is largely governed by the amplification settings on
the SP2 thermal emission detectors and the sampling efficiency
of large particles to the SP2 detection region. Schwarz et al.
[220] have shown that the SP2, when optimized for large
particle detection, can adequately measure rBC up to volume
equivalent diameters of 2 μm. In most ambient environments,
the amount of rBCmass falling outside the SP2 detection range
is assumed to be small (10 %–20 %); however, care should be
taken when interpreting measurements of fresh emissions
where the rBC size distribution may shift to smaller sizes or
when examining number distributions where smaller particles
make a more significant contribution to total number concen-
trations compared with total mass. At high particle concentra-
tions, multiple particles can be present in the sensing volume,
so care should be taken to avoid interpreting coincident LII
signals as originating from a single, larger particle [236].

The choice of calibration material also affects uncertainties
in SP2 LII measurements. Different effective densities and
emissivities have been found for atmospheric rBC calibration
materials, which translate to different LII signals for fixed
amounts of rBC mass. Moteki and Kondo [197] showed that
combining the SP2 with an independent particle mass mea-
surement downstream of a heated inlet system allowed direct
comparison of the LII signal and rBC mass. This work and
follow-up studies [234] have shown that rBC in urban envi-
ronments has an LII response closest to fullerene soot and that
the SP2 response to different calibration materials can be
related to ambient rBC response using empirical corrections.
Similar measurements are needed in non-urban environments
to verify that relationships hold for all forms of atmospheric
rBC.

Additional uncertainties arise when interpreting continuous
LII measurements of rBC present in liquid samples; however,
these lie outside the scope of this review. Schwarz et al. [220]
is a good starting point for readers interested inmore details on
uncertainties associated with these methods. Although the
identification of coatings associated with rBC also has signif-
icant uncertainties, these are not strictly related to the mea-
surement of rBC mass, so we do not include them here.
Readers interested in more details are encouraged to consult
the original references [215, 224–226].

There are several differences between pulsed and continu-
ous LII methods that we summarize briefly here. Pulsed LII
measurements represent the average properties of an ensemble
of rBC-containing particles in the sample volume. Particles
are illuminated by intense laser light on the order of nanosec-
onds. The measured parameters are the rBC volume fraction
and primary particle size. Two-dimensional LII systems also
provide qualitative information on the distribution of rBC
within the measurement volume. The technique has mainly
been applied to combustion environments, though it is now
seeing increasing use in atmospheric applications. The con-
tinuous LII method illuminates individual particles on the
order of microseconds. The particle mass is determined from
the peak LII signal measured when the particle reaches its
vaporization temperature. Simultaneous light scattering mea-
surements are used to infer particle-coating properties, where-
as measurements of the LII signal over different wavelength
ranges are used to infer particle composition. The technique
has been used primarily for atmospheric measurements of rBC
but is being extended to measure rBC in liquids. Both pulsed
and continuous LII methods have uncertainties related to the
absorption and emission properties of rBC, particularly when
it is heated to high temperatures. It is difficult, however, to
extrapolate uncertainties from the two different methods be-
cause of differences in how the LII signals are measured and
interpreted. That said, we are unaware of any studies that have
compared measurements from the two approaches, and much
could be learned about both techniques by such a comparison.
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A recently developed technique related to LII takes advan-
tage of the selective vaporization that occurs when measuring
rBC-containing particle composition using a mass spectrom-
eter. The aerodyne soot particle aerosol mass spectrometer
(SP-AMS) is a development of the traditional AMS [237] that
replaces the particle vaporization source, a heated metal sur-
face, with the same continuous laser system used in the SP2
[238]. The SP-AMS is not a traditional LII measurement in
that the light emitted by the process is not measured. Instead,
ions generated from the vapors produced by the LII process
are measured to provide detailed chemical information related
to both the rBC and any associated coatings. The technique
has already been used to investigate atmospheric rBC [56,
238]. A detailed discussion of the uncertainties associated
with this technique are beyond the scope of this review, but
interested readers should consult Onasch et al. [238] for a
detailed discussion of the technique. The general features of
laser-induced incandescence measurement techniques are
listed in Table 8.

Morphology of atmospheric EC

Freshly combusted BC particles are emitted as sub-micron
sized aggregates of coagulated spherical primary particles
(monomers; see Fig. 10) from high-temperature combustion
systems [46, 239, 240]. These monomers can lead to varied
morphology that BC aggregates can assume in the atmosphere
and can significantly affect their physical, chemical, and op-
tical properties. Therefore, experimental techniques to charac-
terize their morphology are of prime interest to researchers.

Transmission electron microscopy (TEM) has revealed
the structure of these monomers as containing onion-like
layers of graphitic platelets [241, 242], which are not
parallel as in pure, single-crystal graphite, but disordered
and wrinkled [11]. In the past four decades, laboratory
investigations and computer simulation studies have shown
that formation of BC in combustion systems proceeds via a

three-dimensional diffusion-limited cluster aggregation
(DLCA) growth mechanism [243–245]), giving rise to their
non-Euclidean particle geometry. Since the application of
fractal mathematics to the area of condensed matter physics
by Forrest and Witten [246], the morphology of EC aggre-
gates has been described using a quantifiable mathematical
parameter, the fractal dimension, Df. Estimation of this
parameter leverages from the fact that within a certain
length scale, EC aggregates are scale-invariant, that is, their
irregularity is similar between the limits of monomer and
aggregate size. Mathematically, the number of monomers
per aggregate, N , scales with the radius of gyration, Rg as
[247]:

N ¼ k0 Rg=dp
� �D f ð1Þ

where k0 is the fractal pre-factor and dp is the average mono-
mer diameter. The aggregate’s Df is considered to be the key
property in influencing its physical, chemical, and optical
properties.

Past simulation and theoretical investigations have shown
that the process of DLCA always yields an asymptotically
converging Df value of 1.8 [247–249]. However, one often
finds the Df of atmospheric BC aggregates significantly devi-
ating from this value. Freshly emitted BC aggregates often
undergo atmospheric processing, resulting in morphologic
restructuring [55, 136]. Consequently, these aggregates as-
sume sphere-like, collapsed morphologies with a much higher
Df (close to three).

Practical methods most commonly used for determina-
tion of aggregate morphologic properties are in situ light
scattering measurements, characterization, and combination
of different physical diameters, and quantitative analysis of
digitized ex situ transmission/scanning electron microscopy
(TEM/SEM) two-dimensional images [135, 239, 240, 247,
250]. In situ measurement of Df and size of aggregates
from angular light scattering measurements involve analysis
of scattered light intensity from an ensemble of aggregates
in q (or inverse length) space [247]. The slope of the linear
regions in the intensity versus q plots is analyzed to
calculate the average Df of aggregates. The main limitation
of this in situ technique is that when using this method it
becomes too complicated for extracting the accurate struc-
tural properties for polydisperse aggregate size distributions.
Furthermore, the instrumentation required for this measure-
ment methodology is often not portable to active combus-
tion sites, making it difficult to study real-world aerosol
particles.

Ex situ techniques involving image analysis of aggregates
have found wide use in determining Df of aggregates collected
from both laboratory and field studies [135, 239, 251–253]. The
Ensemble method (EM) is one of the more popular aggregate
morphology characterization techniques used by researchers

Table 8 Laser-induced incandescence technique summary

Measures rBC

Units Mass concentration

Collection media None – in situ

Collection time Milliseconds to seconds

Uncertainty 5 %–10 %

Calibration Commercially available light absorbing
particles. Fullerene for the SP2

Biases In the SP2, underestimation of rBC mass if
significant mass is in particles smaller or
larger than lower or upper size threshold.

Measures BrC No
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[239, 253–255]. This technique involves determining the values
of N , Rg, dp from aggregate images, and then using Eq. 1 to
determine the Df of aggregates. The main drawback associat-
ed with this technique is the difficulty of obtaining
accurate three-dimensional information about aggregate
morphologic variables such as N and Rg required for
calculating the three-dimensional Df of aggregates. Al-
though these variables are not directly deducible from a
two-dimensional image of an aggregate, empirical rela-
tionships between measurable two-dimensional and three-
dimensional properties of aggregates have been derived from
simulation and experimental studies to remedy this situation
and assist researchers in their analyses [256–264].

Over the past three decades, researchers have also
employed more simplistic image analysis routines such as
the nested squares method (NSM) and the perimeter method
(PM), which directly determine the Df of aggregates from
their two-dimensional images. These techniques do not use
the relationship between different aggregate properties of
Eq. 1 to determine aggregate Df. Determining Df with the
NSM technique involves drawing boundaries (e.g., squares or
circles) of increasing size upon a two-dimensional, pixilated
image of a fractal aggregate centered on the aggregate center
of mass [252, 255]. For every boundary, the number of pixels
occupied by the particle is counted. TheDf is calculated as the
linear regression slope of the linear portion of the log–log
curve generated by plotting boundary size against pixel count.
The PM calculates Df by drawing grids of differing box sizes
upon a two-dimensional image of a fractal aggregate [255,
265]. Given a grid with a certain box size, the number of grid
boxes through which the perimeter passes is counted. A grid
with a different box size is then drawn, and the number of grid
boxes through which the perimeter passes is counted once
again. This process is repeated, and the logarithm of the box
size is plotted against the logarithm of the box count, provid-
ing the Df as the slope.

It is noteworthy tomention that researchers using NSM and
PM oftentimes assume that the fractality of the aggregates is

conserved between two- and three-dimensions within the
aggregate length scale. In other words, the assumption is
that the calculated two-dimensional Df equals the three-
dimensional Df. Regarding this assumption, a number of
studies [255, 261, 264, 266] have cautioned that factors like
orientation of aggregates in the image, location of their center
of mass, and the distribution of the primary particles around
the center of mass could cause systematic differences between
the three-dimensional Df and the two-dimensional Df deter-
mined from a two-dimensional projection of the three-
dimensional structure. Two studies [261, 264] have shown,
using computer simulations, that compared to a suspended
aggregate, the projected area and length can be overestimated
in the two-dimensional projection depending on the resting
position of the aggregate on the microscopy filter substrate.
More recently, Chakrabarty and coworkers [255] individually
tested the accuracies of EM, NSM, and PM in predicting
three-dimensional Df of two-dimensional aggregate images
by applying them to a statistically significant (~2500)
number of projected images of all stable orientations of
computer-generated three-dimensional fractal aggregates
with Df ranging between 1.0 and 3.0. Their results showed
that of the three methods, the only method that can be

Fig. 10 Scanning (A) and
transmission (B) electron
microscope images of typical
elemental carbon aggregates
emitted from high-temperature
combustion systems such as
engines and biomass burning

Table 9 Morphology technique summary

Measures BC structure, fractal dimension

Units Fractal dimension

Collection media Nuclepore filter substrate or transmission
electron microscopy grids

Collection time Minutes to hours

Uncertainty Large uncertainties for nested square and
perimeter methods. Low uncertainty for
ensemble method

Calibration None

Biases Organic carbon coating on BC monomers

Measures BrC No
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used to reliably determine Df from two-dimensional im-
ages is the EM. Both the NSM and the PM yielded many
overlapping values of two-dimensional Df for differing
values of three-dimensional Df resulting in a non-one-to-
one relationship and large margins of error. The general
features of morphologic measurement techniques are listed
in Table 9.

Summary

Recent attention paid to the climate and health effects of
atmospheric black carbon (BC) [8, 267] have led to detailed
discussions on the general and technical definitions of BC and
the terminology of BC derived from various measurement
methods. Decades of research and a fundamental complexity
in the physical, chemical, and optical properties of BC have
led to a variety of ill-defined or confusing terminology and a
variety of measurement methods. Bond et al. [8] and Petzold
et al. [6] provide general definitions and four fundamental
physical property definitions of BC. Petzold et al. [6] further
define the terminology of the products of various measure-
ment methods that utilize the physical properties of BC listed
above.

In this paper, we have reviewed the measurement methods
that correspond to the terminology descriptions of Petzold
et al. [6]. Basic measurement principles, advantages, disad-
vantages, uncertainties, and references for further reading are
described. Measurements of the mass of elemental carbon
(EC) using the combustion properties of the material, the
SP2 bonded carbon, insolubility, and the fundamental mor-
phologic properties are discussed. Measurements of the
mass of equivalent BC (eBC ) using the fundamental
property of light absorption are provided (filter-based
absorption), (photo-acoustic absorption), and (photo-thermal
interferometry). A review of the measurement of aerosol light
absorption using remote sensing, which requires further
scientific advances to derive eBC is provided. Measurements
of the mass of refractory BC (rBC ) using the funda-
mental vaporization properties are described (laser in-
duced incandescence).

The information that has been put forth in this review was
compiled with the goal of helping students, engineers, and
researchers in many fields to become better oriented to the
many facets of black carbon and to expand their knowledge
base of the many techniques that are currently employed to
measure these facets.
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